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Abstract

Knowledge Graphs (KGs) are fundamental re-
sources in knowledge-intensive tasks in NLP.
Due to the limitation of manually creating
KGs, KG Completion (KGC) has an impor-
tant role in automatically completing KGs by
scoring their links with KG Embedding (KGE).
To handle many entities in training, KGE re-
lies on Negative Sampling (NS) loss that can
reduce the computational cost by sampling.
Since the appearance frequencies for each link
are at most one in KGs, sparsity is an essen-
tial and inevitable problem. The NS loss is
no exception. As a solution, the NS loss in
KGE relies on smoothing methods like Self-
Adversarial Negative Sampling (SANS) and
subsampling. However, it is uncertain what
kind of smoothing method is suitable for this
purpose due to the lack of theoretical under-
standing. This paper provides theoretical in-
terpretations of the smoothing methods for the
NS loss in KGE and induces a new NS loss,
Triplet Adaptive Negative Sampling (TANS),
that can cover the characteristics of the con-
ventional smoothing methods. Experimental
results of TransE, DistMult, ComplEx, RotatE,
HAKE, and HousE on FB15k-237, WN18RR,
and YAGO3-10 datasets and their sparser sub-
sets show the soundness of our interpretation
and performance improvement by our TANS.

1 Introduction

Knowledge Graphs (KGs) represent human knowl-
edge using various entities and their relationships
as graph structures. KGs are fundamental resources
for knowledge-intensive tasks like dialog (Moon
et al., 2019), question answering (Reese et al.,
2020), named entity recognition (Liu et al., 2019),
open-domain questions (Hu et al., 2022), and rec-
ommendation systems (Gao et al., 2020), etc.

However, to create complete KGs, we need to
consider a large number of entities and all their
possible relationships. Taking into account the ex-
plosively large number of combinations between

entities, only relying on manual approaches is un-
realistic to make complete KGs.

Knowledge Graph Completion (KGC) is a task
to deal with this problem. KGC involves automat-
ically completing missing links corresponding to
relationships between entities in KGs. To complete
the KGs, we need to score each link between enti-
ties. For this purpose, current KGC commonly re-
lies on Knowledge Graph Embedding (KGE) (Bor-
des et al., 2011). KGE models predict the missing
relations, named link prediction, by learning struc-
tural representations. In the current KGE, mod-
els need to complete a link (triplet) (ei, rk, ej) of
entities ei and ej , and their relationship rk by an-
swering ei or ej from a given query (?, rk, ej) or
(ei, rk, ?), respectively. Hence, KGE needs to han-
dle a large number of entities and their relationships
during its training.

To handle a large number of entities and rela-
tionships in KGs, Negative Sampling (NS) loss
(Mikolov et al., 2013) is frequently used for train-
ing KGE models. The original NS loss is proposed
to approximate softmax cross-entropy loss to re-
duce computational costs by sampling false labels
from its noise distribution in training. Trouillon
et al. (2016) import the NS loss from word embed-
ding to KGE with utilizing uniform distribution
as its noise distribution. Sun et al. (2019) extend
the NS loss to Self-Adversarial Negative Sampling
(SANS) loss for efficient training of KGE. Unlike
the NS loss with uniform distribution, the SANS
loss utilizes the training model’s prediction as the
noise distribution. Since the negative samples in
the SANS loss become more difficult to discrimi-
nate for models in training, the SANS can extract
models’ potential compared with the NS loss with
uniform distribution.

One of the problems left for KGE is the sparsity
of KGs. Figure 1 shows the appearance frequency
of queries and answers (entities) in the training data
of FB15k-237, WN18RR and YAGO3-10 datasets.
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Figure 1: Appearance frequencies of queries and answers (entities) in the training data of FB15k-237, WN18RR,
and YAGO3-10. Note that the indices are sorted from high frequency to low.
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Figure 2: Performances of KGE models HousE, HAKE, RotatE, ComplEx, DistMult, and TransE on datasets
FB15k-237, WN18RR, and YAGO3-10 using NS, SANS, and subsampling methods (noted as Base, Freq, Uniq).

From the long-tail distribution of this figure, we
can understand that both queries and answers nec-
essary for training KGE models may suffer from
the sparsity problem.

As a solution, several smoothing methods are
used in KGE. Sun et al. (2019) import subsampling
from word2vec (Mikolov et al., 2013) to KGE. Sub-
sampling can smooth the appearance frequency of
triplets and queries in KGs. Kamigaito and Hayashi
(2022a) show a general formulation that covers the
basic subsampling of Sun et al. (2019) (Base), their
frequency-based subsampling (Freq) and unique-
based subsampling (Uniq) for KGE. Kamigaito and
Hayashi (2021) indicate that SANS has a similar ef-
fect of using label-smoothing (Szegedy et al., 2016)
and thus SANS can smooth the frequencies of an-
swers in training. Figure 2 shows the effectiveness
of SANS and subsampling in KGC performance.
From the figure, since FB15k-237 is more sparse
(imbalanced) than WN18RR and YAGO3-10 based
on Figure 1, we can understand that strategy in
choosing smoothing methods have more consider-
able influences than models when data is sparse.

While SANS and subsampling can improve
model performance by smoothing the appearance
frequencies of triplets, queries, and answers, their

theoretical relationship is not clear, leaving their ca-
pabilities and deficiencies a question. For example,
conventional works (Sun et al., 2019; Zhang et al.,
2020b; Kamigaito and Hayashi, 2022a)1 jointly
use SANS and subsampling with no theoretical
background. Thus, there is a call for further inter-
pretability and performance improvement.

To solve the above problem, we theoretically
and empirically study the differences of SANS and
subsampling on three common datasets and their
sparser subsets with six popular KGE models2. Our
contributions are as follows:

• By focusing on the smoothing targets, we theo-
retically reveal the differences between SANS
and subsampling and induce a new NS loss,
Triplet Adaptive Negative Sampling (TANS),
that can cover the smoothing target of both
SANS and subsampling.

