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Abstract

All constraint-based probabilistic phonological
typologies considered in the recent literature
consist of uncountably many different gram-
mars. Yet, what if two grammars that differ
only slightly are coarsely counted as only one
grammar when assessing the finiteness of a
probabilistic typology? This paper formalizes
various notions of coarse identity between prob-
abilistic grammars and corresponding notions
of coarse finiteness. It then shows that typolo-
gies of maximum entropy grammars are stub-
bornly infinite even when their grammars are
counted coarsely (and even when the constraint
set is simple, in the sense that the correspond-
ing categorical harmonic grammar typology is
finite). A companion paper shows that typolo-
gies of noisy or stochastic harmonic grammars
are instead always coarsely finite (as long as
the constraint set is simple). Coarse finiteness
thus provides further evidence that maximum
entropy is a richer, less restrictive framework.

1 Introduction

Probabilistic phonological grammars assign prob-
abilities to phonological mappings. Probabili-
ties take continuous values between zero and one.
Hence, a probabilistic typology can contain un-
countably many probabilistic grammars when we
count two grammars as different in the standard
sense, namely as soon as they assign different prob-
abilities to some mapping, no matter how small the
difference between those probabilities.

What if we instead tolerate some differences
among probabilities as negligible? What if we
count grammars coarsely because we count two
different grammars that have only negligible dif-
ferences as only one grammar? Do uncountably
infinite probabilistic typologies turn finite when
we count their grammars coarsely? Section 2 for-
malizes coarse identity between probabilistic gram-
mars in a couple of different ways.

According to one formalization, two ε-identical
probabilistic grammars can assign different prob-
abilities to the same mapping, as long as the dif-
ference is negligible because smaller than some
threshold ε (in absolute value). Equivalently, the
`∞ distance between the two grammars is smaller
than ε. This definition can be generalized by re-
placing the `∞ distance with other measures of the
difference between probabilistic grammars, such
as the `1 distance and the KL and χ2 divergences.

According to another formalization of coarse
identity, two order-identical probabilistic gram-
mars can assign different probabilities to the same
mapping as long as the difference is negligible be-
cause it does not affect the predicted probability
inequalities. In other words, a mapping has a larger
probability than another mapping according to one
of the two grammars if and only if the same in-
equality holds according to the other grammar.

These notions of coarse identity yield corre-
sponding notions of coarse finiteness. A proba-
bilistic typology is called ε-finite or order-finite
when it contains only finitely many grammars when
we count two ε-identical grammars or two order-
identical grammars as only one grammar. Section
3 investigates the coarse finiteness of typologies of
maximum entropy (ME; Hayes and Wilson 2008)
grammars.

Obviously, ME typologies always contain un-
countably many grammars when we count two
grammars as different in the standard sense, namely
as soon as they assign different probabilities to
some mapping. That is the case even when we
consider only a handful of phonological mappings,
no matter the constraints employed. Indeed, ME
typologies are parametrized by uncountably many
weight vectors and any two different weight vectors
yield two ME grammars that differ because they
assign different probabilities. Let us now turn from
standard to coarse infinity.

To start, we consider the case of finitely many
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phonological mappings. In this case, it is straight-
forward to verify that ME typologies are ε-finite
and order-finite, no matter the choice of the con-
straints. Thus, we focus on the case of infinitely
many phonological mappings, say the mappings
corresponding to all underlying strings of finite but
arbitrary length that can be constructed out of a
finite alphabet of segments. Do ME typologies
remain coarsely finite also in this case, no matter
the choice of the constraints? Or can we construct
counterexample constraints whose corresponding
ME typologies contain infinitely many grammars
even when we count grammar coarsely?

This paper shows that, for every threshold ε < 1,
it is possible to construct counterexample con-
straints such that the corresponding ME typol-
ogy is ε-infinite. To illustrate, even if we choose
ε = 0.999 and are therefore willing to ignore pretty
much all differences among probabilistic gram-
mars, it is possible to construct a counterexample
ME typology that is so so rich to qualify as infinite
even at this level of coarseness.

Crucially, this richness is intrinsic to the ME
mode of constraint interaction and does not require
particularly complex constraint violation profiles.
Indeed, the counterexample constraints can be cho-
sen so simple that the corresponding categorical
HG typology consists of a single grammar.

Furthermore, this result is robust: it does not
depend on the specific way we measure differences
among probabilities to adjudicate whether they are
smaller than ε. Indeed, this result holds no matter
whether ε-identity between probabilistic grammars
is defined in terms of the `∞ distance or other mea-
sures of the difference between grammars, such as
the `1 distances and the KL and χ2 divergences.

Finally, this result extends from ε-identity to
order-identity. Indeed, it is possible to construct
counterexample constraints that are so simple that
the corresponding categorical HG typology con-
sists of a single grammar and yet the ME typology
is order-infinite: its grammars order the infinitely
many mappings made available by the phonologi-
cal domain in infinitely many different ways.

The proofs of these results on ME coarse in-
finiteness consist of straightforward linear algebra
manipulations detailed in the final appendix. The
counterexample constraints constructed in these
proofs are abstract and do not admit any readily
available phonological interpretation. Although ab-
stract, these counterexamples have substantial im-
plications for the comparison between ME versus

noisy or stochastic HG (SHG; Boersma and Pater
2016; Hayes 2017; Magri and Anttila in prepara-
tion), along the following lines.

ME and SHG look prima facie as very similar
probabilistic extensions of categorical HG. They
share the formalism of weighted constraints and
have been shown to make very similar empirical
predictions on a variety of test cases (Hayes 2017,
Flemming 2021, and Breiss and Albright 2022,
among others). Alderete and Finley (2023) indeed
submit that ME and SHG “make use of relatively
similar mathematical foundations, and often have
very similar predictions. [. . . ]. [They] produce
very similar results, raising questions about what
can be learned from different versions of Harmonic
Grammar when the results are relatively similar.
[. . . ] It can be a challenge to compare differences
between versions of Harmonic Grammar because
they are so similar.”

Yet, when we look beyond empirical predictions
on a simple test cases and dig deeper into the under-
lying mathematics, we see that SHG and ME have
very different formal properties. Coarse finiteness
is indeed one of the mathematical properties on
which ME and SHG come apart. In fact, Magri and
Anttila (in preparation) show that SHG typologies
are always ε-finite and always order-finite, no mat-
ter the number of mappings considered, as long as
the constraints are simple, in the sense that thecor-
responding categorical HG typology consists of
only finitely many categorical grammars, which is
usually the case (Pater 2009, 2016).

