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Abstract

Even though languages can express a wide
range of quantifiers, only a small number are
ever realized as morphologically simplex de-
terminers: every, no, some, and most. This is
puzzling because I) most is much more com-
plex than the other three, and II) quantifiers like
an even number are simpler than most yet can-
not belong to this class. Building on concepts
from subregular complexity, I present a new
way of measuring a quantifier’s complexity in
terms of its verification pattern. The quanti-
fiers every, no, some, and most all have strictly
2-local (SL-2) verification patterns, but quanti-
fiers like an even number do not. This suggests
that subregular complexity, and in particular
strict locality, plays a crucial role for how much
meaning can be packed into morphologically
simplex expressions.

1 Introduction

The literature on generalized quantifiers (see
Keenan and Westerståhl 1996, Peters and West-
erståhl 2006 and references therein) considers a
wide range of quantificational expressions, from
every, no, and some to not all, all but one, most, at
most half, an even number, a third, between two
and eight, or more - than. It is noteworthy, though,
that across languages the majority of these expres-
sions are structurally complex, involving multiple
words or morphemes. For instance, there seems
to be no language with a single word that has the
same meaning as not all. This is particularly well-
documented in the case of determiners. Among
D-quantifiers, i.e. quantifiers that function as deter-
miners, the only simplex ones (modulo agreement
markers) are realizations of every, no, some, and
most, although not all of them are instantiated in
every language.

Surprising as this may be, it becomes even
more puzzling once one considers the complex-
ity of these quantifiers. Semantic automata theory

(van Benthem, 1986; Steinert-Threlkeld and Icard,
2013) allows us to determine a quantifier’s posi-
tion in the Chomsky-hierarchy of string languages
(Chomsky, 1956, 1959; Chomsky and Schützen-
berger, 1963). Many quantifiers are regular, in-
cluding simplex every, no, and some, but also the
morphologically complex expressions not all, all
but one, and an even number. On the other hand,
most belongs to the more complex class of context-
free string languages. If most can be a morphologi-
cally simplex D-quantifier (MSDQ), why isn’t this
possible for some quantifiers of lower complexity?

Recently, I set out to refine this picture in Graf
(2019b) by drawing from work on the subregular
complexity of patterns in phonology, morphology,
and syntax (see Chandlee 2017, 2022, Heinz 2018,
Dolatian and Heinz 2020, Graf 2022a,b, Hanson
2023a,b, and references therein). I argued that
among the regular quantifiers, every, no, some, not
all, and all but one are particularly simple because
they belong to the subregular class of tier-based
strictly local languages (Heinz et al., 2011; Lam-
bert and Rogers, 2020), whereas an even number
does not. While this explains how an even number
differs from these quantifiers, it still does not ex-
plain why not all and all but one cannot be MSDQs,
and it actually widens the complexity gap between
most and the other MSDQs.

In this paper, I propose that the contradictory
complexity results are resolved by adopting verifi-
cation patterns as a new string model of quantifier
interpretation. A verification pattern for quantifier
Q encodes instructions for how the elements of
the domain can be arranged to easily determine
whether the statement expressed by Q is true. The
complexity of Q is equated with the complexity
of the simplest possible verification pattern for Q.
The MSDQs every, no, some, and most all have
strictly 2-local verification patterns, but an even
number does not. Verification patterns thus place
the attested MSDQs within the same complexity
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class while correctly excluding many other quanti-
fiers.

The paper is laid out as follows. After a brief dis-
cussion of the notion of quantifier languages from
semantic automata theory (Sec. 2.1), I define what
it means for a string language to be strictly k-local
(Sec. 2.2). I then define verification patterns as an
alternative to quantifier languages (Sec. 3.1) and
show that all MSDQs have SL-2 verification pat-
terns, in particular most (Sec. 3.2 and 3.3). But not
all quantifiers with SL-2 verification patterns are
MSDQs, and Sec. 3.4 proposes several conditions
that separate the MSDQs from the other quantifiers
in this class. The paper concludes with some ten-
tative observations on how this approach could be
extended to handle infinite domains, various prag-
matic effects, capture typological frequency effects,
and cognitive parallels to syntax (Sec. 4).

2 Background

2.1 Semantic automata and the typology of
quantifiers

Generalized quantifiers like every, no, some, and
most are formally modeled as type ⟨1, 1⟩ quanti-
fiers, i.e. as functions that take two sets A and B
as arguments and return a truth value depending on
whether a specific relation holds of A and B.