• We theoretically show that TANS with sub-
sampling can potentially cover the conven-

1Note that Sun et al. (2019); Zhang et al. (2020b) use sub-
sampling in their released implementation without referring
to it in their paper.

2Our code and data are available at https://github.
com/xincanfeng/ss_kge.
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tional usages of SANS and subsampling.

• We empirically verify that TANS improves
KGC performance on sparse KGs in terms of
MRR.

• We empirically verify that TANS with sub-
sampling can cover the conventional usages
of SANS and subsampling in terms of MRR.

2 Background

In this section, we describe the problem formu-
lation for solving KGC by KGE and explain the
conventional NS loss functions in KGE.

2.1 Formulation of KGE
KGC is a research topic for automatically inferring
new links in a KG that are likely but not yet known
to be true. To infer the new links by KGE, we de-
compose KGs into a set of triplets (links). By using
entities ei, ej and their relation rk, we represent the
triplet as (ei, rk, ej). In a typical KGC task, a KGE
model receives a query (ei, rk, ?) or (?, rk, ej) and
predicts the entity corresponding to ? as an answer.

In KGE, a KGE model scores a triplet (ei, rk, ej)
by using a scoring function sθ(x, y), where θ de-
notes model parameters. Here, using a softmax
function, we represent the existence probability
pθ(y|x) for an answer y of the query x as follows:

pθ(y|x) =
exp(sθ(x, y))∑

y′∈Y exp(sθ(x, y′))
, (1)

where Y is a set of entities.

2.2 NS Loss in KGE
To train sθ(x, y), we need to calculate losses for
the observables D = {(x1, y1), · · · , (xn, yn)} that
follow pd(x, y). Even if we can represent KGC
by Eq. (1), it does not mean we can tractably per-
form KGC due to the large number of Y in KGs.
For the reason of the computational cost, the NS
loss (Mikolov et al., 2013) is used to approximate
Eq. (1) by sampling false answers.

By modifying that of Mikolov et al. (2013), the
following NS loss (Sun et al., 2019; Ahrabian et al.,
2020) is commonly used in KGE:

ℓNS(θ)

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+
1

ν

ν∑

yi∼U

log(σ(−sθ(x, yi)− τ))
]
, (2)

where U is the noise distribution that follows uni-
form distribution, σ is the sigmoid function, ν is
the number of negative samples per positive sample
(x, y), and τ is a margin term to adjust the value
range decided by sθ(x, y).

2.3 Smoothing Methods for the NS Loss in
KGE

As shown in Figure 1, KGC needs to deal with the
sparsity problem caused by low frequent queries
and answers in KGs. Imposing smoothing on the
appearance frequencies of queries and answers can
mitigate this problem. The following subsections
introduce subsampling (Mikolov et al., 2013; Sun
et al., 2019; Kamigaito and Hayashi, 2022a) and
SANS (Sun et al., 2019), the conventional smooth-
ing methods for the NS loss in KGE.

2.3.1 Subsampling
Subsampling (Mikolov et al., 2013) is a method to
smooth the frequency of triplets or queries in the
NS loss. Sun et al. (2019) import this approach
from word embedding to KGE. Kamigaito and
Hayashi (2022b,a) add some variants to subsam-
pling for KGC and theoretically provide a unified
expression of them as follows:

ℓSUB(θ)

=− 1

|D|
∑

(x,y)∈D

[
A(x, y;α) log(σ(sθ(x, y)+τ))

+
1

ν

ν∑

yi∼U

B(x, y;α)log(σ(−sθ(x, yi)−τ))
]
, (3)

where α is a temperature term to adjust the frequecy
of triplets and queries. Note that we incorporate α
into Eq. (3) to consider various loss functions even
though Kamigaito and Hayashi (2022b,a) do not
consider α. In this formulation, we can consider
several assumptions for deciding A(x, y;α) and
B(x, y;α). We introduce these assumptions in the
following paragraphs:

Base As a basic subsampling approach, Sun et al.
(2019) import the one originally used in word2vec
(Mikolov et al., 2013) to KGE, defined as follows:

A(x, y;α)=B(x, y;α)=
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,

(4)
where # is the symbol for frequency and #(x, y)
represents the frequency of (x, y). In word2vec,
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subsampling randomly discards a word by a proba-
bility 1−

√
t/f , where t is a constant value and f is

a frequency of a word. This is similar to randomly
keeping a word with a probability

√
t/f . Thus,

we can understand that Eq. (4) follows the original
use in word2vec. Since the actual (x, y) occurs at
most once in KGs, when (x, y) = (ei, rk, ej), they
approximate the frequency of (x, y) as:

#(x, y) ≈ #(ei, rk) + #(rk, ej), (5)

based on the approximation of n-gram language
modeling (Katz, 1987).

Freq Kamigaito and Hayashi (2022a) propose
frequency-based subsamping (Freq) by assuming a
case that (x, y) originally has a frequency, but the
observed one in the KG is at most 1.

A(x, y;α) =
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,

B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (6)

Uniq Kamigaito and Hayashi (2022a) also pro-
pose unique-based subsamping (Uniq) by assum-
ing a case that the originally frequency and the
observed one in the KG are both 1.

A(x, y;α) = B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (7)

2.3.2 SANS Loss
SANS is originally proposed as a kind of NS loss
to train KGE models efficiently by considering neg-
ative samples close to their corresponding positive
ones. Kamigaito and Hayashi (2021) show that us-
ing SANS is similar to imposing label-smoothing
on Eq. (1). Thus, SANS is a method to smooth the
frequency of answers in the NS loss. The SANS
loss is represented as follows:

ℓSANS(θ)

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+

ν∑

yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (8)

pθ(yi|x;β) ≈
exp(βsθ(x, yi))∑ν
j=1 exp(βsθ(x, yj))

, (9)

where β is a temperature to adjust the distribu-
tion of negative sampling. Different from subsam-
pling, SANS uses pθ(yi|x;β) that is predicted by

a model θ to adjust the frequency of the answer yi.
Since pθ(yi|x;β) is essentially a noise distribution,
it does not receive any gradient during training.