In other words, in the case of SHG, it is impossi-
ble to construct some counterexample constraints
like those constructed here for ME, that yield an un-
restrictive probabilistic typology (coarsely infinite)
but the most restrictive categorical HG typology (a
singleton). As summarized in the concluding sec-
tion 4, the results on ME coarse infinity obtained
in this paper show that ME is a richer, less restric-
tive probabilistic extension of categorical HG than
SHG is.

2 Coarse finiteness

This section develops coarse notions of finiteness
for probabilistic typologies that ignore “small” dif-
ferences among probabilistic grammars.

2.1 Underlying and surface forms

A phonological mapping is a pair (x, y) consisting
of an underlying form x and a surface realization y.
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The description of the phonological system of in-
terest starts by listing into a phonological domain
D all the relevant phonological mappings. BD de-
notes the base set of underlying forms listed by the
phonological domain D. And D(x) denotes the set
of candidate surface realizations listed by D for
that underlying forms x.1

To circumvent the problem of defining probabili-
ties on infinite sets, a candidate set D(x) is usually
assumed to be finite (but see Daland 2015). The
base set BD is instead allowed to be countably in-
finite, say because it lists all the strings of finite
but arbitrary length that can be constructed out of a
finite alphabet of segments.

To illustrate, the phonological domain D in fig-
ure 1 consists of the sixteen phonological mappings
constructed out of the four strings CV, CVC, V, and
VC, that differ for whether the onset or the coda are
filled or empty. The base set BD consists of the un-
derlying forms /CV/, /CVC/, /V/, /VC/. All candidate
sets list the surface forms [CV], [CVC], [V], [VC].

2.2 Grammars and typologies

A probabilistic (phonological) grammar G as-
signs to each mapping (x, y) listed by the phonolog-
ical domain D a non-negative numberG(y | x) ≥ 0.
We interpret this number as the probability of real-
izing the underlying form x as the surface candidate
y. In order for this interpretation to make sense,
these numbers G(y | x) must be normalized across
candidate sets, as stated in (1).

∑

y∈D(x)

G(y | x) = 1 (1)

Equivalently, a probabilistic grammar G assigns
to each underlying form x in the base set BD a
probability histogram G(x) on the corresponding
candidate set D(x). This reformulation highlights
the fact that a probabilistic grammarG only models
the probability of a surface realization y of a given
underlying form x, as made explicit by the notation
G(y | x) for conditional probability. A probabilis-
tic grammar G does not model the probability of
the underlying form x itself.

To illustrate, figure 2 provides two probabilistic
grammars G1 and G2 for the phonological domain
D in figure 1. Grammar G1 takes, say, the underly-
ing form /CV/ and returns the leftmost probability
histogram G1(/CV/) over the candidate set D(/CV/).

1In the realm of OT, D is notated Gen. I have changed
notation to underscore the generality of the discussion.

This probability histogram assigns to the surface
candidate [CV] the probability 0.6.

Finally, a probabilistic (phonological) typol-
ogy T is a collection of probabilistic phonological
grammars for the same phonological domain D.
Throughout this section, we ignore how exactly
typologies and grammars are defined (as ME gram-
mars, as SHG grammars, and so on). The crucial
point is that, no matter the choice of the frame-
work, a probabilistic typology T usually contains
uncountably many different probabilistic grammars
when two probabilistic grammars are counted as
different in the standard sense, namely as soon as
they assign slightly different probabilities to some
mapping. The rest of this section thus develops
coarser notions of identity between probabilistic
grammars and spells out the corresponding coarser
notions of finiteness for probabilistic typologies.

2.3 ε-finiteness
Given a threshold ε ≥ 0, two probabilistic gram-
mars G1 and G2 are called ε-identical provided
they assign to every mapping (x, y) in the phono-
logical domain D two probabilities G1(y | x) and
G2(y | x) that differ by at most ε (in absolute value).
To illustrate, the grammars G1 and G2 in figure 2
are not identical in the standard sense because, say,
they assign different probabilities 0.6 and 0.55 to
the mapping (/CV/, [CV]). Yet, these probabilities
0.6 and 0.55 differ by only ε = 0.05. Analogous
considerations hold for all mappings in the phono-
logical domain D. These grammars G1 and G2 are
therefore ε-identical with ε = 0.05. If we ignore
differences between probabilities up to ε = 0.05,
we can count these two probabilistic grammars as
the “same” grammar.

A probabilistic typology T is called ε-finite pro-
vided it contains a finite subset T ⊆ T such that any
grammar in the typology T is ε-identical to some
grammar in T . This condition is schematized in fig-
ure 3, where the red dots represent the grammars in
the finite subset T , the blue dots represent all other
grammars of the typology T, the lines represent
ε-identity. In conclusion, if we ignore differences
between probabilities up to ε, the finite subset T
provides as much phonological information as the
original (possibly infinite) typology T.

2.4 How to choose the threshold ε
When ε = 0, two grammars are ε-identical only
if they are identical in the standard sense, namely
they assign exactly the same probability to every
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Figure 1: A phonological domain for basic syllable phonology
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Figure 2: Two different grammars G1 and G2 that are nonetheless ε-identical with ε = 0.05.

mapping. Hence, when ε = 0, a probabilistic ty-
pology is ε-finite only if it is finite in the standard
sense. In other words, ε-finiteness generalizes the
standard notion of finiteness. As the threshold ε
increases, we obtain coarser notions of finiteness.

When ε > 0, the probability interval between
0 and 1 can be partitioned into finitely many dis-
joint intervals I1, I2, . . . , IN of length at most ε.
Suppose that the phonological domain D lists only
finitely many mappings (say, because the base set
BD lists only finitely many underlying forms and
all candidate sets are finite). In this case, any proba-
bilistic typology T is ε-finite because there are only
finitely many ways of assigning one of the finitely
many mappings from D to one of the finitely many
intervals I1, I2, . . . , IN . In other words, we can
make infinitely many probability distinctions only
when we distinguish among infinitely many map-
pings (namely, D is infinite) or allow arbitrarily
fine grained distinctions (namely, ε = 0).