Example 1. The quantifier every corresponds to the
function fevery : E × E → {0, 1} (where E is
some fixed set of entities) such that fevery(A,B) =
1 iff A ⊆ B. In the sentence every cat sneezed, A
is the set of cats and B is the set of entities that
sneezed. The sentence is true iff the set of cats is a
subset of the set of sneezers. ⌟

The semantic automata approach (van Benthem,
1986; Steinert-Threlkeld and Icard, 2013) makes
it possible to recast any type ⟨1, 1⟩ quantifier Q
as a string language LQ over the alphabet {0, 1}.
We also call LQ a quantifier language. Intuitively,
one constructs a binary string sAB such that each
position i of sAB corresponds to a distinct element
ai ∈ A, and the symbol at position i is 1 if ai ∈
B and 0 otherwise. Given a quantifier Q, then,
fQ(A,B) = 1 iff sAB ∈ LQ. Crucially, for all
quantifiers discussed in this paper this must hold
no matter how elements are associated to positions,
so sAB ∈ LQ iff LQ contains every permutation of
sAB .

Example 2. Continuing the previous example, sup-
pose that the discourse salient set A of cats consists

of Mocha, Murli, and Cinderella, whereas the set
B of sneezers consists of Mocha and Mary. In
this scenario, it is false that every cat sneezed, and
the semantic automata approach expresses this as
follows.

First, Mocha is replaced with 1, whereas Murli
and Cinderella are each mapped to 0. With one 1
and two 0s, we can build three binary strings: 100,
010, and 001. The quantifier language of every
consists of all strings that do not contain 0. For if
some element a ∈ A is replaced by 0, then a /∈
B and thus A ̸⊆ B. And in the other direction,
A ̸⊆ B entails that there is at least one a such
that a /∈ B, and hence sAB must contain at least
one 0. None of the three binary strings above are
members of Levery , and thus every cat sneezed
is correctly predicted to be false for the specific
scenario described above. ⌟

With semantic automata, the cognitive complex-
ity of quantifiers can be measured in terms of the
complexity of the computational machinery that is
needed to generate the corresponding quantifier lan-
guages. Tab. 1 lists some well-known complexity
results. Note that many quantifier languages actu-
ally belong to a proper subclass of the class listed
in the table. For example, most could be more ad-
equately classified as a deterministic context-free
language, or even more tightly as a one-counter
language. In Graf (2019b) I showed that every and
no are strictly 1-local (SL-1), whereas some, not
all, and exactly one are tier-based strictly 2-local
(TSL-2) — a large reduction in complexity with
connections to phonology (McMullin and Hansson,
2015; McMullin, 2016; Jardine and Heinz, 2016;
Burness et al., 2021; Mayer, 2021). These refine-
ments do not change the fact, though, that com-
plexity tells us little about what quantifiers may be
MSDQs.

Only four MSDQs are attested across languages:
every, no, some, and most (English one does not
belong in this category because it is a numeral, and
Russian has morphologically simplex half but its
syntactic behavior is that of a noun rather than a de-
terminer). Why should these be the only MSDQs?
Why is it impossible for, say, an even number of to
ever be realized as an MSDQ? Complexity consid-
erations make this even more puzzling: the class
of attested MSDQs contains two that are SL-1, one
that is TSL-2, and one that isn’t even regular, while
excluding many quantifiers of similar or lesser com-
plexity.
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Quantifier Definition String constraint Complexity MSDQ?

every A ⊆ B no 0 regular Yes/No
every (existential import) A ⊆ B&A ̸= ∅ no 0 and at least one 1 regular Yes/No

no A ∩B = ∅ no 1 regular Yes
not all A ̸⊆ B at least one 0 regular No

some/at least one A ∩B ̸= ∅ at least one 1 regular Yes
exactly one |A ∩B| = 1 exactly one 1 regular No

an even number of |A ∩B| mod 2 = 0 an even number of 1s regular No
half |A ∩B| = |A−B| an equal number of 1s and 0s context-free No

most |A ∩B| > |A−B| more 1s than 0s context-free Yes
less than half |A ∩B| < |A−B| fewer 1s than 0s context-free No

at least one third 3 · |A ∩B| ≥ |A| at most three times more 0s than 1s context-free No
a prime number of |A ∩B| is prime a prime number of 1s context-sensitive No

Table 1: A list of common quantifiers with their set-theoretic definition, the string constraint instantiated by their
quantifier languages, the complexity of said quantifier language, and whether the quantifier can be expressed as a
morphologically simplex determiner

While the goal of Graf (2019b) was to resolve
this tension, it actually exacerbates it. On the pos-
itive side, the paper showed that an even number
is more complex than every, no, some, and not all,
and it observes that among those four, not all differs
from the three MSDQs with respect to a specific
monotonicity property. But the existence of mor-
phologically simplex most is still very surprising
considering that its quantifier language is not even
regular, let alone SL-1 or TSL-2. Following the
credo that one person’s modus ponens is another’s
modus tollens, Graf (2019b) presents this as addi-
tional evidence for the proposal by Hackl (2009)
that most is built up from multiple parts and hence
not an MSDQ. But this just begs the question why
this option of camouflaging multiple parts as an
MSDQ is unavailable for, say, not all or an even
number. The account in (Graf, 2019b) thus fails
to reconcile the absence of morphologically sim-
plex not all with the existence of morphologically
simplex most, in particular as the latter has a much
more complex quantifier language than the former.