3 Triplet Adaptive Negative Sampling

In this section, we explain our proposed Triplet
Adaptive Negative Sampling (TANS) in detail. We
first show the overview of our TANS through the
comparison with the conventional smoothing meth-
ods of the NS loss for KGE (See §2.3) in §3.1 and
after that we explain the details of TANS through
its mathematical formulations in §3.2 and §3.3.

3.1 Overview
TANS is fundamentally different from SANS, with
SANS only taking into account the conditional
probability of negative samples and TANS being a
loss function that considers the joint probability of
the pair of queries and their answers.

Table 1 shows the characteristics of TANS and
the conventional smoothing methods of the NS loss
for KGE introduced in §2.3. These characteristics
are based on the decomposition of pd(x, y), the
appearance probability for the triplet (x, y), into
that of its answer pd(y|x) and query p(x):

pd(x, y) = pd(y|x)pd(x) (10)

In Eq. (10), smoothing both pd(y|x) and pd(x) is
similar to smoothing pd(x, y). However, smooth-
ing pd(x, y) does not ensure smoothing both pd(x)
and pd(y|x) considering the case of only one of
them being smoothed, and the left one being still
sparse. Similarly, smoothing only pd(x) or pd(y|x)
does not ensure pd(x, y) being smoothed due to
the case where one of them is still sparse. In Table
1, we denote such a case where the method can
influence the probability, but no guarantee of the
probability be smoothed as △.

In TANS, we aim to smooth pd(x, y) by smooth-
ing both pd(y|x) and pd(x) based on Eq. (10).

3.2 Formulation
Here, we induce TANS from SANS with targeting
to smooth pd(x, y) by smoothing both pd(y|x) and
pd(x). First, we assume a simple replacement from
pθ(y|x) to pθ(x, y) in ℓSANS(θ) of Eq. (9):

− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))

+

ν∑

yi∼U

pθ(x, yi) log(σ(−sθ(x, yi)− τ))
]
. (11)
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Method
Smoothing

Remarks
p(x, y) p(y|x) p(x)

Subsampling
Base ✓ △ △ p(y|x) and p(x) are influenced by p(x, y).
Uniq △ × ✓ p(x, y) is indirectly controlled by p(x).
Freq ✓ △ ✓ p(y|x) is indirectly controlled by p(x, y) or p(x).

SANS △ ✓ × p(x, y) is indirectly controlled by p(y|x).
TANS ✓ ✓ ✓

Table 1: The characteristics of each smoothing method for the NS loss in KGE (See §2.3 for the details.) and our
proposed TANS. ✓ and △ respectively denote the method smooths the probability directly and indirectly. × denotes
the method does not smooth the probability.

However, using Eq. (11) causes an imbalanced loss
between the first and second terms since the sum
of pθ(x, yi) on all negative samples is not always
1. Thus, Eq. (11) is impractical as a loss function.

As a solution, we focus on the decomposition
pθ(x, y) = pθ(y|x)pθ(x) and the fact that the sum
of pθ(y|x) of all negative samples is always 1. By
using pθ(x) to make a balance between the first
and second loss term, we can modify Eq. (11) and
induce our TANS as follows:

ℓTANS(θ)

=− 1

|D|
∑

(x,y)∈D
pθ(x; γ)

[
log(σ(sθ(x, y) + τ))

+
ν∑

yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (12)

pθ(x; γ) =
∑

yi∈D
pθ(x, yi; γ),

pθ(x, yi; γ)=
exp (γsθ(x, yi))∑

(x′,y′)∈Dexp(γsθ(x
′, y′))

, (13)

where γ is a temperature to smooth the frequency
of queries. Since TANS uses a noise distribution de-
cided by pθ(x; γ) and pθ(yi|x;β), it does not prop-
agate gradients through probabilities for negative
samples, and thus, memory usage is not increased.

3.3 Theoretical Interpretation

In this subsection, we discuss the difference and
similarities among TANS and other smoothing
methods for the NS loss in KGE. As shown in
Table 1, the subsampling methods, Base and Freq,
can smooth triplet frequencies similar to our TANS.
To investigate TANS from the view point of sub-

sampling, we reformulate Eq. (12) as follows:

ℓTANS(θ)

=− 1

|D|
∑

(x,y)∈D

[
A(x, y; γ) log(σ(sθ(x, y)+τ))

+
ν∑

yi∼U

B(x, y;β, γ) log(σ(−sθ(x, yi)−τ))
]
,

(14)

A(x, y; γ) = pθ(x; γ),

B(x, y;β, γ) = pθ(yi|x;β)pθ(x; γ). (15)

Apart from the temperature terms, α, β, and γ, we
can see that the general formulation of subsampling
in Eq. (3) and the above Eq. (14) has the same for-
mulation. Thus, TANS is not merely an extension
of SANS but also a novel subsampling method.

Even though their similar characteristic, TANS
and subsampling have an essential difference:
TANS smooths the frequencies by model-predicted
distributions as in Eq. (13), and the subsampling
methods smooth them by counting appearance fre-
quencies on the observed data as in Eq. (4), (5), (6),
and (7). For instance, TANS can work even when
the entity or relations included in the target triplet
appear more than once, which is theoretically dif-
ferent from conventional approaches.

Since the superiority of using either model-based
or count-based frequencies depends on the model
and dataset, we empirically investigate this point
through our experiments.

4 Unified Interpretation of SANS and
Subsampling

In the previous section, we understand that our
TANS can smooth triplets, queries, and answers
partially covered by SANS and subsampling meth-
ods. On the other hand, TANS only relies on model-
predicted frequencies to smooth the frequencies.
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Temperature Induced NS Loss
α β γ

= 0 = 0 = 0 Equivalent to ℓNS(θ), the basic NS loss in KGE (Eq. (2))
= 0 = 0 ̸= 0 Currently does not exist
= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9))
= 0 ̸= 0 ̸= 0 Equivalent to our ℓTANS(θ), the TANS loss (Eq. (12))
̸= 0 = 0 = 0 Proportional to ℓNS(θ), the basic NS loss in KGE (Eq. (2)) with subsampling in §2.3
̸= 0 = 0 ̸= 0 Currently does not exist
̸= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9)) with subsampling in §2.3
̸= 0 ̸= 0 ̸= 0 Equivalent to our ℓUNI(θ), the unified NS loss in KGE (Eq. (16))

and also equivalent to our ℓTANS(θ), the TANS loss (Eq. (12)) with subsampling in §2.3

Table 2: The relationship among the loss functions from the viewpoint of the unified NS loss, ℓUNI(θ) in Eq. (16).