Finally, when ε ≥ 1, any two probabilistic gram-
mars are ε-identical and any probabilistic typology
is therefore ε-finite (just choose as the subset T a
singleton consisting of a unique grammar from T).

• • • • • • • • •
• • • • •
• • • •
• • • • •
• • • • • • • • •

Figure 3: Schematic representation of ε-finiteness

In conclusion, it makes sense to investigate whether
an infinite probabilistic typology T is nonetheless
ε-finite only for ε between zero and one (both ex-
cluded) and when the phonological domain D lists
infinitely many mappings.

2.5 Generalizing ε-finiteness

The notion of ε-finiteness introduced in subsection
2.3 can be generalized as follows. We denote by D
any function that takes two probabilistic grammars
G1 and G2 for the same phonological domain D
and returns a non-negative numberD(G1, G2) ≥ 0
subject to the only condition that D(G1, G2) = 0
if and only if the grammarsG1 andG2 are identical
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in the standard sense, namely they assign the same
probability to any mapping in the phonological do-
main D. We will interpret the quantity D(G1, G2)
as a measure of the difference between G1 and G2

and thus refer to D as a distance between proba-
bilistic grammars (this is a slight abuse as D need
not even be symmetric: D(G1, G2) andD(G2, G1)
can be different quantities).

Two probabilistic grammars G1 and G2 are then
called ε-identical according to D provided their
distance measured by D is at most ε, namely
D(G1, G2) ≤ ε. Furthermore, a probabilistic ty-
pology T is called ε-finite according to D pro-
vided it contains some finite subset T ⊆ T such
that any grammar in the typology T is ε-identical
according to D to some grammar in T . Since the
distance D(G1, G2) is equal to zero if and only if
the two grammars G1 and G2 are identical in the
standard sense, the notion of ε-finiteness according
to D with ε = 0 coincides with the standard notion
of finiteness. In conclusion, ε-finiteness general-
izes the standard notion of finiteness, no matter the
distance D used to compare grammars.

Here is a simple strategy to define a distance
between two probabilistic grammars G1 and G2.
First, we define a distance D(G1(x), G2(x)) be-
tween the probability histograms G1(x) and G2(x)
assigned by the two grammars G1 and G2 to an ar-
bitrary underlying form x in the base set BD of the
phonological domain. Then, we define the distance
D(G1, G2) between the two grammars G1, G2 as
the largest distance between their probability his-
tograms, as stated in (2).

D(G1, G2) = sup
x∈BD

D
(
G1(x), G2(x)

)
(2)

The initial notion of ε-finiteness from subsection
2.3 fits into this scheme when the distance D is the
`∞ (or supremum) distance D∞ recalled in (3). It
measures the distance between two probability his-
tograms in terms of the largest difference between
two bars for the same candidate.

D∞
(
G1(x), G2(x)

)

= sup
y∈D(x)

∣∣G1(y | x)−G2(y | x)
∣∣ (3)

Another natural distance that can be used to de-
fine ε-finiteness is the `1 distance D1 recalled in
(4). It measures the distance between two proba-
bility histograms in terms of the sum of the differ-
ences between two bars for the same candidates
(by Scheffé’s theorem, it is equal to twice the total

variation distance; see Tsybakov 2009, lemma 21,
page 84).

D1

(
G1(x), G2(x)

)

=
∑

y∈D(x)

∣∣G1(y | x)−G2(y | x)
∣∣ (4)

Other natural choices for the distance D are so
called f -divergences (Tsybakov 2009, section 2.4)
such as the Kullback-Leibler (KL) and the χ2 di-
vergences. When no mapping in the phonological
domain has zero probability (as is the case for ME),
these two divergences are defined as in (5) and (6).

DKL
(
G1(x), G2(x)

)

=
∑

y∈D(x)

G1(y | x) log
G1(y | x)
G2(y | x)

(5)

Dχ2

(
G1(x), G2(x)

)

=
∑

y∈D(x)

(
G1(y | x)−G2(y | x)

)2

G2(y | x)
(6)

2.6 From sheer sizes to inequalities
The notion of ε-identity looks at the sheer size of
the probabilities and it is coarse because it ignores
small differences in size. Various authors have sug-
gested that we should focus not on the sheer size
of the probabilities but on the inequalities they sat-
isfy. For instance, Coetzee (2004, 2006) argues that
probabilistic phonology should only model relative
empirical frequencies, not absolute frequencies. In
other words, a probabilistic grammar should be
evaluated by comparing the inequalities among the
probabilities it predicts with the inequalities among
the empirical frequencies, not by fitting the pre-
dicted probabilities to the empirical frequencies.

Furthermore, the generalizations uncovered in
probabilistic phonology usually consist of prob-
ability inequalities. A representative example is
the famous generalization that word final t-deletion
(the deletion of a stop at the end of a word preceded
by another consonant) is more frequent when the
following word starts with a consonant than when
it starts with a vowel (see Guy 1980 and Coetzee
and Kawahara 2013 for overviews). This general-
ization indeed consists of an inequality between the
frequencies of deletion for cost#me versus cost#us.
The generalization says nothing about the abso-
lute frequencies of deletion. Indeed, Anttila and
Magri (2018) and Magri and Anttila (in prepara-
tion) capture such generalizations by extending the
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Figure 4: Two different grammars G1 and G2 that are nonetheless order-identical

Greenbergian implicational universals from the cat-
egorical to the probabilistic setting in terms of prob-
ability inequalities that hold uniformly across all
the grammars in a probabilistic typology.

2.7 Order-finiteness

Based on these considerations, we say that two
probabilistic grammarsG1 andG2 for some phono-
logical domain D are order-identical provided
they agree on how they order the mappings in D
in terms of the size of their probabilities: for any
two mappings (x, y) and (x̂, ŷ) from D, grammar
G1 satisfies the inequality G1(y | x) > G1(ŷ | x̂) if
and only if the other grammarG2 satisfies the same
inequality G2(y | x) > G2(ŷ | x̂).

To illustrate, the two grammars G1 and G2 in
figure 2 are ε-identical because they assign proba-
bilities that differ by at most ε = 0.05. Yet, they
are not order-identical because these small differ-
ences in probabilities impact the inequalities. For
instance,G1 assigns more probability to (/CV/, [CV])
than to (/V/, [CV]) while G2 does the reverse.

