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Abstract

When comparing speech sounds across lan-
guages, scholars often make use of feature rep-
resentations of individual sounds in order to
determine fine-grained sound similarities. Al-
though binary feature systems for large num-
bers of speech sounds have been proposed,
large-scale computational applications often
face the challenges that the proposed feature
systems — even if they list features for several
thousand sounds — only cover a smaller part
of the numerous speech sounds reflected in ac-
tual cross-linguistic data. In order to address
the problem of missing data for attested speech
sounds, we propose a new approach that can
create binary feature vectors dynamically for all
sounds that can be represented in the the stan-
dardized version of the International Phonetic
Alphabet proposed by the Cross-Linguistic
Transcription Systems (CLTS) reference cat-
alog. Since CLTS is actively used in large data
collections, covering more than 2,000 distinct
language varieties, our procedure for the gener-
ation of binary feature vectors provides imme-
diate access to a very large collection of mul-
tilingual wordlists. Testing our feature system
in different ways on different datasets proves
that the system is not only useful to provide
a straightforward means to compare the simi-
larity of speech sounds, but also illustrates its
potential to be used in future cross-linguistic
machine learning applications.

1 Introduction

The past two decades have seen a drastic increase
in standardized datasets in historical linguistics
and linguistic typology which are available in
both human- and machine-readable form (Dellert
et al., 2020; Skirgard et al., 2023; Wichmann et al.,
2013). With Lexibank (https://lexibank.clld.
org, List et al. 2022), a large collection of com-
parative wordlists has been compiled in which
word forms from various independently published
datasets are standardized along three dimensions,
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including (1) the languages in which they occur,
(2) the concepts which they express, and (3) the
sounds that constitute them. Lexibank is a result
of the more general Cross-Linguistic Data For-
mats initiative (CLDF, https://cldf.clld.org,
Forkel et al. 2018), which aims to unify several
kinds of cross-linguistic data (wordlists, typologi-
cal datasets, interlinearglossed texts) by proposing
an exchange format along with guidelines and rec-
ommendations for standardization.

Sounds in Lexibank are represented in a uni-
fied transcription system, proposed as part of the
Cross-Linguistic Transcription Systems reference
catalogue (CLTS, https://clts.clld.org, List
et al. 2024) that can be considered a large standard-
ized subset of the International Phonetic Alphabet
(IPA, IPA 1999). The CLTS system tries to handle
as much of the variation observed in phonetic tran-
scriptions as possible, using a dynamic method that
parses phonetic transcriptions in a given transcrip-
tion system and derives features from individual
symbol combinations (Anderson et al., 2018). The
feature system underlying these transcriptions has
been designed in a pragmatic way that would allow
to capture as much of the graphical variation in
using the IPA (and other transcription systems) as
possible (Anderson et al., 2023). As a result, the
system is powerful in parsing phonetic transcrip-
tions — specifically those represented in IPA — but it
is not particularly useful to compare speech sounds
with respect to their similarity (be it acoustic or
articulatory or a combination of both).

Thus, while the CLTS system does its job in help-
ing to standardize phonetic transcriptions in an un-
precedented way, as witnessed by the Lexibank col-
lection (and numerous additional CLDF wordlists
that have been published in the past years), it falls
short in providing a reliable means to compare in-
dividual sounds for their similarity.

In this study, we present a very straightforward
approach to convert the CLTS feature system to a
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vector representation. This approach takes CLTS
feature bundles as input and converts them into
binary feature vectors that can be used for vari-
ous downstream tasks in computational phonology,
computational historical linguistics, and computa-
tional linguistic typology.

2 Background

Modeling speech sounds as bundles of distinctive
features can be seen as the most typical and straight-
forward way in phonology and comparative linguis-
tics to compare the similarity of speech sounds. It
is therefore not surprising, that phonological fea-
tures play a crucial role in a number of different ap-
proaches, ranging from historical language compar-
ison (Kondrak, 2000) over dialectology (Nerbonne
and Heeringa, 1997; Hoppenbrouwers and Hoppen-
brouwers, 2001) and phonological rule induction
(Gildea and Jurafsky, 1996) to child language ac-
quisition (Somers, 1998). Representing sounds
with the help of features can also enhance the per-
formance of automatic speech recognition (Metze,
2007) and transliteration (Tao et al., 2006; Yoon
et al., 2007), as well as automatic phonetic tran-
scriptions from text and named entity recognition
(Mortensen et al., 2016). Related studies have addi-
tionally demonstrated that meaningful phone(me)
embeddings can be learned from distributional
properties (Silfverberg et al., 2018; Sofroniev and
Coltekin, 2018).