As I will show in Sec. 3, though, the complexity
landscape changes greatly if quantifier languages
do not need to be closed under permutation. While
the complexity of an even number remains the
same, most becomes SL-2 and now is a natural
fit for the other three MSDQs. In order to fully
appreciate what this means, we have to properly
define what it means for a string language to be
SL-2.

2.2 Strict locality over strings

Intuitively, a string language is strictly k-local (SL-
k; k ≥ 1) iff it can be described by a finite set of
permissible substrings of length k.

Example 3. Consider the string language L :=
⋊(10)∗⋉, which contains the strings ⋊⋉, ⋊10⋉,
⋊1010⋉, ⋊101010⋉, and so on. We can describe
L in terms of five permissible bigrams: ⋊⋉, ⋊1,
10, 01, and 0⋉. Every string in L contains only
these permissible bigrams (though not necessarily
all of them), and every string outside L necessarily
contains at least one bigram that is not one of these
five permissible bigrams. Since the permissible
substrings are of length 2, L is SL-2. ⌟
There is an equivalent characterization of SL-k
in terms of forbidden substrings (as long as k ≥
1), but the definition with permissible substrings
will be easier to use for the purposes of this paper.
More specifically, we will define SL-k in terms of
positive SL-k grammars.

Given a (finite) alphabet Σ, we use Σ∗ to denote
the set of all possible strings over Σ, including
the empty string ε, and Σ+ for Σ∗ without ε. We
furthermore use ΣE to denote Σ ∪ {⋊,⋉}, where
⋊,⋉ /∈ Σ are left edge and right edge markers,
respectively. For any k ≥ 1, Σk

E ⊊ Σ∗
E is the

set of all strings over ΣE whose length is exactly
k. If Σ contains exactly one symbol σ, then we
write σk, σ∗, σ+ instead of {σ}k, {σ}∗, and {σ}+,
respectively. Given a string s, w is a k-factor (or
k-gram) of s iff w ∈ Σk

E and there exist (possibly
empty) strings u and v over ΣE such that s = uwv.
We write fk(s) for the set of all k-factors of string
s; if the length of s is strictly less than k, then fk(s)
is undefined.

Definition 1 (Strictly k-local). A (positive) SL-k
grammar over alphabet Σ is a (possibly empty)
set G ⊆ Σk

E . The string language generated by G
is L(G) :=

{
s | fk(⋊k−1s⋉k−1) ⊆ G

}
. A string

language L is SL-k iff there is an SL-k grammar
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G such that L(G) = L. A string language L is
strictly local (SL) iff there is some k such that L is
SL-k. ⌟

Every strictly k-local string language is regular
as it can be recognized by a deterministic finite-
state automaton where each state memorizes the
k − 1 most recent symbols. However, not every
regular string language is strictly local.

Example 4. Consider the string language L :=
(0∗ 1 0∗ 1 0∗)∗, which consists of all strings over
{0, 1} that have an even number of 1s. This in-
cludes ε, 11, 1111, 111111, and so on. Sup-
pose this language were strictly k-local for some
even k. Then 1k ∈ L but 1k+1 /∈ L. But all
the k-factors of ⋊k−11k+1⋉k−1 (which are ⋊i1j

and 1j⋉i for all i, j ≥ 0 such that i + j = k)
are also k-factors of ⋊k−11k⋉k−1. With k =
2, for instance, f2(⋊111⋉) = {⋊1, 11, 1⋉} =
f2(⋊11⋉). Hence every strictly k-local grammar
that generates 1k ∈ L also generates 1k+1 /∈ L,
and thus L cannot be strictly k-local. Since k was
arbitrary, L is not strictly local. ⌟
In fact, the class SL of strictly local string lan-
guages is maximally weak in the sense that no other
class has been proposed that includes infinitely
many infinite languages and is properly subsumed
by SL. The class SL on its own instantiates an infi-
nite hierarchy — the class of SL-k string languages
is a proper subclass of the class of SL-(k + 1) lan-
guages for all k ≥ 1. In this paper, I focus on the
very bottom of this hierarchy, i.e. SL-1 and SL-2.1

Since every SL-1 string language is also SL-2, the
latter is the more important class for this paper.
I argue that all MSDQs are maximally simple in
the sense that they have SL-2 verification patterns,
thus resolving the puzzle posed by most.