The situation is different for the two grammars
G1 andG2 in figure 4. They are not ε-identical with
ε = 0.05 (for instance because the probabilities
they assign to (/CV/, [CV]) differ by 0.1). Yet, both
G1 and G2 assign more probability to (/CV/, [CV])
than to (/V/, [CV]). Analogous considerations hold
for any pair of mappings in the phonological do-
main D: G1 and G2 induce the same order of the
sixteen mappings according to the size of their
probabilities (with ties broken in some arbitrary
but fixed way), as made explicit in figure 5. We

conclude that these grammars G1 and G2 are order-
identical. If we ignore sheer differences between
probabilities and only care about the inequalities
they satisfy, as argued in subsection 2.6, we can
count these two probabilistic grammars G1 and G2

as the “same” grammar.
A probabilistic typology T is called order-finite

provided it contains some finite set T ⊆ T such that
any grammar in the typology T is order-identical
to some grammar in T . In other words, this finite
subset T provides as much phonological informa-
tion as the original (possibly infinite) typology T
when we ignore sheer probabilities and only care
about the inequalities they satisfy.

When the phonological domain D lists only
finitely many mappings, any probabilistic typol-
ogy T is order-finite, because there are only finitely
many ways of ordering finitely many mappings.
Thus, it makes sense to investigate whether an infi-
nite probabilistic typology T is nonetheless order-
finite only when the phonological domain D lists
infinitely many mappings.

2.8 Summary

An infinite probabilistic typology is called coarsely
finite if it is ε-finite relative to some distance D
for some threshold ε between zero and one as in
subsection 2.5 or order-finite as in subsection 2.7.
In other words, the typology contains only finitely
many grammars when we count grammars coarsely
by ignoring differences between probabilities that
are negligible because smaller than ε or because too
small to affect the inequalities among probabilities.
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Figure 5: Grammars G1 and G2 in figure 4 order the mappings based on their probabilities in the same way

3 Coarse finiteness of ME typologies

This section applies these notions of coarse finite-
ness to the analysis of ME typologies.

3.1 Probabilistic ME typologies

So far, we have worked with arbitrary probabilistic
grammars, extensionally defined as in subsection
2.2 as collections of probability histograms. Now,
we focus on ME grammars, briefly recalled here.
We start with a set C consisting of a finite number
n of phonological constraints C1, . . . , Cn for the
phonological domain D.2 A constraint Ck assigns
to each phonological mapping (x, y) a number
Ck(x, y). This number is integral and non-negative
because it is the result of counting the number of
occurrences of some specific marked structure in
the surface form y or the number of occurrences of
some specific discrepancy between the underlying
and surface forms x and y. Each constraint Ck is
assigned a non-negative weight wk ≥ 0 that quan-
tifies its importance. These weights are collected
into a vector w = (w1, . . . , wn).

The probabilistic ME grammar GME
w corre-

sponding to this weight vector w assigns to each
mapping (x, y) a probability proportional to the ex-
ponential of the opposite of the weighted sum of
constraint violations, as stated in (7). The propor-
tionality constant is univocally determined by the

2In the realm of OT, C is notated Con. I have changed
notation to underscore the generality of the discussion.

normalization condition (1).

GME
w (y | x) ∝ exp

{
−

n∑

k=1

wkCk(x, y)

}
(7)

The probabilistic ME typology defined by a phono-
logical domain D and a constraint set C is the fam-
ily TME(D,C) consisting of the probabilistic ME
grammars (7) corresponding to all vectors w of
non-negative constraint weights.

3.2 Categorical HG typologies

Probabilistic ME grammars are closely related to
categorical HG grammars recalled here as well. A
weight vector w is called proper provided it satis-
fies the following condition: for every underlying
form x in the base set BD, there exists a unique
surface form y (called the winner) in the candidate
set D(x) that is assigned by the corresponding ME
grammar GME

w a probability strictly larger than the
probability assigned to each other surface form z
(dismissed as a loser) in the candidate set D(x),
namely GME

w (y | x) > GME
w (z | x). The categorical

HG grammar corresponding to a proper weight
vector w realizes each underlying form in the base
set BD as the corresponding winner candidate with
largest ME probability. The categorical HG ty-
pology defined by a phonological domain D and a
constraint set C is the family THG(D,C) consisting
of the categorical HG grammars corresponding to
all proper vectors w of non-negative weights.
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3.3 ME typologies are not coarsely finite

Both categorical HG typologies and probabilistic
ME typologies are parametrized by uncountably
many weight vectors. Since categorical grammars
make only binary choices, many different weight
vectors yield the same categorical HG grammar.
Since probabilities can instead take any continu-
ous value between zero and one, any two different
weight vectors yield two probabilistic ME gram-
mars that are different in the standard sense, namely
assign different probabilities to the same phonolog-
ical mapping. As a result probabilistic ME typolo-
gies are always uncountably infinite, even when the
phonological domain D lists only one underlying
form with only two candidate surface realizations.

Yet, in subsection 2.3 we have said that two prob-
abilistic grammars are ε-identical or order-identical
when the differences between the probabilities they
assign are negligible because they are smaller than
some threshold ε or they do not affect the inequal-
ities among probabilities. We have then observed
that an infinite probabilistic typology can nonethe-
less qualify as ε-finite or order-finite when indeed
we count multiple ε-identical or multiple order-
identical grammars as one single grammar.

Are ME typologies always ε-finite or order-finite,
no matter the choice of the constraints? The fol-
lowing two main results provide a negative answer
to this question. The proofs of these two facts con-
sist of straightforward linear algebra manipulations
detailed in the final appendix.

Result 1 For every positive threshold 0 < ε < 1
strictly smaller than one, it is possible to construct
an infinite phonological domain D and a constraint
set C such that the corresponding ME typology
TME(D,C) is ε-infinite while the corresponding
HG typology THG(D,C) is a singleton. 2

Result 2 It is possible to construct an infinite
phonological domain D and a constraint set C such
that the corresponding ME typology TME(D,C) is
order-infinite while the corresponding HG typology
THG(D,C) is a singleton. 2

A few remarks are in order. (A) Let us consider
a threshold ε very close to one, say ε = 0.999. This
means that we are willing to ignore as negligible
pretty much all disagreements among probabili-
ties. In other words, we are willing to count as
one single grammar even multiple grammars that
are very different in the standard sense. And yet,
even at this highest degree of coarseness, result

1 says that we can construct ME typologies that
are ε-infinite. (B) This typological richness is a
direct consequence of the ME mode of constraint
interaction and does not require a particularly com-
plex pattern of constraint violations. Indeed, both
results guarantee that the constraints used in the
ME counterexamples are very simple, in the sense
that the corresponding categorical HG typology is
simplest, namely consists of a single grammar. (C)
Finally, result 1 is robust: appendix 5.3 shows that
it straightforwardly extends from the original ba-
sic notion of ε-finiteness from subsection 2.3 to its
generalization in subsection 2.5 in terms of other
measures of the difference between probabilistic
grammars such as the `1 distance and the KL and
χ2 divergences.