Beyond these mostly implicit uses of phonolog-
ical features, there exist several frameworks with
the explicit purpose of modeling the interactions be-
tween sounds and their respective features. Compu-
tational tools for analyzing phoneme inventories in
terms of phonological features and natural classes
are available in the form of web applications (Steel
and Jurgec, 2017) or downloadable programs (van
Vugt and Hayes, 2021). However, these tools by
default cover rather small inventories of fairly com-
mon sounds and are often even only designed for
individual languages.

There is a small number of datasets that map
a large number of sounds to a feature representa-
tion, aiming to cover a substantially large amount
of speech sounds in order to be applicable in
cross-linguistic studies. PanPhon (Mortensen et al.,
2016) defines feature representations for approxi-
mately 5,000 sounds, the similar but smaller frame-
work DistFeat (Tresoldi, 2020) spans roughly 500
sounds. Phonotacticon (Joo and Hsu, 2023), a ty-
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pological resource for phonotactics, extends Pan-
Phon to around 20,000 distinct speech sounds.
PHOIBLE (Moran and McCloy, 2019), a database
covering various phoneme inventories, is equipped
with feature definitions as well, covering all 3,000
distinct sounds attested in the data in its latest ver-
sion. Finally, the Python package ipasymbols
(Hamster, 2022) is designed to query IPA symbols
by their articulatory properties, but is not equipped
with phonological features and is currently (v.0.1.0)
limited to only 179 sounds.

While all feature collections are much larger than
the earlier feature collections that phonologists pro-
posed for individual languages, reflecting the trend
towards cross-linguistic approaches that allow for
a comparison across multiple languages, all feature
collections are fixed sets of sounds, lacking a dy-
namic component. This limits their potential when
applying them to newly compiled datasets, since
whenever a sound in a given dataset is not attested
in the feature systems, users would have to add it
or to label it as missing data.

While this may seem to reflect a minor prob-
lem, it has grown into a major obstacle for many
concrete applications in computational compara-
tive linguistics, since practical experience in work-
ing with concrete language data clearly shows that
meeting unobserved sounds when turning to new
datasets is rather the rule than the exception (see
the observation in Moran 2012, that the overall
number of distinct speech sounds seems to increase
almost constantly, albeit slowly, when new data are
added to the sample). One way to avoid the prob-
lem of observing missing sounds is to arbitrarily
extend mappings from IPA transcriptions of speech
sounds to feature mappings in a systematic way, as
exemplified by the extended system proposed by
the Phonotacticon, with 20,000 distinct sounds, of
which only a couple of hundred sounds occur in
the final database.

An alternative, more robust approach, specif-
ically important for data standardized in CLDEF,
would take the pragmatically oriented non-binary
features provided by the CLTS system as a starting
point and convert them to a binary vector represen-
tation.

3 Materials and Methods

3.1 Materials

The starting point of our approach is the CLTS
reference catalogue, which links feature descrip-



tions of speech sounds in the style of the IPA to
different transcription systems and datasets. While
the CLTS website presents a list of about 8,000
distinct speech sounds that are linked to various
datasets, including PHOIBLE and PanPhon, the
system that generates the website is dynamic, with
only a couple of hundred base sounds being defined
explicitly. The rest of the sounds is generated from
sound transcriptions mainly provided in the Inter-
national Phonetic Alphabet. The dynamic system
underlying the CLTS reference catalogue can be
accessed with the help of a Python API (https:
//pypi.org/projects/pyclts, List et al. 2020,
see Anderson et al. 2018 for the details regarding
the algorithm used by the API). As a result, IPA
strings that are not directly represented in the sys-
tem can be processed, as long as they conform
to IPA standards (broadly defined by CLTS). The
CLTS system parses sounds in two ways, taking a
phonetic transcription (typically provided in IPA)
as starting point, or starting from the typical name
of a speech sound, as they are also defined by the
IPA. For example, [p] would be described as the
‘voiceless bilabial stop consonant’, yielding the de-
scriptive feature set (‘voiceless’, ‘bilabial’, ‘stop’,
‘consonant’). For the conversion of sound transcrip-
tions accepted by CLTS to binary feature vectors,
we use the feature bundle representation rather than
the phonetic transcription as our starting point.