Neubig and Dyer (2016) point out the benefits of
combining count-based and model-predicted fre-
quencies in language modeling. This section inte-
grates smoothing methods for the NS loss in KGE
from a unified interpretation.

4.1 Formulation

We formulate the unified loss function by introduc-
ing subsampling (Eq. (3)) into our TANS (Eq. (12))
as follows:

ℓUNI(θ)

=− 1

|D|
∑

(x,y)∈D
pθ(x; γ)

[
A(x, y;α)log(σ(sθ(x, y)+τ))

+η
ν∑

yi∼U

B(x, y;α)pθ(yi|x;β)log(σ(−sθ(x, yi)−τ))
]
,

(16)

where η is a hyperparamter that can be any value
to absorb the difference among the three different
subsampling methods, Base, Uniq, and Freq.

Here, we can induce the NS losses shown in our
paper from Eq. (16) by changing the temperature
parameters α, β, and γ. Table 2 shows the induced
losses from our ℓUNI(θ). Note that since pθ(x; γ)
only appears in our TANS, canceling pθ(x; γ) by
γ = 0 induces an inequivalent but a proportional
relationship to the conventional NS loss.

4.2 Theoretical Interpretation

As shown in Table 2, TANS w/ subsampling has
characteristics of all smoothing methods for the NS
loss in KGE introduced in this paper. Therefore,
we can expect higher performance of TANS w/
subsampling than the combination of conventional
methods, the basic NS, SANS, and subsampling.
However, because TANS w/ subsampling uses sub-
sampling in §2.3, we need to choose the one from

Base, Uniq, and Freq for TANS w/ subsampling.
Since this part is out of the scope of theoretical in-
terpretation, we investigate this in the experiments.

5 Experiments

In this section, we investigate our theoretical inter-
pretation in §3.3 and §4.2 through experiments.

5.1 Experimental Settings

Datasets We used three common datasets, FB15k-
237 (Toutanova and Chen, 2015), WN18RR, and
YAGO3-10 (Dettmers et al., 2018) 3.

Comparison Methods As comparison methods,
we used TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), RotatE (Sun et al., 2019), HAKE (Zhang
et al., 2020a), and HousE (Li et al., 2022). We fol-
lowed the original settings of Sun et al. (2019) for
TransE, DistMult, ComplEx, and RotatE with their
implementation4, the original settings of Zhang
et al. (2020a) for HAKE with their implementa-
tion5, and the original settings of Li et al. (2022) for
HousE with their implementation6. We tuned tem-
perature γ on the validation split for each dataset.

Metrics We employed conventional metrics in
KGC, i.e., MRR, Hits@1 (H@1), Hits@3 (H@3),
and Hits@10 (H@10) and reported the average
scores and their standard deviations by three differ-
ent runs with fixed random seeds.

3Table 3 in Appendix A shows the dataset statistics.
4https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding
5https://github.com/MIRALab-USTC/

KGE-HAKE
6https://github.com/rui9812/HousE
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Figure 3: KGC performance on common KGs (Notations are the same as in Figure 2).

5.2 Results

Since the result tables are large7, we discuss them
individually, focusing on important information in
the following subsections.

5.2.1 Effectiveness of TANS

Figure 3a shows the MRR scores of each method.
From the result, we can understand the effective-
ness of considering triplet information in SANS
as conducted in TANS. Thus, the result is along
with our expectation in §3.3 that TANS can cover
the role of subsampling methods. However, as the
result of HAKE on WN18RR shows, there is a case
that subsampling methods outperform TANS. As
discussed in §3.3, using only TANS does not cover
all combinations of NS loss and subsampling. Con-
sidering this theoretical fact, we further compare
TANS with subsampling and the SANS loss with
subsampling in the following section.

7The full experimental results are listed in Appendix B.
The scores are included in Table 5, 6, and 7 of Appendix B.1.
The training loss curves and validation MRR curves for each
smoothing method are in Figure 6, 7, and 8 of Appendix B.2.

5.2.2 Validity of the Unified Interpretation
Figure 3b shows the result for each configuration.
We can see performance improvements by using
subsampling in both SANS and TANS. Further-
more, in almost all cases, TANS with subsampling
achieve the highest MRR. This observation is along
with the theoretical conclusion in §3.3 that TANS
with subsampling can cover the characteristic of
other NS loss in terms of smoothing. On the other
hand, the results of HAKE on YAGO3-10 show the
different tendency that SANS with subsampling
achieves the best MRR instead of TANS. Because
the model prediction estimates the triplet frequen-
cies, TANS is influenced by the selected model.
Therefore, carefully choosing the combination of
a loss function and model is still effective in im-
proving KGC performance on the NS loss with
subsampling.

6 Analysis

We analyze how TANS mitigates the sparsity prob-
lem in imbalanced KGs commonly caused by low
frequent triplets in KGC. By considering that all

84



36 38 40 42FB
15

k-2
37

-HL HousE

35.0 37.5 40.0 42.5

HAKE

36 38 40 42

RotatE

10 12 14
WN18

RR-H
L

10 12 14 13 14 15 16

40 45 50
MRR

YA
GO3-1

0-H
L

46 48 50
MRR

37.5 40.0 42.5 45.0
MRR

NS
NS w/ Base
NS w/ Freq
NS w/ Uniq
SANS
SANS w/ Base
SANS w/ Freq
SANS w/ Uniq
TANS
TANS w/ Base
TANS w/ Freq
TANS w/ Uniq

Figure 4: KGC performance on filtered sparser KGs, i.e., FB15k-237-HL, WN18RR-HL, and YAGO3-10-HL
(Notations are the same as in Figure 2).

triplets in KGs appear at most once, we focus on
queries. We extracted 0.5% triplets with the highest
or lowest frequent queries in training, validation,
and test splits as the sparser subsets FB15k-237-
HL, WN18RR-HL, and YAGO3-10-HL, respec-
tively 8 from original data, for the investigation.