3 The verificational simplicity of most

We are now ready to formulate the central insight
of this paper: the complexity of quantifiers can
be measured in terms of their verification patterns
(Sec. 3.1), and doing so reveals all attested MSDQs
to form a natural class in the sense that they are
SL-2 verifiable, which means that their verification

1The class SL-0 can be defined but is pathological. The
only possible SL-0 grammar is the empty set ∅. Depending on
whether one interprets ∅ as a positive grammar or a negative
grammar (i.e. a set of forbidden 0-factors), it generates either
the empty language or all of Σ∗. This is the only case where
the generative capacity of positive and negative SL grammars
diverges, which provides good reason not to include SL-0 in
the definition of SL.

Figure 1: By rearranging the marbles such that there
never are two white marbles next to each other, Mary
can verify whether most marbles are black without
counting all the marbles or calculating their relative
proportions.

patterns are SL-2 string languages (Sec. 3.2). Ad-
mittedly, this hinges on defining most as at least
half instead of more than half (Sec. 3.3), and addi-
tional restrictions are needed to rule out unattested
MSDQs (Sec. 3.4). But this still marks a significant
step away from the status of most as a complexity
outlier among MSDQs.

3.1 From quantifier languages to verification
patterns

The complexity results in Tab. 1 hold with respect
to quantifier languages that are closed under per-
mutation. The idea behind permutation closure is
that the conditions that a quantifier Q(A,B) im-
poses on A and B hold irrespective of what linear
structure one imposes on A. From a linguistic per-
spective, however, this may distort the cognitive
complexity of quantifiers.

Example 5. Suppose the Assistant Dean of the Of-
fice of Deranged Tasks has taken a bag with an
odd number of marbles in two colors, black and
white, and has meticulously arranged them in a line
that spans across all the rooms of said office. Mary
is then tasked by the Assistant Dean to determine
whether most of the marbles are black. Mary can-
not eyeball the whole line at once or rely on other
heuristics. At first she considers counting, but after
a long day of work she does not want to spend the
mental effort required to keep track of numbers.

Instead, Mary opts for a simpler solution that
does not require counting. She puts all marbles
back into the bag and then builds a new line accord-
ing to the following rules: The first marble must
be a black, and each white marble must be immedi-
ately to the right of a black marble (see Fig. 1). If
Mary ever reaches a point where these rules cannot
be met, then it is not the case that most marbles
are black. She happily reports her findings to the
Assistant Dean, who fires her on the spot for having
altered the meticulous marble arrangement. ⌟

While Mary in our example was under an im-
plicit obligation to keep the order of elements undis-
turbed, this requirement does not hold for the in-
terpretation of quantifiers. The complexity of LQ
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expresses how difficult it is to determine the value
of fQ(A,B) given an arbitrary order of A. An al-
ternative measure would look at how difficult it is
to define a verification pattern for fQ, i.e. a pat-
tern that guarantees that fQ(A,B) is true iff the
elements of A can be arranged according to that
pattern.
Definition 2 (Verification pattern). Let LQ be
the (permutation-closed) quantifier language of
some type ⟨1, 1⟩ quantifier Q. We call a set VQ

of strings over {0, 1} a verification pattern for Q
iff the permutation closure of VQ is LQ. Given a
class C of string languages, we say that Q is C
verifiable iff Q has some verification pattern VQ in
C. ⌟
Note that while quantifier languages are unique,
a quantifier may have many distinct verification
patterns, which in turn may differ in complexity.
Example 6. The set 1+0∗ is a verification pattern
for some as its permutation closure is the set of
all strings that contain at least one instance of
1. The set 0∗1+0∗ is also a verification pattern,
but it is more complex. The verification pattern
1+0∗ is SL-2 as it is generated by the positive
grammar {⋊1, 11, 10, 00, 1⋉, 0⋉}. But 0∗1+0∗ is
not SL: for any choice of k, fk(⋊k−10k⋉k−1) ⊆
fk(⋊k−10k 1 0k⋉k−1), and thus every SL-k gram-
mar that generates 0k 1 0k ∈ 0∗1+0∗ also gener-
ates 0k /∈ 0∗1+0∗. Nonetheless, the existence of
an SL-2 verification pattern for some entails that
this quantifier is SL-2 verifiable.

As we will see next, the shift from quantifier lan-
guages to verification patterns greatly alters the
complexity landscape and brings the complexity of
most in line with other MSDQs.

3.2 SL-2 verification patterns cover the
typology

The class of SL-2 string languages is extremely
restricted in terms of its expressivity. For example,
many phenomena in phonology are strictly local,
but not all of them are strictly 2-local.
Example 7. Intervocalic voicing can be construed
as a phonotactic constraint against sequences where
a voiceless sound occurs immediately between two
vowels. This is SL-3: the set of permissible tri-
grams does not contain any xyz such that x and
z are vowels and y is a voiceless sound. But it is
not SL-2 because, say, illicit asola only contains
bigrams that also occur in as or sola, neither one
of which violates intervocalic voicing. ⌟

Quantifier 1 0

|A| = 0
every ✓

no ✓
always true ✓ ✓

Table 2: All four SL-1 grammars over {1, 0} and the
quantifiers that they generate verification patterns for

The verification patterns for MSDQs, however, all
seem to be SL-2.