In order to evaluate the usefulness of the binary
feature vectors derived from CLTS, we use the Lex-
ibank database, since it provides a large collection
of wordlists that conform to the standard defined
by CLTS.

As of version 1.0 (List et al., 2023) Lexibank
is available in an aggregated form in which all
datasets that are sufficiently standardized — with
all sounds being interpretable by the dynamic
CLTS system — are assembled in a single CLDF
dataset that can be parsed and processed in various
ways, including SQLite (see List and Shcherbakova
2023) or Python (using the CL Toolkit package,
see List and Forkel 2021, https://pypi.org/
project/cltoolkit). In this form, Lexibank cov-
ers wordlists of at least 80 distinct words for about
2,000 distinct language varieties.

3.2 Methods
3.2.1 Feature System

We define a classical feature space of 39 binary
phonological features that can be present (1) or
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absent (-1), or non-applicable (0). Strictly speak-
ing, we therefore employ a notion of ternary, rather
than binary features, since there are three instead
of two possible values. However, this is merely
an explicit formalization of the way that binary
features are usually treated in phonology: Not all
features can apply to all kinds of sounds. It is
therefore necessary to distinguish absent from non-
applicable features by assigning them different nu-
merical values. To illustrate this, consider the fea-
ture [tstrident] which only applies to fricatives
and affricates (Zsiga, 2013) — it is worthwhile to
distinguish non-strident fricatives (which could be
strident) from other sounds that do not have this
feature at all. This notion of applicability is fre-
quently found in the literature, and formally makes
these systems ternary rather than binary. Keeping
this in mind, we will still refer to this feature sys-
tem as binary, given that it is the commonly used
term to describe this kind of feature systems.

The majority of the features we define consti-
tutes a fairly well established standard inventory,
where we strictly follow the definitions by Zsiga
(2013). Nevertheless, to be able to cover a compre-
hensive range of sounds, some additions to the fea-
ture inventory were required. We incorporate three
additional features [velaric], T[hitone], and
[hireg] from Mortensen et al. (2016) to handle
clicks and tones. Clicks are assigned [+velaric]
on top of their other features that are derived from
their analogous pulmonic stops. The tonal features
[hireg] and [hitone] refer to the broader regis-
ter, and the more narrow tone quality within the
register — both the high tone [°] and the mid-high
tone [*] belong to the high register and are therefore
[+hireg], and within that register, [°]is the higher
tone and is therefore [+hitone] (whereas [*] is
[-hitone] analogously). Since we do not want to
assign the feature value of 0 (non-applicable) to
tonal features in tones, however, these two features
only yield 4 possible combinations, insufficient for
encoding the canonical 5 tones. We therefore in-
troduce the supplementary feature [loreg] as a
logical counterpart to [hireg], covering the low
and the mid-low tones.

Furthermore, we employ three additional fea-
tures to represent complex tones. Tonal features in
CLTS are based on a rather schematic representa-
tion of Chao’s numeral coding of complex tones
in Chinese dialects (Chao, 1930[2006]). Thus, the
tone [2!4] is labeled as "contour from-mid-low
via-low to-mid-high tone” in the CLTS name



space, with the feature value "from-mid-low"
(from the feature [start]) — representing the num-
ber <, "via-low" (from the feature [middle]) rep-
resenting !, and "to-mid-high” (from the fea-
ture [end]) representing * directly, while the fea-
ture value "contour” (from the feature [contour]
adds additional information that tells us that we
are dealing with a contour tone. In the same way,
CLTS assigns the values "rising” and "falling"
to tones like [1°] and [°!] respectively. In the vector
representation, the contour of a tone is directly
translated to the features [contour, rising,
falling] based on their respective CLTS feature.
Contour tones with both rising and falling parts ad-
ditionally receive [+rising] or [+falling], in-
dicating the interval between the initial and the
middle segment. All complex tones inherit the
features [hireg, hitone, loreg] from their
initial segment. The example tone [*!4] is there-
fore represented as [-hireg, +hitone, +loreg,
+contour, -rising, +falling].