Figure 4 shows MRRs for each model on each
sparser dataset. From the result, we can under-
stand that TANS can perform even much better in
KGC when KGs get more imbalanced. You can
see further detailed results in Table 8, 9, and 10
of Appendix C.3.

7 Related Work

Knowledge Graph Knowledge graphs have im-
portant roles in various knowledge-intensive NLP
tasks like dialog (Moon et al., 2019), question an-
swering (Reese et al., 2020), named entity recogni-
tion (Liu et al., 2019), open-domain questions (Hu
et al., 2022), recommendation systems (Gao et al.,
2020), and commonsense reasoning (Sakai et al.,
2024b), etc. In addition to these text-only tasks,
knowledge-intensive vision and language (V&L)
tasks such as visual question answering (VQA)
(Yue et al., 2023), image generation (Kamigaito
et al., 2023), explanation generation (Hayashi et al.,
2024), and image review generation (Saito et al.,
2024) also require external knowledge. Visual KGs
(Zhu et al., 2024) have the potential to contribute to
solving these tasks. Therefore, KGs are important
materials in various different fields.

Knowlege Graph Completion Even though
KGs are useful, their sparsity is a fundamental prob-

8Note that we show their appearance frequencies of queries
and answers in the training data in Figure 5 and detailed
statistics in Table 4 of Appendix C.1 and C.2, respectively.

lem. To solve the sparsity of knowledge graphs, we
need to complete them by inferring their unseen
links between nodes, which are entities. For that
purpose, knowledge graph completion (KGC) and
knowledge graph embedding (KGE) (Bordes et al.,
2011), which represents KG information as a con-
tinuous vector space, are commonly used. As KGE
methods, vector space models like TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), RotatE (Sun et al.,
2019), HAKE (Zhang et al., 2020a), and HousE (Li
et al., 2022), that learn only from task-specific
datasets expand this field as pioneers. As well
as such approaches, pre-trained language model
(PLM)-based approaches like KEPLER (Wang
et al., 2021) and SimKGC (Wang et al., 2022)
also have an important role in KGC due to their
ability to utilize the knowledge obtained in pre-
training. However, as pointed out by Sakai et al.
(2024a), PLM-based approaches have a leakage
issue caused by data contamination in pre-training.
Generation-based KGC methods like KGT5 (Sax-
ena et al., 2022) and GenKGC (Xie et al., 2022) are
unique in directly generating entity names. In hier-
archical text classification (HTC), generation-based
approaches contribute to improving performance
(Kwon et al., 2023) supported by considering label
hierarchies by fusing pre-trained text and label em-
beddings (Xiong et al., 2021; Zhang et al., 2021)
on the decoder. However, Sakai et al. (2024a) point
out that commonly used KGC methods conduct
link-level prediction, and such generation-based
KGC methods make it difficult to use structure in-
formation of KGs directly. Thus, their performance
gain is limited. This situation requires investigating
the benefits of inferring links by generation-based
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KGC under predefined entities and relationships.

Negative Sampling Mikolov et al. (2013) ini-
tially propose the NS loss of the frequent words
to train their word embedding model, word2vec.
Trouillon et al. (2016) introduce the NS loss to
KGE to speed up training. Melamud et al. (2017)
use the NS loss to train the language model. In
contextualized pre-trained embeddings, Clark et al.
(2020a) indicate that a BERT (Devlin et al., 2019)-
like model ELECTRA (Clark et al., 2020b) uses the
NS loss to perform better and faster than language
models. Sun et al. (2019) extend the NS loss to
SANS loss for KGE and propose their noise distri-
bution, which is subsampled by a uniformed prob-
ability pθ(yi|x). Kamigaito and Hayashi (2021)
point out the sparseness problem of KGs through
their theoretical analysis of the NS loss in KGE.
Furthermore, Kamigaito and Hayashi (2022a,b) re-
veal that subsampling (Mikolov et al., 2013) can
alleviate the sparseness problem in the NS for KGE
and conclude three assumptions for subsampling,
i.e., Base, Freq, and Uniq. Feng et al. (2023) in-
corporate their proposed model-based subsampling
that estimates frequencies for entities and their re-
lationships by a trained KGE model into the sub-
sampling of the NS loss to mitigate the sparseness
issue of counting the frequency by increasing com-
putational cost to train the additional KGE model.

Our Work Through our work, we theoretically
clarify the position of the previous works on
SANS loss and subsampling from the viewpoint
of smoothing methods for the NS loss in KGE.
Since our work unitedly interprets SANS loss and
subsampling, our proposed TANS inherits the ad-
vantages of conventional works and can deal with
the sparsity problem in the NS loss for KGE.

8 Conclusion

We reveal the relationships between SANS loss and
subsampling for the KG completion task through
theoretical analysis. We explain that SANS loss
and subsampling under three assumptions, Base,
Freq, and Uniq have similar roles to mitigate the
sparseness problem of queries and answers of KGs
by smoothing the frequencies of queries and an-
swers. Furthermore, based on our interpretation,
we induce a new loss function, Triplet Adaptive
Negative Sampling (TANS), by integrating SANS
loss and subsampling. We also introduce a theoreti-
cal interpretation that TANS with subsampling can

cover all conventional combinations of SANS loss
and subsampling.