Consider first the class of SL-1 string languages
over Σ := {0, 1}. For SL-1 languages, we do
not need to add edge markers to the alphabet be-
cause for k = 1, ⋊k−1s⋉k−1 = ⋊1−1s⋉1−1 =
⋊0s⋉0 = s for every string s. Hence there are
only four distinct SL-1 grammars over this alpha-
bet, each one a subset of Σ. The empty grammar
allows nothing at all and generates the empty lan-
guage. The grammar {0, 1} allows everything and
thus generates Σ∗. Both are pathological from a
linguistic perspective. The empty language is a
verification pattern for the quantifier that requires
|A| = 0 irrespective of how B is chosen, which
is unlike any generalized quantifier in natural lan-
guage. Similarly, Σ∗ is the verification pattern of
a tautological quantifier Q with Q(A,B) = 1 for
all A and B. The two remaining grammars are
{1} and {0}, which are more interesting. The for-
mer generates all members of 1∗, and the latter
generates all members of 0∗. These are the veri-
fication patterns for every (without existential im-
port) and no, respectively (since these verification
patterns are already closed under permutation, we
have Vevery = Levery and Vno = Lno). The class
of SL-1 string languages over {0, 1} thus already
furnishes verification patterns for every and no (see
also Tab. 2), and thus every and no are both SL-1
verifiable.

The space of SL-2 grammars is significantly
larger. There are 42 = 16 distinct bigrams in ΣE .
Even though 7 of them can never be members of
f2(⋊s⋉) for any string s (e.g. 0⋊, ⋉1, and ⋉⋉),
this still leaves us with 9 useful bigrams, and hence
29 = 512 distinct grammars. The total number
of verification patterns is smaller because some
grammars generate the same string language, for
instance {⋊⋉} and {⋊⋉,⋊1}. Nonetheless the
range of options is too large to discuss all of them
here. Instead, I only consider grammars where
strings must always start with 1 (the grammar con-
tains ⋊1 but not ⋊0 or ⋊⋉) and strings can end
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in 1 or 0 (the grammar contains both 1⋉ and 0⋉).
This leaves us with 16 distinct grammars which
differ only with respect to which of the following
four bigrams they contain: 11, 10, 01, 00. Surpris-
ingly, this is enough to generate the verification
patterns for all MSDQs that aren’t SL-1 verifiable,
including most.

Table 3 lists each grammar and the quantifier that
corresponds to the generated verification pattern.
Out of those sixteen grammars, five generate verifi-
cation patterns for unnatural quantifiers: 1), 3), 4),
5), and 11). In addition, all four of 2), 7), 8) and 14)
generate the same verification pattern, which is for
every with existential import (due to the mandatory
1 at the beginning of each string). Finally, 13) and
16) generate distinct verification patterns — 1+0∗

and 1 {0, 1}∗, respectively — but since both im-
pose no requirements beyond the presence of at
least one 1, they are both verification patterns for
some. The remaining verification patterns are for
five distinct generalized quantifiers: all except for
at most one, half, exactly one, at most half, and
crucially, at least half/most. So even though we
saw in Sec. 2.1 that Lmost is much more complex
than Levery , Lno , and Lsome , their verification pat-
terns are of similar complexity. The property that
holds of every attested MSDQ Q is that VQ is SL-
2. In other words, every attested MSDQ is SL-2
verifiable.

3.3 most = at least half?
The reader may object that the discussion so far
incorrectly conflates most with at least half. The
truth-conditional definition of most is usually given
as |A ∩ B| > |A − B| rather than |A ∩ B| ≥
|A−B|; or equivalently, as |A∩B| > 1

2 |A| rather
than |A ∩ B| ≥ 1

2 |A|. The standard definition
thus equates most with more than half rather than
at least half. There are several responses to this
challenge.

First, the verification pattern identified with at
least half /most in Tab. 3 is 1+(01+)∗(0) — the
string must start with 1, may end with 1 or 0, and
1s can be followed by 1 or 0, but 0 cannot be fol-
lowed by 0. If |A| is odd, this pattern necessarily
contains more 1s than 0. Hence the discrepancy
between the verification pattern and the standard
definition only arises with domains of even cardi-
nality. But it is unclear whether the association with
at least half rather than more than half is at odds
with native speakers’ judgments in this case. This
is because native speakers generally expect most

to indicate that |A ∩ B| is noticeably larger than
|A−B|. Hence the standard definition needs to be
augmented with a mechanism such as pragmatic
strengthening or a theory of vagueness in order to
account for the observed behavior (see Carcassi
and Szymanik 2021 for a recent discussion). Once
that modification is made, though, the difference
between |A∩B| > |A−B| and |A∩B| ≥ |A−B|
becomes immaterial.