Finally, seven more features are defined for
representing diphthongs, namely [backshift,
frontshift, opening, closing, centering,
longdistance, secondrounded]. These fea-
tures are used to model the diphthong’s trajectory
across the vowel space (for a more detailed descrip-
tion see Rubehn, 2022, 41-43). Additionally, each
diphthong is assigned the simple vowel features of
its initial segment.

Due to its flexibility, the present system is highly
customizable and can be used to generate different
feature systems as well. Users can easily define
their own feature inventories and mappings, ac-
cording to their individual needs. The workflow
presented in the following section is not dependent
on the specific feature system and definitions that
we suggest here.

3.2.2 Workflow

Our system generates binary feature vectors for any
sound based on its feature set assigned by CLTS.
Again, consider the example [p]: The method does
not depart from the string "p”, but from the feature
set (‘voiceless’, ‘bilabial’, ‘stop’, ‘consonant’) that
can easily be obtained from CLTS. The general
workflow for generating binary feature vectors is
outlined in Figure 1.

Underlying our system is a simple dictionary
structure which maps triplets of CLTS feature val-
ues, CLTS feature domains, and binary feature rep-
resentations onto each other. The feature value

[p] | String Representation

CLTS
voiceless
bilabial Descriptive Features
stop
Hierarchical Vector Mapping
—son
—cont Vector
+lab

Figure 1: Workflow of vector creation.

‘stop’ for example would be linked to the domain
‘manner’ (of articulation in consonants) and to the
binary feature representation [-son, -cont].

As a starting point, a zero vector (with the value
0 at every position) of the size of the defined feature
inventory is instantiated, with every position of the
vector corresponding to exactly one binary feature.
This vector then is modified by subsequently pro-
cessing the features in the CLTS feature set, with
the corresponding binary features overwriting the
current value in the vector.

A core principle for the successful modification
of feature vectors is that we sort the CLTS features
by a hierarchy of concreteness that determines the
order in which those features are processed. This
hierarchy states that the least specific features get
processed first, and the most specific ones get pro-
cessed last. In the concrete example of [p], that
means that ‘consonant’, being the least specific
feature, is processed first.

This notion of hierarchy is necessary for han-
dling conflicting feature mappings, since we delib-
erately allow for values in the vector to be over-
written by features that are processed later. To
exemplify this, consider the ‘devoiced voiced labio-
dental fricative’ [v]: The descriptor ‘voiced’ maps
to [+voice], whereas ‘devoiced’ naturally corre-
sponds to [-voice]. However, since diacritics
modify the base sound, they should take prece-
dence over it, and the correct feature that should be
assigned is [-voice]. This is ensured by process-
ing the features according to the hierarchy, which
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states that the modification ‘devoiced’ is more con-
crete and should therefore be applied after the
regular phonation feature ‘voiced’, and can thus
overwrite the previously assigned [+voice] with
[-voicel.

This notion of hierarchy also conveniently al-
lows for the usage of default values that can define
which features apply at which representation level.
This is important since we distinguish between non-
applicable (0) and absent (-1) features, as discussed
in Section 3.2.1. We can therefore define which set
of binary features always applies to a certain group
of sounds by assigning a default value to ensure
that applicable features have a non-zero value. For
example, the feature [*1ab(ial)] must be defined
for all consonants, which is assured by mapping
the CLTS feature ‘consonant’ to [-1ab]. If the
consonant is actually labial, this feature will be
overwritten with [+1ab], since the place of artic-
ulation is always applied after the sound type. So
instead of exhaustively defining [-1ab] for every
non-labial place of articulation, we can just define it
as a default value for the CLTS feature ‘consonant’
instead. This corresponds to the reading that every
consonant is [-1ab] (by default), unless specified
otherwise.