We verified our interpretation by empirical
experiments in three common datasets, FB15k-
237, WN18RR, and YAGO3-10, and six popular
KGE models, TransE, DistMult, ComplEx, Ro-
tatE, HAKE, and HousE. The experimental results
show that our TANS loss can outperform subsam-
pling and SANS loss with many models in terms
of MRR as expected by our theoretical interpreta-
tion. Furthermore, the combinatorial use of TANS
and subsampling achieved comparable or better
performance than other combinations and showed
the validity of our theoretical interpretation that
TANS with subsampling can cover all conventional
combinations of SANS loss and subsampling in
KGE.

Limitations

Our experiments are conducted exclusively on pub-
lic datasets, which are relatively well-balanced.
Consequently, we anticipate that our TANS will
perform better on real-world KGs.

Ethics Statement
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Reproducibility Statement
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A Dataset Statistics

Table 3 shows the dataset statistics for dataset
FB15k-237, WN18RR, and YAGO3-10, introduced
in §5.1.

B Full Experimental Results

B.1 Results Tables

Table 5, 6, and 7 list all results on FB15k-237,
WN18RR, and YAGO3-10, explained in §5.2. In
these tables, the bold scores are the best results
for each subsampling type (e.g. None, Base, Freq,
and Uniq.), † indicates the best scores for each
model, SD denotes the standard deviation of the
three trials, and γ denotes the temperature chosen
by development data.

B.2 Training Loss and Validation MRR Curve

Figure 6, 7, and 8 show the training loss curves and
validation MRR curves for each smoothing method.
From these figures, we can understand that the
convergence of TANS loss is as well as SANS and
NS loss on datasets FB15k-237, WN18RR, and
YAGO3-10 for each KGE model. Meanwhile, the
time complexity of TANS is the same with SANS
and NS loss too.

C Sparse Queries

C.1 Appearance Frequencies of Queries and
Answers

Figure 5 shows the appearance frequencies of
queries and answers in the training set of our fil-
tered sparser data FB15k-237-HL, WN18RR-HL,
and YAGO3-10-HL, expained in §6.

C.2 Data Statistics
Table 4 shows detailed statistics of our filtered
sparser data FB15k-237-HL, WN18RR-HL, and
YAGO3-10-HL, expained in §6.

C.3 Detailed Results
Table 8, 9, and 10 shows the detailed results on
our filtered sparser data FB15k-237-HL, WN18RR-
HL, and YAGO3-10-HL, expained in §6. Notations
are as those described in §B.1.
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Figure 5: Appearance frequencies of queries and answers (entities) in the training data of the sparser subsets
FB15k-237-HL, WN18RR-HL, and YAGO3-10-HL. Note that the indices are sorted from high frequency to low.

Dataset Split Tuple Query Entity Relation

FB15k-237

Total 310,116 150,508 14,541 237

#Train 272,115 138,694 14,505 237

#Valid 17,535 19,750 9,809 223

#Test 20,466 22,379 10,348 224

WN18RR

Total 93,003 77,479 40,943 11

#Train 86,835 74,587 40,559 11

#Valid 3,034 5,431 5,173 11

#Test 3,134 5,565 5,323 11

YAGO3-10

Total 1,089,040 372,775 123,182 37

#Train 1,079,040 371,077 123,143 37

#Valid 5,000 8,534 7,948 33

#Test 5,000 8,531 7,937 34

Table 3: Statistics for each public dataset.

Dataset Split Tuple Query Entity Relation

FB15k-237-HL

Total 111,631 63,330 11,828 155

#Train 95,244 55,923 11,600 155

#Valid 7,571 6,918 4,933 90

#Test 8,816 7,830 5,406 89

WN18RR-HL

Total 14,697 14,675 12,973 10

#Train 13,758 13,785 12,275 10

#Valid 465 619 613 9

#Test 474 623 619 8

YAGO3-10-HL

Total 366,079 182,274 95,788 29

#Train 362,728 181,196 95,432 29

#Valid 1,662 2,316 2,113 13

#Test 1,689 2,359 2,135 14

Table 4: Statistics of the filtered sparser datasets.
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FB15k-237

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 23.9 0.2 15.8 0.1 26.1 0.3 40.0 0.2 -
SANS 22.3 0.1 13.8 0.1 24.2 0.0 39.5 0.2 -
TANS 32.8 0.2 23.2 0.1 36.2 0.2 52.2 0.1 -2

Base

NS 27.2 0.1 19.1 0.1 29.5 0.1 43.0 0.2 -
SANS 32.3 0.0 23.0 0.1 35.4 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.1 †36.9 0.1 †52.7 0.0 -1

Freq

NS 25.1 0.2 17.1 0.3 27.4 0.2 41.0 0.2 -
SANS 32.7 0.1 23.6 0.1 36.0 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.0 36.8 0.1 52.1 0.2 -0.5

Uniq

NS 22.8 0.4 14.7 0.5 24.7 0.4 39.0 0.1 -
SANS 32.6 0.0 23.5 0.1 35.8 0.1 51.2 0.1 -
TANS 33.0 0.1 23.5 0.1 36.5 0.1 52.1 0.1 -0.5

DistMult

None

NS 23.3 0.1 15.6 0.1 25.7 0.1 38.4 0.1 -
SANS 22.3 0.1 14.0 0.2 24.1 0.1 39.2 0.0 -
TANS 31.0 0.1 21.7 0.1 34.0 0.1 49.6 0.1 -1

Base

NS 25.4 0.1 17.9 0.1 27.6 0.1 40.4 0.1 -
SANS 30.8 0.1 21.9 0.1 33.6 0.1 48.4 0.1 -

TANS †31.5 0.1 †22.4 0.1 †34.6 0.1 †49.7 0.0 -0.5

Freq

NS 24.0 0.1 16.7 0.2 25.9 0.1 38.4 0.1 -
SANS 29.9 0.0 21.2 0.1 32.8 0.0 47.5 0.1 -
TANS 30.7 0.0 21.6 0.0 34.0 0.0 49.0 0.0 -1

Uniq

NS 21.0 0.1 13.5 0.2 22.8 0.2 36.3 0.2 -
SANS 29.2 0.0 20.5 0.1 31.9 0.0 46.7 0.0 -
TANS 30.7 0.1 21.5 0.1 33.8 0.1 49.3 0.1 -2