Second, it may be the case that speakers expect
verification patterns to use all bigrams in the gram-
mar. In that case, the verification pattern for most
will always include at least one instance of 11 and
thus contain more 1s than 0s. This approach will
be discussed in greater detail in Sec. 4.2.

Finally, we could consider a modified verifica-
tion pattern where strings can only end in 1. This,
too, would ensure that there are always more 1s
than 0s, and it would not change the fact that most
has an SL-2 verification pattern. However, this un-
dermines one advantage of SL grammars relative
to finite-state automata, namely that they can easily
be viewed as generators of infinite strings as long
as they impose no constraints on how a string may
end. As will be discussed in Sec. 4.1, this furnishes
a new way to analyze statements like “most nat-
ural numbers are not a multiple of three”, which
are challenging for definitions based on cardinal-
ity. Requiring the verification pattern of most to
both start and end with 1 thus addresses the minor
mismatch in definitions over finite domains, but it
does so at the cost of making it harder to work with
infinite domains.

3.4 Fitting the typology
The shift from quantifier languages to verification
patterns has revealed most to be no more complex
than other quantifiers such as some. Quantifiers
such as a third of or an even number of, on the
other hand, are not SL-2 verifiable (and an even
number of isn’t even SL verifiable, cf. Example 6).
This explains why most mirrors every, no and some
in that at least some languages have morphologi-
cally simplex realizations of most whereas no such
realizations are attested for a third of or an even
number of. What distinguishes every, no, some,
and most from a third of and an even number of is
that the former are SL-2 verifiable.

SL-2 verifiability does not entail, though, that
a quantifier can be an MSDQ. We already saw in
Sec. 3.2 that the class of SL-2 verifiable quantifiers
includes at least five highly unnatural quantifiers.
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Quantifier 11 10 01 00 Dead ends? Useless bigrams?

1) |A| = |A ∩B| = 1 ✓
2) every (existential import) ✓
3) 1 ≤ |A| ≤ 2 & |A ∩B| = 1 ✓ ✓
4) |A| = |A ∩B| = 1 ✓ ✓ ✓
5) |A| = |A ∩B| = 1 ✓ ✓ ✓
6) all except for at most one ✓ ✓ ✓
7) every (existential import) ✓ ✓ ✓
8) every (existential import) ✓ ✓ ✓
9) half (+/− 1) ✓ ✓

10) exactly one ✓ ✓
11) |A| = |A ∩B| = 1 ✓ ✓ ✓ ✓
12) at least half/most ✓ ✓ ✓
13) some ✓ ✓ ✓
14) every (existential import) ✓ ✓ ✓ ✓
15) at most half ✓ ✓ ✓
16) some ✓ ✓ ✓ ✓

Table 3: List of quantifiers whose verification pattern only contains strings starting with 1

This was under the additional restriction that strings
must start with 1. If strings are allowed to start with
0, then many more quantifiers are SL-2 verifiable,
including some that are attested but never have a
morphologically simplex realization.

Example 8. The quantifier not all is SL-2 verifiable
as its verification pattern is generated by the SL-
2 grammar {⋊0, 00, 01, 11, 0⋉, 1⋉}. This makes
not all a counterpart to 14) for every in Tab. 3 where
⋊1 has been replaced with ⋊0. ⌟

It follows that SL-2 verifiability is a necessary prop-
erty but not a sufficient one.

It is tempting, then, to look for additional re-
strictions that prune down the set of all SL-2 veri-
fiable quantifiers to just those that can be realized
as morphologically simplex determiners. Perhaps
unsurprisingly, there are multiple options that differ
slightly in what set they pick out. This is illustrated
in Tab. 3 for those verification patterns that must
start with 1.

If every SL-2 grammar must contain 11, this
rules out all unnatural quantifiers and leaves only
(several versions of) every and some, as well as
most and all except for at most one.

Alternatively, one could require that only the
bigrams with edge markers may be dead ends,
i.e. bigrams that make it impossible to continue
the string.

Example 9. The verification pattern for all except
for at most one is generated by the SL-2 grammar
{⋊1, 11, 10, 1⋉, 0⋉}. Here 10 is a dead end. Once
we encounter 10 in a string, we know that we have
reached its end.