3.4 Comparison with SHG

To appreciate the significance of these results
for phonological theory, we briefly turn to SHG
phonology, recalled here. The probabilistic SHG
grammar corresponding to a non-negative weight
vector w assigns to each mapping (x, y) a probabil-
ity equal to the probability of sampling according
to the normal distribution with mean w some non-
negative proper weight vector such that the corre-
sponding categorical HG grammar indeed realizes
the underlying form x as the surface candidate y.3

The probabilistic SHG typology is the family of the
probabilistic SHG grammars GSHG

w corresponding
to all vectors w of non-negative constraint weights

ME and SHG look prima facie as similar proba-
bilistic extensions of categorical HG. Indeed, both
ME and SHG are defined in terms of weighted
sums of constraint violations. Furthermore, ME
and SHG have been shown to fit equally well vari-
ous patterns of empirical frequencies (Hayes 2017,
Flemming 2021, and Breiss and Albright 2022,
among others). Yet, SHG behaves very differently
from ME in terms of coarse finiteness, as follows.

Typologies of categorical HG grammars can be
infinite (Legendre et al. 2006), contrary to typolo-
gies of categorical OT grammars, that are instead
always finite. Yet, OT and HG make such diver-

3Thus defined, SHG grammars can unfortunately flout the
normalization condition (1): the normal distribution with mean
w can assign some probability to vectors that are negative or
non-proper and therefore correspond to no categorical HG
grammar. Hayes and Kaplan (2023) and Magri and Anttila
(in preparation) discuss various modifications of the basic
definition of SHG to deal with this problem. These modifica-
tions have no implications for the coarse finiteness of SHG
typologies.
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gent typological predictions only for very special
(and possibly unwarranted) constraint configura-
tions (Pater 2009, 2016). In general, categorical
HG typologies are finite, just as OT typologies.

Magri and Anttila (in preparation) then show
that, whenever the categorical HG typology cor-
responding to some constraint set is finite, the
probabilistic SHG typology corresponding to that
constraint set, although uncountably infinite, is
nonetheless ε-finite and order-finite. It is therefore
impossible to construct for SHG some counterex-
ample constraints like those constructed here for
ME, that yield a very complex probabilistic typol-
ogy (coarsely infinite) but a very simple categorical
HG typology (a singleton).

To illustrate, let us consider a threshold ε very
close to zero, say ε = 0.0001. This means that we
are willing to ignore as negligible only the smallest
differences among probabilities. In other words,
we are willing to count as one single grammar only
two grammars that are indeed very close to being
identical in the standard sense. And yet, even at this
lowest degree of coarseness, we cannot construct
SHG typologies that are ε-infinite, unless we resort
to special (and possibly unwarranted) constraint
sets that yield infinite categorical HG typologies.
We conclude that the results on ME coarse infinity
obtained in this paper show that ME is a richer, less
restrictive probabilistic extension of categorical HG
than SHG is.

4 Conclusions

This paper has developed techniques to discretize
an uncountably infinite probabilistic typology
down to a finite core by ignoring small differences
among probabilities. The notion of ε-finiteness
arises when we ignore differences smaller than ε
between the probabilities assigned by two gram-
mars. The notion of order-finiteness arises when
we ignore differences that do not compromise the
inequalities among the probabilities assigned by
two grammars. Magri and Anttila (in preparation)
show that SHG typologies are always ε-finite and
order-finite, as long as the constraints are simple,
in the sense that the corresponding categorical HG
typology is finite. This paper has shown that ME ty-
pologies can instead be ε-infinite and order-infinite,
even when the constraints are so simple that the cor-
responding categorical HG typology is a singleton.
We conclude that ME is a richer, less restrictive
probabilistic extension of categorical HG.
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5 Appendices

Throughout this appendix, a · b denotes the scalar
product a · b =

∑n
k=1 akbk between two vectors

a = (a1, . . . , an) and b = (b1, . . . , bn); further-

more, ‖a‖ denotes the 2-norm ‖a‖ =
√∑n

k=1 a
2
k.

The proofs in this appendix consist of straightfor-
ward linear algebra manipulations.

5.1 A lemma for the proof of result 1
Lemma 1 Consider k − 1 vectors c1, . . . , ck−1
with positive integral components and a vector
wk with positive rational components such that
wk · c1 ≤ 1, . . . ,wk · ck−1 ≤ 1. For any ∆ > 0,
there exist a vector ck with positive integral compo-
nents and a vector wk+1 with positive rational com-
ponents such that wk+1 ·c1 ≤ 1, . . . ,wk+1 ·ck−1 ≤
1 and furthermore wk+1 ·ck ≤ 1 while wk ·ck ≥ ∆.

Indeed, since the vector wk has positive rational
components, it has the shape w = (a1b1 ,

a2
b2
, . . . , anbn ),

where a1, . . . , an, b1, . . . , bn are positive integers.
Let M be the smallest common multiple of the de-
nominators b1, . . . , bn. Hence,Mw is a vector with
positive integral components. We choose a positive
integer ` > 0 and a positive rational number ξ > 0
as in (8).