The majority of sounds can be handled by this
straightforward workflow of hierarchically map-
ping CLTS features to their binary feature repre-
sentations. However, there are a few more complex
cases that require an extra processing step. For
example, the glottal stop [?] has the binary feature
[+cg] (‘constricted glottis’) — however, this feature
neither corresponds to ‘glottal’, nor to ‘stop’. It
is therefore the combination of both ‘glottal’ and
‘stop’ that triggers [+cg]. The system therefore
uses a second dictionary that allows for the defi-
nition of joint feature mappings, where a binary
feature definition is conditioned by a certain com-
bination of CLTS features.

Complex sounds that can alternatively be ana-
lyzed as two segments — diphthongs and consonant
clusters — pose a similar challenge. For these cases,
CLTS provides the means of analyzing its individ-
ual constituents: The consonant cluster [kp] can be
split into [k] and [p]. The system uses this func-
tion to generate separate feature vectors for the two
individual sounds, which then are combined by as-
signing the union of positive features to the joint
vector. The resulting feature vector for [kp] there-
fore contains all positive features that are attributed
to either [k] or [p].
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In a similar fashion, feature vectors for diph-
thongs are based on their initial segments. For ex-
ample, [a1] inherits its monophthong vowel features
from the feature definitions for [a]. The additional
diphthong features, that indicate the trajectory of
the diphthong, are assigned based on joint feature
definitions: The combination of the CLTS features
(‘from_open’, ‘to_near-close’) maps (among oth-
ers) to the binary feature [+closing].

3.3 Implementation

The approach is implemented in the form of a
Python package (soundvectors) that takes as in-
put the canonical names consisting of feature val-
ues that CLTS generates dynamically for speech
sounds in standard IPA transcription and can be
applied in combination with CLTS and the pyclts
package, as well as with the 1inse package that
offers non-generative access to a larger selection of
speech sounds covered by CLTS (https://pypi.
org/project/linse, List and Forkel 2024), but
also independently of these packages, as long as
the feature names follow the CLTS standards. The
package along with the data on which it was tested
is available from the supplementary material ac-
companying this study.

4 Evaluation

We test the usefulness of our proposed system by
(1) investigating the vector similarities for common
sounds by calculating cosine similarities and visu-
alizing them with heatmaps, (2) employing tech-
niques for dimensionality reduction to visualize
the relationships between sounds, (3) mapping the
CLTS sound inventory to binary vectors and ana-
lyzing the resulting equivalence classes, and (4) in-
vestigating the power of the system to distinguish
speech sounds observed in phonetically transcribed
wordlists.

4.1 Vector Similarities

To test how well our system analyzes a representa-
tive sample of common sounds, we take 25 most
common consonants and the 20 most common vow-
els from Phoible 2.0 (Moran and McCloy, 2019)
and use heatmaps to visualize the cosine similari-
ties similarities of their respective feature vectors
(Figures 2 and 3). The heatmaps were generated
with the Python library Seaborn (Waskom, 2021),
with lighter colours representing higher similarities
and darker colours representing lower similarity
scores. The sounds are ordered by their primary
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Figure 2: Cosine similarities between consonant vectors
generated with our model.
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Figure 3: Cosine similarities between vowel vectors
generated with our model.

place of articulation, starting from the front and
moving to the back of the mouth. As can be ob-
served in Figure 2, the manner of articulation and
the phonation have a clear impact on the similar-
ity of consonantal feature vectors: [p] is therefore
much more similar to [k] than to [g]. The glides
[w] and []j] are strikingly dissimilar to the rest of
the consonants, showing their well-known interme-
diate role in between consonants and vowels.

Figure 3 shows that the vowel space follows a
strong division into two clusters which correspond
to front and back vowels, with [a] being considered
a front vowel according to the IPA nomenclature.
This primary partition reflects the fact that typolog-
ically unmarked front vowels are unrounded, and
back vowels are typically rounded. This naturally
translates into a separate feature which drives front
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Figure 4: Two-dimensional reduction of feature vectors
using PCA.
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Figure 5: Two-dimensional reduction of feature vectors
using t-SNE.

and back vowels further apart in terms of their vec-
tor similarity. Nonetheless, vowel pairs that share
the same height such as [e] and [o] retain a fairly
high degree of cosine similarity, indicating that
our vectors are able to adequately reflect and apply
vowel features to the used vowel data set.