Now consider the minimally different SL-2

grammar {⋊1, 11, 10, 00, 1⋉, 0⋉}, which gener-
ates a verification pattern for some. Here 10 is not
a dead end. If one encounters 10, it is still possible
for the string to continue with an arbitrary number
of 0s. The only dead ends are 1⋉ and 0⋉. ⌟
The intuition behind the ban against dead ends is
that a verification procedure should not be at risk of
getting stuck before all elements have been evalu-
ated. This requirement rules out all unnatural quan-
tifiers and all except for at most one, but leaves half
and exactly one. Interestingly, half has a simplex
realization as a noun in Russian, and depending on
one’s semantic priors exactly one could be taken
to be realized by the numeral one. One character-
ization of MSDQs, then, is as the class of SL-2
verifiable quantifiers whose verification patterns
must start with 1 and whose SL-2 grammars must
not contain dead ends (other than 1⋉ and 0⋉).

This is just one of many conceivable character-
izations. As an illustration, Tab. 3 also indicates
whether a given SL-2 grammar contains useless bi-
grams. A bigram is useless if it does not appear in
any string generated by the grammar. Forbidding
grammars with useless bigrams eliminates some
but not all unnatural quantifiers, and it rules out sev-
eral variants of every with existential import. This
is not necessarily a good thing as it undermines
some analytical options that are briefly explored in
Sec. 4.5.

Yet another approach would limit the focus to
just the SL-2 grammars 2) for every, 6) for all
except for at most one, 12) for most, and 16) for
some. These can be picked out by positing a hier-
archy 11 < 10 < 01 < 00 such that a grammar
may contain a bigram y only if it also contains
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all x to the left of y. Monotonicity requirements
of this kind seem to be common across language
modules (Keenan and Comrie, 1977; Keine, 2016;
Graf, 2019a, 2020; Moradi, 2020, 2021a,b). In
combination with the ban against dead ends, this
monotonicity requirement would only leave every,
no, some, and most, but again at the cost of losing
the analytical options in Sec. 4.5.

In sum, it is certainly possible to formulate ad-
ditional restrictions on SL-2 verifiability to pick
out specific subclasses that more closely match
the attested typology. More work is needed to de-
termine which set of restrictions is the most ele-
gant and insightful. Even without these restrictions,
though, SL-2 verifiability provides a very tight up-
per bound on quantifier complexity while readily
accommodating a large number of natural language
D-quantifiers, including all that can have morpho-
logically simplex realizations.

4 Exploratory remarks

4.1 Claims over infinite domains

One problem of the semantic automata approach is
that it represents the domain A as a string, which
must be finite. Infinite domains would require the
switch to ω-automata (Perrin and Pin, 2004). This
issue does not arise with SL-k grammars. Since
SL-k grammars determine the well-formedness of
each string based on its set of k-grams, they can be
easily generalized to also generate infinite strings.
An infinite binary string is a mapping s from the
set N of natural numbers into {⋊, 0, 1} such that
s(n) = ⋊ iff n = 0. Infinite strings have no right
edge and thus contain no right edge marker ⋉, but
this does not matter for the SL-2 grammars in Tab. 3
because they contain both 1⋉ and 0⋉ and thus put
not restrictions on the end of a string.

Interestingly, this means that the meaning of
most generalizes immediately from finite domains
to infinite domains. With respect to SL-2 verifiabil-
ity, most states that it must be possible to arrange
the elements of the domain A in such a manner that
0s are never repeated. Technically this is the case
for both “most natural numbers are not a multiple
of three” and “most natural numbers are a multi-
ple of three”, but the latter requires a much greater
rearrangement of elements relative to the standard
order of natural numbers. Under the plausible as-
sumption that finding such a suitable rearrangement
is cognitively taxing, it is not surprising that speak-
ers are likely to consider the former statement true

and the latter false.

4.2 Pragmatic strengthening

Quantifiers are subject to pragmatic strengthening.
For example, most is usually interpreted as most
but not all, presumably because the speaker could
have said all instead. Pragmatic strengthening can
be modeled as the requirement that the verification
string must contain all the bigrams listed in the
grammar (assuming the bigram is not useless and
does not contain edge markers). Then a string like
111 would still be a verification pattern for most,
but since it does not contain any instance of 10
or 01, it would also be infelicitous.2 In terms of
formal language theory, this corresponds to a step
up from SL to the class of locally testable languages
(McNaughton, 1974).

4.3 Modifying proportions

The proportion of 1s required by most can
be modified by changing the locality do-
main. For instance, the SL-3 grammar {⋊ ⋊
1,⋊11, 111, 110, 101, 011, 11⋉, 10⋉, 01⋉, 1 ⋉
⋉, 0⋉⋉} requires that the number of 1s is at least
double that the number of 0s. This might be yet
another instance of pragmatics going beyond the
limits of SL-2 verifiability in order to strengthen
the meaning of quantifiers. Perhaps the strategy
could also be used to model vague quantifiers such
as many and few.