` ≥ ∆

M‖wk‖2
, ξ ≤ min

{
1,

1

M`‖wk‖2
}

(8)

We define the vector ck with positive integral com-
ponents and the vector wk+1 with positive rational
components as in (9).

ck = `Mwk wk+1 = ξwk (9)

These positions satisfy the inequalities (10) and
(11) as well as the inequality (12) for every h =
1, . . . , k − 1, completing the proof of the lemma.

wk · ck = `M‖wk‖2 ≥ ∆ (10)

wk+1 · ck = `ξM‖wk‖2 ≤ 1 (11)

wk+1 · ch = ξwk · ch ≤ ξ1 ≤ 1 (12)

5.2 Proof of result 1
Given a threshold 0 < ε < 1, we choose two
constants 0 < ε1 < ε2 < 1 more than ε apart,
namely ε1 + ε < ε2. Furthermore, we choose a
positive integer m > 0 and a positive constant
∆ > 0 that satisfy the inequalities in (13).

m ≥ 1− ε1
ε1

e, ∆ ≥ log

(
m

ε2
1− ε2

)
(13)

We start with an arbitrary vector w1 with positive
rational components. By applying lemma 1 with
k = 1 to this vector w1, we conclude that there
exist a vector c1 with positive integral components
and a vector w2 with positive rational components
that validate the red inequalities in the first step of
the reasoning in figure 6. By applying again lemma
1 with k = 2 to the vectors c1 and w2 in the bottom
line of this first step, we conclude that there exist
a vector c2 with positive integral components and
a vector w3 with positive rational components that
validate the red inequalities in the second step of
the reasoning in figure 6. By applying once again
lemma 1 with k = 3 to the vectors c1, c2 and w3

in the bottom line of this second step, we conclude
that there exist a vector c3 with positive integral
components and a vector w4 with positive rational
components that validate the red inequalities in the
third step of the reasoning in figure 6. And so on
and so forth.

In conclusion, we have established the existence
of a sequence of vectors w1,w2, . . . ,wk, . . . with
positive rational components and a sequence of vec-
tors c1, c2, . . . , ck, . . . with positive integral com-
ponents that satisfy the k inequalities in (14) for
every k = 1, 2, . . . .

wk · c1 ≤ 1
...

wk · ck−1 ≤ 1

wk · ck ≥ ∆ (14)

To construct the desired counterexample, we con-
sider the infinite phonological domain D described
in (15). For every index k = 1, 2, . . . , the base set
BD of the phonological domain contains the un-
derlying form xk. Its candidate set D(xk) consists
of m + 1 candidates y, z1, . . . , zm. For concrete-
ness, we refer to y as the winner candidate and to
z1, . . . , zm as the loser candidates.

BD = {x1, x2, . . . , xk, . . . }
D(xk) = {y, z1, . . . , zm}

(15)

Furthermore, we define the constraint set C in
such a way that, for every underlying form xk and
for each loser candidate zi with i = 1, . . . ,m, the
difference between the constraint violation vector
C(xk, zi) of this loser candidate minus the con-
straint violation vector C(xk, y) of the winner can-
didate y is equal to the vector ck constructed in
(14), as stated in (16).

C(xk, zi)− C(xk, y) = ck (16)
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w1 =⇒ w1 · c1 ≥ ∆
w2 · c1 ≤ 1

=⇒
w1 · c1 ≥ ∆
w2 · c1 ≤ 1 w2 · c2 ≥ ∆
w3 · c1 ≤ 1 w3 · c2 ≤ 1

=⇒
w1 · c1 ≥ ∆
w2 · c1 ≤ 1 w2 · c2 ≥ ∆
w3 · c1 ≤ 1 w3 · c2 ≤ 1 w3 · c3 ≥ ∆
w4 · c1 ≤ 1 w4 · c2 ≤ 1 w4 · c3 ≤ 1

first step second step third step

Figure 6

This position (16) makes sense because the vec-
tor ck has integral components that can can there-
fore be interpreted as differences between numbers
of constraint violations under the usual assumption
that constraints assign integral numbers of viola-
tions. Furthermore, the integral components of the
vector ck are all positive. The position (16) thus
says that every constraint in the constraint set C as-
signs less violations to the winner mapping (xk, y)
than to each of the loser mappings (xk, zi). Equiv-
alently, the winner mapping (xk, y) always beats
each loser mapping (xk, zi) in HG, no matter the
choice of the non-negative constraint weights. We
conclude that the HG typology THG(D,C) corre-
sponding to the phonological domain D in (15) and
the constraint set C in (16) consists of a unique HG
grammar, namely the grammar that realizes each
underlying form xk as its winner candidate y.

We now switch from categorical HG to proba-
bilistic ME. We focus on the ME grammar GME

wk

corresponding to the weight vector wk in (14). We
want to bound the probability it assigns to the
mappings (xh, y) with h = 1, . . . , k − 1 and to
the mapping (xk, y). As explained below, the in-
equalities wk · ch ≤ 1 with h = 1, . . . , k − 1
on the lefthand side of (14) ensure that the ME
grammar GME

wk
assigns to the mapping (xh, y) with

h = 1, . . . , k−1 a probability that is small, namely
at most ε1, as stated in (17). Analogously, the in-
equality wk · ck ≥ ∆ on the righthand side of (14)
ensures that the ME grammar GME

wk
assigns to the

mapping (xk, y) a probability that is instead large,
namely at least ε2, as stated in (18).

GME
wk

(y | xh) ≤ ε1 (17)

GME
wk

(y | xk) ≥ ε2 (18)

Indeed, the computation in (19) establishes the
inequality (17) and an analogous computation es-
tablishes the inequality (18). Step (19a) holds
because of the definition (7) of the ME probabil-
ity GME

wk
(y | xh) as proportional to the exponential

of the opposite of the weighted sum of the con-
straint violations of the winner candidate y. The

proportionality constant is univocally determined
by the normalization condition (1) and has been
made explicit in the denominator. Step (19b) holds
by dividing both the numerator and the denomi-
nator by exp{−wk · C(xh, y)}. Step (19c) holds
because of the assumption (16) that the difference
C(xh, zi) − C(xh, y) is equal to the vector ch for
every i = 1, . . . ,m. Step (19d) holds because of
the assumption (14) that the scalar product wk · ch
between the two vectors wk and ch is at most one
for every h = 1, . . . , k − 1. Finally, step (19e)
holds because of the assumption that the integer m
is large enough, as in (13).