TransE

None

NS 30.4 0.0 21.3 0.1 33.4 0.1 48.5 0.0 -

SANS 33.0 0.1 22.9 0.1 37.2 0.1 †53.0 0.1 -

TANS 33.6 0.0 23.9 0.0 37.3 0.0 †53.0 0.1 -0.5

Base

NS 29.4 0.1 20.0 0.1 32.8 0.0 48.1 0.0 -
SANS 33.0 0.1 23.1 0.1 36.8 0.1 52.7 0.1 -
TANS 33.0 0.0 23.1 0.0 36.8 0.1 52.7 0.1 -0.1

Freq

NS 29.3 0.1 20.0 0.1 32.8 0.1 47.8 0.1 -
SANS 33.5 0.0 23.9 0.1 37.2 0.1 52.8 0.1 -
TANS 33.5 0.1 23.9 0.1 37.2 0.0 52.8 0.1 -0.1

Uniq

NS 30.1 0.1 21.0 0.1 33.6 0.0 48.0 0.0 -
SANS 33.5 0.0 23.9 0.0 37.3 0.2 52.7 0.1 -

TANS †34.0 0.1 †24.5 0.1 †37.7 0.1 †53.0 0.1 0.5

RotatE

None

NS 30.3 0.0 21.4 0.1 33.2 0.1 48.4 0.1 -
SANS 32.9 0.1 22.8 0.1 36.8 0.0 53.1 0.2 -

TANS 34.1 0.1 24.6 0.1 37.7 0.1 †53.3 0.1 -0.5

Base

NS 29.5 0.0 20.3 0.0 32.7 0.1 47.9 0.0 -
SANS 33.6 0.1 23.9 0.1 37.3 0.1 53.1 0.0 -
TANS 33.8 0.0 24.2 0.0 37.4 0.0 53.0 0.1 -0.5

Freq

NS 29.4 0.1 20.2 0.1 32.6 0.1 47.6 0.1 -
SANS 34.0 0.1 24.6 0.0 37.7 0.0 53.0 0.0 -
TANS 34.1 0.0 24.6 0.0 37.7 0.0 53.1 0.1 -0.01

Uniq

NS 30.1 0.0 21.2 0.1 33.3 0.1 47.7 0.1 -
SANS 33.9 0.1 24.4 0.1 37.6 0.1 52.9 0.1 -

TANS †34.2 0.0 †24.7 0.1 †37.8 0.0 53.1 0.1 0.5

HAKE

None

NS 30.8 0.1 21.8 0.1 33.8 0.1 48.6 0.1 -
SANS 32.8 0.2 22.7 0.3 36.9 0.1 52.8 0.1 -
TANS 34.4 0.1 24.9 0.1 37.9 0.2 53.6 0.0 -0.5

Base

NS 30.4 0.1 21.6 0.1 33.3 0.1 48.2 0.0 -
SANS 34.1 0.1 24.4 0.1 37.9 0.1 53.6 0.2 -
TANS 34.1 0.0 24.4 0.0 37.9 0.0 53.7 0.0 -0.05

Freq

NS 30.2 0.1 21.5 0.0 33.1 0.0 47.7 0.1 -
SANS 34.7 0.0 25.2 0.1 38.2 0.0 53.8 0.1 -
TANS 34.6 0.0 25.0 0.1 38.2 0.2 53.7 0.1 0.05

Uniq

NS 30.7 0.1 22.2 0.1 33.5 0.1 48.0 0.1 -
SANS 34.7 0.1 25.1 0.1 38.3 0.1 53.9 0.1 -

TANS †34.9 0.0 †25.4 0.0 †38.6 0.1 †54.0 0.1 0.5

HousE

None

NS 29.1 0.1 20.6 0.1 31.6 0.1 46.3 0.1 -
SANS 34.7 0.2 24.8 0.2 38.5 0.3 54.4 0.2 -
TANS 35.6 0.1 26.1 0.1 39.4 0.1 54.5 0.1 -1

Base

NS 28.1 0.1 19.6 0.1 30.9 0.2 45.1 0.2 -
SANS 35.2 0.2 25.6 0.2 39.0 0.2 54.4 0.3 -
TANS 35.6 0.1 26.1 0.1 39.4 0.2 54.5 0.1 -0.5

Freq

NS 27.9 0.1 19.2 0.1 30.7 0.2 45.2 0.1 -
SANS 35.9 0.2 26.4 0.2 39.5 0.2 54.7 0.1 -
TANS 35.8 0.2 26.4 0.2 39.6 0.2 54.7 0.1 -0.01

Uniq

NS 28.8 0.1 20.2 0.2 31.9 0.1 45.7 0.0 -

SANS 36.1 0.1 †26.7 0.2 39.8 0.1 †54.8 0.2 -

TANS †36.2 0.1 †26.7 0.2 †39.9 0.1 †54.8 0.1 0.1

Table 5: Results on FB15k-237.91



WN18RR

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 44.5 0.1 38.1 0.2 48.3 0.2 55.5 0.1 -
SANS 45.0 0.1 41.0 0.1 46.5 0.3 53.3 0.3 -
TANS 47.3 0.0 43.3 0.0 49.1 0.1 55.7 0.1 -2

Base

NS 45.0 0.1 38.9 0.1 48.6 0.2 55.7 0.1 -
SANS 46.9 0.1 42.7 0.2 48.5 0.2 55.5 0.2 -
TANS 47.7 0.2 43.6 0.1 49.3 0.2 55.9 0.3 -2

Freq

NS 45.1 0.1 38.9 0.1 48.8 0.2 56.0 0.2 -
SANS 47.4 0.1 43.2 0.1 49.2 0.2 56.0 0.2 -

TANS 48.0 0.1 43.9 0.1 †49.7 0.1 56.1 0.1 -2

Uniq

NS 45.0 0.1 38.7 0.1 48.8 0.1 56.0 0.3 -
SANS 47.5 0.1 43.3 0.1 49.1 0.2 56.2 0.2 -

TANS †48.3 0.1 †44.4 0.2 49.6 0.1 †56.3 0.2 -1

DistMult

None

NS 38.5 0.2 30.6 0.3 42.9 0.2 52.5 0.1 -
SANS 42.4 0.0 38.2 0.1 43.7 0.0 51.0 0.2 -
TANS 44.2 0.1 40.1 0.1 45.3 0.1 53.2 0.2 -2