4.2 Dimensionality Reduction

We employed two techniques for dimensionality
reduction to project the phonological vector space
onto a two-dimensional plane, aiming to gain a
comprehensive understanding of the inherent struc-
ture of our vectors. The employed techniques
are principal component analysis (PCA; Figure 4),
known for its ability to reveal global linear struc-
tures, and t-distributed stochastic neighbor embed-
ding (t-SNE; Figure 5; van der Maaten and Hinton
2008), known for capturing local nonlinear patterns
in the data. Both dimensionality reductions were
computed in Python using the SciKit-Learn pack-
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age (Pedregosa et al., 2011) and visualized with
Matplotlib (Hunter, 2007). By employing PCA
and t-SNE at the same time, we sought to ensure
a robust and detailed exploration of our vectors,
leveraging the complementary strengths of both of
these dimensionality reduction techniques (Anowar
etal., 2021).

Figure 4 and Figure 5 visualize the results after
dimensionality reduction. Both PCA and t-SNE re-
veal a consistent narrative, grouping similar sounds
together. First and foremost, there is a clear distinc-
tion between consonants and vowels, with semi-
vowels positioned either between the two clusters
in PCA or in close proximity to the corresponding
vowel cluster in t-SNE. Once again, this reaffirms
the ability of our binary vectors to adequately dis-
tinguish between the sounds in a phonologically
informed way.

Focusing on the vowel clusters in Figure 4 and
Figure 5, it becomes evident once again that vow-
els are primarily divided into (unrounded) front
and (rounded) back vowels, aligning with the well-
established phonological classification of vowel
sounds. Shifting attention to the consonant clusters
in both panels, we once more observe that they are
primarily grouped by their place of articulation. In
both Figures, the velars [k,g,5] form a rather iso-
lated cluster, loosely associated with the palatal
nasal [n]. Both techniques also tend to isolate the
glottal sounds [h,?], with t-SNE placing this sound
pair much closer to each other. A distinct picture
emerges for the remaining consonants, the coronals
and labials: While PCA seems to bundle all of them
together into a single large cluster, t-SNE forms two
distinct clusters based on their place of articulation,
however retaining a certain proximity between the
two. The t-SNE plot also exhibits a compelling par-
allelogram symmetry among quadruplets of stops
and fricatives in their voiced and voiceless versions:
The alveolars [t,d,s,z] form one such parallelogram
in the two-dimensional projection; and a similar
pattern can be observed for labials [p,b,f,v].

The observed similarities depicted in Figure 2
and Figure 3 as well as the patterns in the vowel
and consonant clusters depicted in Figure 4 and
Figure 5 align with established phonological clas-
sifications, providing a visual representation that
echoes the theoretical descriptions and classes in
phonological theory to a considerable extent. Our
observations confirm the potential utility of our
phonological feature vectors in computational mod-
els, suggesting that the vectors capture meaningful
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distinctions and relationships inherent in the sounds
of human languages.

4.3 Equivalence Classes

The current version of CLTS (v.2.1.0) provides a
collection of 8,684 unique sounds that were ob-
served in its source datasets. Employing our sys-
tem, these 8,684 sounds map to 5,285 distinct fea-
ture vectors. The system is therefore capable of
providing a unique representation for 60.9% of this
large sound inventory, even though it contains a
number of very narrow transcriptions, or aspects
that we deliberately chose not to represent in the
feature space, such as suprasegmental properties
being attributed to a segment (for example, putting
tones on vowels).

The largest two equivalence classes contain 18
segments respectively, which are all mid and open-
mid vowels. The first class therefore contains
sounds that are based on [9] and [3], including
among others [3, o+, 3]. All of these modifications
are deliberately disregarded by our system: Tones
are suprasegmental features that should not be rep-
resented as part of a segment, rhotics lack reliable
phonetic correlates (Chabot, 2019), and specify-
ing the relative tongue position is an overly narrow
transcription style that does not carry distinctive
information.

This illustrates the principle of economy, in that
we only define as many features as strictly neces-
sary to keep the individual features meaningful and
avoid feature inflation. The distinctions that are lost
by employing this procedure are extremely narrow
in domain, and phonetically not meaningful, as we
will argue in the following section.