GME
wk

(y | xh) = (19)

(a)
=

e−wk·C(xh,y)

e−wk·C(xh,y) +
m∑

i=1

e−wk·C(xh,zi)

(b)
=

1

1 +

m∑

i=1

e−wk·
(

C(xh,zi)−C(xh,y)
)

(c)
=

1

1 +me−wk·ch
(d)

≤ 1

1 +me−1
(e)

≤ ε1

To complete the proof of result 1, we now con-
sider the ME grammars GME

wk1
and GME

wk2
corre-

sponding to two weight vectors wk1 and wk2 with
k1 > k2. By (17), the ME grammar GME

wk1
assigns a

probability smaller than ε1 to the mapping (xk2 , y),
namely GME

wk1
(y | xk2) ≤ ε1. Furthermore, by (18),

the ME grammar GME
wk2

instead assigns a probabil-
ity larger than ε2 to this mapping (xk2 , y), namely
GME

wk2
(y | xk2) ≥ ε2. Since ε1 and ε2 are more than

ε apart, we conclude that these two ME grammars
GME

wk1
and GME

wk2
are not ε-identical because they as-

sign to the mapping (xk2 , y) two probabilities that
differ by more than ε. In conclusion, the ME typol-
ogy TME(D,C) corresponding to the phonological
domain D in (15) and the constraint set C in (16)
is ε-infinite because it contains an infinite sequence
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of ME grammars GME
w1
, GME

wk
, . . . , GME

wk
, . . . which

are pair-wise ε-different.

5.3 Generalization of result 1 to other
distances

The distance D∞ in (3) is obviously never larger
than the distance D1 in (4), as stated in (20a).
Furthermore, we recall (see for instance Cover
and Thomas 1991, page 300 and Tsybakov 2009,
lemma 2.5, page 88) that the distance D1 is never
larger than twice the square root of the KL diver-
genceDKL in (5), as stated by Pinsker’s inequality
(20b). Finally, we recall (see for instance Tsybakov
2009, lemma 2.7, page 90) that the KL divergence
DKL is never larger than the χ2 divergence Dχ2 in
(6), yielding the inequality (20c).

D∞(G1, G2)
(a)

≤ D1(G1, G2)

(b)

≤ 2
√
DKL(G1, G2)

(c)

≤ 2
√
Dχ2(G1, G2)

(20)

It follows from these inequalities (20) that, if a
probabilistic typology is ε-infinite relative to the
distanceD∞, then it is also ε-infinite relative to the
distance D1 as well as relative to the divergences
DKL and Dχ2 . Since the ME typology TME(D,C)
constructed in appendix 5.2 is ε-infinite relative to
D∞, it is also ε-infinite relative to D1, DKL, and
Dχ2 . In other words, the result proved in appendix
5.2 is robust because it does not depend on how
we measure the difference between probabilistic
grammars.

5.4 A lemma for the proof of result 2
Lemma 2 Consider k − 1 vectors d1, . . . , dk−1
with integral components (without restrictions on
their sign) and a vector wk with positive rational
components such that wk ·d1 > 0, . . . ,wk ·dk−1 >
0. There exist a vector dk with integral components
(without restrictions on their sign) and a vector
wk+1 with positive rational components such that
wk+1 · d1 > 0, . . . ,wk+1 · dk−1 > 0 and further-
more wk+1 · dk > 0 while wk · dk < 0. 2

This lemma admits the following geometric inter-
pretation. We start from some vectors d1, . . . , dk−1,
represented as blue dots in figure 7. They all sit in
the interior of some half-space, represented as the
blue region in figure 7a. We can always slightly
tilt the surface that defines this half-space in such
a way that the new half-space, represented as the

•

•

•
•

(a)

•

•

•
•

•

(b)

Figure 7

red region in figure 7b, satisfies the following two
conditions. First, the original vectors d1, . . . , dk
sit in the interior of the tilted half-space as well.
Second, we have made room for some new vector
dk+1, represented by the red dot in figure 7b, that
sits in the interior of the tilted red half-space but
not of the original blue half-space.

To establish the lemma, we observe that, since
the strict inequality wk · dh > 0 holds for every
h = 1, . . . , k − 1, there exists a positive rational
constant ε > 0 such that wk · dh ≥ ε for every
h = 1, . . . , k − 1. Since the vector wk has ratio-
nal components, there exists a vector v with ra-
tional components orthogonal to wk, namely such
that v · wk = 0. Let M1 > 0 be the smallest
common multiple of the denominators of the com-
ponents of v, whereby M1v has integral compo-
nents. Let M2 > 0 be the smallest common multi-
ple of the denominators of the components of wk,
whereby M2wk has positive integral components.
We choose a positive rational constant α > 0 and a
positive integer ` as in (21).

α =

{
1 if β ≥ 0

− ε

2β
if β < 0 with β =

k−1
min
h=1

v · dh

` ≥ M2‖wk‖2
αM1‖v‖2

(21)

We define the vector wk+1 with positive rational
components and the vector dk with integral compo-
nents as in (22).

wk+1 = wk+αv dk = `M1v−M2wk (22)

These positions satisfy the inequalities (23) and
(24) as well as the inequality (25) for h =
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1, . . . , k − 1, completing the proof of the lemma.

wk · dk = wk ·
(
`M1v−M2wk

)
(23)

= −M2‖wk‖2 < 0

wk+1 · dk =
(
wk + αv

)
·
(
`M1v−M2wk

)
(24)

= α`M1‖v‖2 −M2‖wk‖2 > 0

wk+1 · dh =
(
wk + αv

)
· dh (25)

= wk · dh + αv · dh ≥ ε+ αβ > 0

5.5 Proof of result 2
We start with an arbitrary vector w1 with positive
rational components. By applying lemma 2 with
k = 1 to this vector w1, we conclude that there
exist a vector d1 with integral components and a
vector w2 with positive rational components that
validate the red inequalities in the first step of the
reasoning in figure 8. By applying again lemma 2
with k = 2 to the vectors d1 and w2 in the bottom
line of this first step, we conclude that there exist a
vector d2 with integral components and a vector w3

with positive rational components that validate the
red inequalities in the second step of the reasoning
in figure 8. By applying once again lemma 2 with
k = 3 to the vectors d1, d2 and w3 in the bottom
line of this second step, we conclude that there
exist a vector d3 with integral components and a
vector w4 with positive rational components that
validate the red inequalities in the third step of the
reasoning in figure 8. And so on and so forth.