4.4 Existential import

The analysis in Sec. 3 posits two different versions
of every, one with existential import (with multi-
ple options in Tab. 3), and one without (listed in
Tab. 2). Existential import can be removed from
the SL-2 grammar for a given quantifier by adding
⋊⋉ to it. Similarly, pragmatics can add existential
import by removing ⋊⋉. The proper modeling of
existential import has to be left to future work, but
SL verifiability seems to be well-equipped to deal
with the problem.

4.5 Typological frequency

Whereas every and some are common across lan-
guages, no and most are comparatively rare. This
roughly matches the number of verification patterns
we identified for each one of these quantifiers: 5

2This proposal requires that quantifier 6) be treated as yet
another variant of some so that one can correctly capture the
pragmatic strengthening of some to some but not most/all in
cases where only one element of A is not an element of B.
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for every, 2 for some, 1 for no, and 1 for most. De-
pending on which constraints on SL-2 grammars
one adds or drops, these numbers may change sig-
nificantly. Additional work is needed before a link
between a quantifier’s typological frequency and
its number of verification patterns can be deemed
plausible, but the possibility is intriguing.

4.6 Parallels to syntax

The key difference between quantifiers languages
and verification patterns is that the latter express the
best case complexity of a given dependency where
the linear order of symbols in the string does not
introduce additional complications. This is compa-
rable to a well-known split in computational syn-
tax that underlies Parikh’s theorem (Parikh, 1966),
the two-step approach (Morawietz, 2003; Mönnich,
2006), subregular syntax (Graf, 2022a,b), and also
Minimalist syntax (Chomsky, 1995). They all ob-
serve that the complexity of syntactic dependencies
is contingent on choices of linearization, recasting
syntax as a system of fairly simple dependencies
that interact with a complex system of linearization
requirements.

Example 10. Consider the string language (abc)n,
which is regular. By moving all instances of c to
the end of the string, we obtain the context-free
language (ab)ncn instead. If in addition we order
all as before all bs, the result is the tree-adjoining
language anbncn. Finally, if we allow every pos-
sible permutation, then we get the MIX language,
which is a 2-MCFL (Salvati, 2015). Each one of
these orderings represents a marked step up in com-
plexity. ⌟
Something similar may hold for quantifiers, with
verification patterns capturing the underlying de-
pendency imposed by quantifiers modulo the ad-
ditional complications of actual verification in a
given scenario.

4.7 The cognitive status of verification
patterns

The parallel to syntax also highlights why verifica-
tion patterns should not be equated with verification
procedures. A verification procedure parses an in-
put into a form that yields a verification pattern. As
experimental results such as Lidz et al. (2011) and
Kotek et al. (2015) arguably observe verification
procedures, not verification patterns, it is not trivial
to make any inferences from the former about the
latter.

This again mirrors the situation in syntax: a
given grammar formalism, say Minimalist gram-
mars (Stabler, 1997, 2011a), has many different
parsing algorithms ranging from CKY and Ear-
ley (Harkema, 2001) to recursive descent (Stabler,
2011b, 2013) and left-corner parsing (Stanojević
and Stabler, 2018), which in turn must be combined
with one of many conceivable linking theories in
order to obtain predictions for human sentence pro-
cessing (Kobele et al., 2013; Gerth, 2015; Graf
et al., 2017; Lee, 2018; De Santo, 2020; Pasternak
and Graf, 2021; Liu, 2023). Verification patterns
provide a similarly rigorous approach to experi-
mental findings. Instead of intuitive stories about
the processing of quantifiers, we need I) a parsing
algorithm that translates stimuli into strings match-
ing a given verification pattern, and II) a rigorous
linking theory that translates the operations of the
parser into predictions about human behavior.

5 Conclusion

Among morphologically simplex quantifiers that
are determiners (MSDQs), most is an outlier due
to the complexity of its quantifier language. The
picture painted by quantifier languages is mislead-
ing, though. If one does away with permutation
closure and considers verification patterns instead,
complexity is lowered significantly. All MSDQs
have SL-2 verification patterns, and SL-2 gram-
mars furnish several parameters that allow us to
home in on just the class of typologically attested
MSDQs. In addition, SL-2 patterns are extremely
simple and also play a central role in phonology,
morphology, and syntax, revealing quantifiers to be
yet another facet of a very general piece of subreg-
ular machinery that drives language.

The approach presented in this paper is reason-
ably flexible and could possibly be extended to
account for pragmatic strengthening, vague quan-
tifiers and typological frequency effects, among
other things. It is not limited to MSDQs, either.
Future investigations of numerals, modals, and ad-
verbial quantifiers might well confirm (or refute)
the central status of SL verifiability in quantifica-
tion and thus offer deep insights into how complex
a meaning can packed into simplex expressions.
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