4.4 Distinctiveness

We investigate the discriminative potential of our
system by applying it to all sound inventories ob-
served in phonetic transcriptions of lexical data
in Lexibank (List et al., 2022, 2023). The aggre-
gated dataset combines numerous datasets into one
unified dataset, spanning over 2,905 language vari-
eties in total. In Table 1, we report the metrics of
how well the sound inventories of the languages in
Lexibank 1.0 can be described by our system. We
report the number of confused sounds per language,
that is how many sounds in an inventory share their
feature representation with another sound present
in this inventory. Formally, this is the difference be-
tween the size of the sound inventory, and the num-
ber of unique feature representations corresponding



n confused sounds 7 varieties Portion
0 2,376 0.818
<1 2,567 0.884
<2 2,648 0912
<3 2,689 0.926
<4 2,841 0.978

Table 1: Number of language varieties in Lexibank 1.0
with at most n confused sounds.

to the inventory.

The sound inventories of 2,376 varieties, amount-
ing to 81.8% of all varieties in the dataset, can be
represented with full distinctiveness by our sys-
tem, meaning that every sound is mapped to a
unique feature vector. With 2,841 (97.8%) vari-
eties, the grand share of the dataset’s sound in-
ventories can be represented with a maximum of
four overlapping feature representations. These
overlaps can usually be explained by narrow tran-
scriptions, where the exact realization of the sound
is predictable from the context, or can even hint at
transcription errors or inconsistencies in the source
data.

We investigate such sets of overlapping sounds
in their context using concordance lines. This tech-
nique is frequently used in corpus linguistics for
visualizing in which contexts a certain word ap-
pears. Usually, concordance lines are generated by
aligning the highlighted target word to the center of
a table, and placing the contexts to its left or right
respectively (Hunston, 2022, 47).

annoy efaaar
be annoyed cfaaarse
be ill cstar+cfermo
fall ill kaer+eferm0
illness cfermeaaé
sick, ill e[fifermo
December diojefbre
March ﬂareo
May Maj.o
November nofj cﬂb re
September sePtj eﬂb re
Sunday domiggo

Figure 6: Concordance line for Spanish transcriptions
featuring [mg] or [m].

Figure 6 exemplifies the usefulness of concor-
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dance lines to analyze the contexts in which sounds
occur. Here, we investigate the instances of the
bilabial and labio-dental nasal consonants [m] and
[m] in the Spanish data from the NorthEuralex
database (Dellert et al., 2020). Both sounds are
represented by identical feature vector, but the data
makes a distinction between them. Analyzing the
relevant forms, however, shows that the presence
of [m] can be clearly predicted from the context,
since it can only occur before labio-dental obstru-
ents. This suggests that there is no actual distinc-
tion between these sounds, since the different sur-
face forms can be explained by a fully predictable
assimilation process. Similar cases of complemen-
tary distribution can be observed within the same
dataset: In Nanai, [i] is only found preceding bil-
abial and alveolar consonants, while [i] occurs else-
where; Estonian [k] is transcribed as [k] if preceded
by [1]; and Korean voiceless stops are unreleased
in word-final position, leading to pairs of distinct
transcriptions (e.g. [t] - [t"]) with a distribution that
is completely predictable by context.

5 Discussion

In this study, we introduced a new approach to turn
the features for all sounds covered by the CLTS
reference catalogue into numerical feature vectors.
Given that CLTS not only underlies the Lexibank
repository, which offers phonetically transcribed,
standardized wordlists for more than 2,000 lan-
guage varieties, but is also used in many additional
applicatations that make use of the standards pro-
posed by the CLDF initiative, this means that the
binary feature vectors we propose are directly avail-
able for a very large number of language varieties.

To assess the effectiveness of our approach, we
conducted a detailed analysis using cosine similar-
ity and dimensionality reduction techniques. The
resulting similarity patterns, evident in both PCA
and t-SNE plots, align with established phono-
logical classifications. Notably, the model distin-
guishes between vowels and consonants and groups
similar sounds based on their place of articulation.
Furthermore, we successfully mapped a substantial
inventory of sounds from CLTS to their respective
vectors, covering more than half of this extensive
sound dataset with unique representations. Finally,
we evaluated the distinctiveness of our vector rep-
resentations by discerning speech sounds from lex-
ical data in the Lexibank repository. Our system
accurately represented a significant portion of the



data, ensuring full distinctiveness by uniquely map-
ping each sound to a feature vector.