In conclusion, we have established the existence
of a sequence of vectors w1,w2, . . . ,wk, . . . with
positive rational components and a sequence of vec-
tors d1, d2, . . . , dk, . . . with integral components
that satisfy the k inequalities in (26) for every in-
dex k = 1, 2, . . . .

wk · d1 > 0
...

wk · dk−1 > 0

wk · dk < 0 (26)

To construct the desired counterexample, we con-
sider the infinite phonological domain D described
in (27). For every index k = 1, 2, . . . , the base set
BD of this phonological domain contains the two
underlying forms xk and x̂k. Their candidate sets
consist of only two surface forms, namely y, z and
ŷ, ẑ, respectively. For concreteness, we refer to y
and ŷ as the winner candidate and to z and ẑ as the
loser candidates.

BD=

{
x1 x2 . . . xk . . .

x̂1 x̂2 . . . x̂k . . .

}
D(xk)=

{
y, z
}

D(x̂k)=
{
ŷ, ẑ
} (27)

Furthermore, we define the constraint set C in
such a way that the identity (28) holds for ev-
ery index k = 1, 2, . . . . The first difference
C(x̂k, ẑ)−C(x̂k, ŷ) on the righthand side compares
the constraint violations of the loser and winner
candidates ẑ and ŷ of the underlying form x̂k. The
second difference C(xk, z)−C(xk, y) compares the
constraint violations of the loser and winner candi-
dates z and y of the underlying form xk that bears
the same index k. The identity (28) says that the
difference between these two differences must be
equal to the vector dk in (26).

dk =
(
C(x̂k, ẑ)− C(x̂k, ŷ)

)

−
(
C(xk, z)− C(xk, y)

) (28)

This position (28) makes sense because the vec-
tor dk has integral components that can therefore
be inetrpreted as differences between integral num-
bers of constraint violations. Furthermore, de-
spite the fact that the components of this vector
dk can be positive or negative, the identity (28)
can always be satisfied by choosing constraint vi-
olation vectors such that C(x̂k, ẑ) ≥ C(x̂k, ŷ) and
C(xk, z) ≥ C(xk, y). This means that every con-
straint in the constraint set C assigns less violations
to the winner mapping (xk, y) than to the loser
mapping (xk, z); analogously, it assigns less vio-
lations to the winner mapping (x̂k, ŷ) than to the
loser mapping (x̂k, ẑ). Equivalently, the winner
mappings (xk, y) and (x̂k, ŷ) always beat in HG the
loser mappings (xk, z) and (x̂k, ẑ) respectively, no
matter the choice of the non-negative constraint
weights. The HG typology THG(D,C) correspond-
ing to the phonological domain D in (27) and the
constraint set C in (28) therefore consists of a sin-
gle HG grammar, namely the grammar that maps
all the underlying forms xk and x̂k to the candidates
y and ŷ, respectively.

We now switch from categorical HG to proba-
bilistic ME. We focus on the ME grammar GME

wk

corresponding to the weight vector wk in (26).
We want to compare the probabilities it assigns
to the two mappings (xh, y) versus (x̂h, ŷ) with
h = 1, . . . , k − 1 as well as to the two mappings
(xk, y) versus (x̂k, ŷ). As explained below, the in-
equalities wk · dh > 0 with h = 1, . . . , k − 1
on the lefthand side of (26) ensure that the ME
grammar GME

wk
assigns less probability to the map-

ping (xh, y) than to the mapping (x̂h, ŷ) for every
h = 1, . . . , k − 1, as stated in (29). Analogously,
the wk ·dk < 0 on the righthand side of (26) ensures
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w1 =⇒ w1 · d1 < 0
w2 · d1 > 0

=⇒
w1 · d1 < 0
w2 · d1 > 0 w2 · d2 < 0
w3 · d1 > 0 w3 · d2 > 0

=⇒
w1 · d1 < 0
w2 · d1 > 0 w2 · d2 < 0
w3 · d1 > 0 w3 · d2 > 0 w3 · d3 < 0
w4 · d1 > 0 w4 · d2 > 0 w4 · d3 > 0

first step second step third step

Figure 8

that the ME grammar GME
wk

assigns more proba-
bility to the mapping (xk, y) than to the mapping
(x̂k, ŷ), as stated in (30).

GME
wk

(y | xh) < GME
wk

(ŷ | x̂h) (29)

GME
wk

(y | xk) > GME
wk

(ŷ | x̂k) (30)

Indeed, the reasoning in (31) establishes the in-
equality (29) and an analogous reasoning estab-
lishes the inequality (30). Step (31a) holds by un-
packing the ME probability as in steps (19a)-(19b)
above. And tep (31b) holds because of the defini-
tion (28) of the vector dh. The condition wk·dh > 0
arrived at is ensures by the choice of the vectors
wk and dh in (26).

GME
wk

(y | xh) < GME
wk

(ŷ | x̂h)

(a)⇐⇒ 1

1 + e−wk·(C(xk,z)−C(xk,y)
) <

<
1

1 + e−wk·
(

C(x̂k ,̂z)−C(x̂k,ŷ)
)

⇐⇒ e−wk·
(

C(xk,z)−C(xk,y)
)

> e−wk·
(

C(x̂k ,̂z)−C(x̂k,ŷ)
)

⇐⇒ wk ·
(
C(xk, z)− C(xk, y)

)

< wk ·
(
C(x̂k, ẑ)− C(x̂k, ŷ)

)

(b)⇐⇒ wk · dh > 0

(31)

To complete the proof of result 2, we now
consider the two ME grammars GME

wk1
and GME

wk2

corresponding to two weight vectors wk1 and
wk2 with k1 > k2. By (29), the ME gram-
mar GME

wk1
assigns less probability to the map-

ping (xk2 , y) than to the mapping (x̂k2 , ŷ), namely
GME

wk1
(y | xk2) < GME

wk1
(ŷ | x̂k2). By (30), the ME

grammar GME
wk2

instead assigns more probability to
the mapping (xk2 , y) than to the mapping (x̂k2 , ŷ),
namelyGME

wk2
(y | xk2) > GME

wk2
(ŷ | x̂k2). These prob-

ability inequalities say that these two ME gram-
mars GME

wk1
and GME

wk2
are not order-identical be-

cause they order the two mappings (xk2 , y) and
(x̂k2 , ŷ) differently. In conclusion, the ME typol-
ogy TME(D,C) corresponding to the phonological

domain D in (27) and the constraint set C in (28)
is order-infinite because it contains an infinite se-
quence of ME grammarsGME

w1
, GME

wk
, . . . , GME

wk
, . . .

which are pair-wise order-different.
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