In conclusion, our approach not only provides a
practical solution to address general limitations of
the pragmatic feature system underlying the CLTS
reference catalogue but also offers a flexible ap-
proach for representing phonological features in
computational linguistics. By converting CLTS
feature bundles into binary feature vectors, the ap-
proach enables researchers to integrate phonologi-
cal insights into various computational tasks, rang-
ing from phonology and historical linguistics to
linguistic typology.

For the field of cognitive language modeling,
our feature system offers an enhanced, more pre-
cise phonological representation. Nieder and List
(2024) utilized historical sound class representa-
tions in their language processing model (Lin-
ear Discriminative Learning, see Nieder and List,
2024) to explore mutual intelligibility among Ger-
manic languages. Expanding such models with
phonological vector representations instead, may
offer new insights into how speech sounds influ-
ence meaning and vice versa, thereby guiding lan-
guage processing and language learning.

For historical language comparison, feature rep-
resentations can be used to dynamically extend
fixed-size scoring matrices in computational tasks
such as phonetic alignment (Kondrak, 2000; List,
2012) or phonological reconstruction (Bouchard-
Coté et al., 2013; Jager, 2019; Meloni et al., 2021).
While state-of-the-art approaches to phonetic align-
ment typically deal with the problem of unseen
sounds by resorting to sound class representations
that represent sounds in phonetic transcriptions in
small classes of similar sounds ranging from 10 to
about 40 distinct sound classes in total (see List
2014 for details on sound class systems), feature
vectors would offer a much more fine-grained repre-
sentation of similarities and differences between in-
dividual sounds whose impacts on alignment qual-
ity have not been fully tested so far (an exception is
the feature-based system by Kilani 2020, which re-
quires, however, sound-feature mappings to be set
up manually). For the still unsolved task of unsu-
pervised phonological reconstruction (List, 2023),
a common problem of those approaches that have
been proposed so far is that they cannot propose
sounds in ancestral languages that have not been
attested in the descendant languages. Here, feature
vectors might propose a way of handling the un-
known, since the vector representation might well
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propose feature combinations for ancestral sounds
that are not observed in individual languages, thus
creating unseen sounds from attested sounds. But
further tests would be needed to explore the poten-
tial of feature vectors in phonological reconstruc-
tion.

In summary, we hope that feature vectors, as
they have been introduced here, will prove useful
in advancing computational approaches in linguis-
tics and integrating linguistic insights into machine
learning approaches.

Supplementary Materials

Data and code of this study are curated
on GitHub (https://github.com/cldf-clts/
soundvectors), the soundvectors package
is also available via the Python package
repository PyPi (https://pypi.org/project/
soundvectors, Version 1.0).

Limitations

As discussed in Sections 4.3 and 4.4, we want our
system to distinguish sounds that sound differently
and avoid lumping them together. Our quantita-
tive and qualitative analyses show that the system
seems to be capable of maintaining a high degree
of distinctiveness, however, it is not guaranteed that
all phonemic contrasts in the world’s languages are
represented truthfully. While our phonological fea-
ture vectors are a good approximation to spoken
language, we want to point out that they cannot per-
fectly reflect phonetic similarity — some features
are intuitively more meaningful than others, which
is not explicitly represented in the vector space;
and by extension, similar sounds might differ in a
“disproportionately large number of features” (Kon-
drak, 2000). Heeringa (2004) shows that employ-
ing binary features directly as a cost function is not
superior to plain edit distance to measure phonetic
similarity in dialectal data.

These findings do not undermine the potential
of feature systems in analyzing sounds, but rather
show that feature vectors should be processed in
some way and not be taken at face value. In fact,
a number of studies have shown the usefulness of
phonological feature vectors for processing sounds
in machine learning approaches (e.g. Staib et al.
2020; Lux and Vu 2022). This emphasizes the need
for a robust system that reliably generates feature
vectors for all IPA segments.
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