Base

NS 39.3 0.2 31.9 0.2 43.3 0.1 53.0 0.2 -
SANS 43.9 0.1 39.4 0.1 45.2 0.1 53.3 0.2 -
TANS 44.6 0.0 40.5 0.2 45.7 0.1 53.9 0.1 -2

Freq

NS 39.0 0.2 31.2 0.2 43.2 0.1 52.9 0.2 -
SANS 44.5 0.1 40.0 0.1 46.0 0.1 54.2 0.2 -
TANS 44.7 0.1 40.5 0.2 45.8 0.0 54.0 0.2 -2

Uniq

NS 38.8 0.2 30.8 0.2 43.1 0.1 53.0 0.2 -

SANS 44.7 0.1 40.1 0.1 †46.2 0.3 54.3 0.0 -

TANS †45.0 0.1 †40.7 0.1 46.1 0.2 †54.5 0.2 -0.5

TransE

None

NS 21.1 0.0 2.1 0.1 36.5 0.2 50.4 0.2 -
SANS 22.5 0.1 1.7 0.1 40.2 0.1 52.5 0.2 -
TANS 22.7 0.0 2.5 0.0 39.5 0.2 53.4 0.1 0.5

Base

NS 20.3 0.1 1.6 0.1 35.1 0.2 49.9 0.2 -
SANS 22.3 0.0 1.3 0.1 40.2 0.1 52.9 0.1 -
TANS 22.4 0.1 1.4 0.1 40.1 0.1 53.0 0.1 0.1

Freq

NS 21.0 0.1 1.8 0.1 36.4 0.2 51.0 0.2 -
SANS 23.0 0.0 1.9 0.1 40.9 0.2 53.6 0.0 -

TANS 23.1 0.0 2.1 0.0 †41.0 0.1 53.8 0.0 0.1

Uniq

NS 21.5 0.1 2.2 0.0 37.2 0.1 51.4 0.2 -
SANS 23.2 0.0 2.3 0.1 40.9 0.2 53.6 0.1 -

TANS †23.3 0.1 †3.0 0.0 40.2 0.2 †54.4 0.1 0.5

RotatE

None

NS 47.0 0.1 42.5 0.2 48.6 0.2 55.8 0.3 -
SANS 47.2 0.1 42.6 0.1 49.1 0.1 56.7 0.0 -
TANS 47.3 0.1 42.6 0.1 49.1 0.1 56.7 0.1 -0.01

Base

NS 47.0 0.0 42.2 0.1 48.7 0.1 56.3 0.1 -
SANS 47.5 0.1 42.7 0.2 49.3 0.1 57.2 0.1 -
TANS 47.5 0.1 42.7 0.2 49.3 0.1 57.1 0.1 0.01

Freq

NS 47.1 0.1 42.3 0.1 48.7 0.1 56.4 0.1 -

SANS 47.7 0.1 †42.9 0.2 49.6 0.0 57.4 0.1 -
TANS 47.7 0.1 42.8 0.2 49.7 0.1 57.4 0.1 0.1

Uniq

NS 47.2 0.2 42.7 0.2 48.7 0.1 56.3 0.1 -

SANS 47.7 0.1 †42.9 0.1 49.6 0.1 57.2 0.1 -

TANS †47.8 0.2 42.8 0.3 †49.8 0.1 †57.6 0.1 0.5

HAKE

None

NS 48.8 0.1 44.5 0.1 50.5 0.2 57.3 0.1 -
SANS 48.9 0.0 44.5 0.2 50.6 0.3 57.7 0.1 -
TANS 48.9 0.0 44.4 0.1 50.5 0.3 57.8 0.1 0.01

Base

NS 49.2 0.0 44.6 0.1 51.1 0.1 57.9 0.2 -
SANS 49.5 0.1 45.0 0.2 51.2 0.2 58.2 0.2 -
TANS 49.5 0.1 45.0 0.2 51.2 0.3 58.4 0.2 0.1

Freq

NS 49.3 0.1 44.8 0.1 51.3 0.2 58.0 0.2 -
SANS 49.7 0.1 45.2 0.2 51.5 0.1 58.4 0.2 -
TANS 49.7 0.0 45.2 0.2 51.6 0.3 58.4 0.2 -0.01

Uniq

NS 49.4 0.2 44.9 0.2 51.3 0.2 57.8 0.2 -

SANS †49.9 0.0 45.3 0.1 †51.8 0.2 †58.6 0.2 -

TANS †49.9 0.1 †45.4 0.1 †51.8 0.2 58.5 0.2 0.05

HousE

None

NS 47.4 0.1 41.7 0.1 50.2 0.1 57.3 0.1 -
SANS 49.7 0.1 44.8 0.2 51.5 0.1 59.5 0.1 -
TANS 50.2 0.1 45.3 0.1 52.0 0.1 60.0 0.1 -0.5

Base

NS 48.1 0.1 42.4 0.1 50.9 0.1 58.5 0.2 -
SANS 51.2 0.1 46.7 0.1 53.0 0.2 60.3 0.1 -
TANS 51.3 0.1 46.7 0.2 53.0 0.0 60.4 0.1 0.05

Freq

NS 48.1 0.2 42.5 0.3 50.9 0.2 58.5 0.2 -

SANS †51.4 0.1 †46.8 0.1 †53.2 0.3 †60.5 0.1 -

TANS 51.3 0.2 46.7 0.2 53.1 0.3 †60.5 0.1 0.05

Uniq

NS 48.1 0.1 42.5 0.1 50.8 0.2 58.1 0.1 -

SANS 51.2 0.2 †46.8 0.2 52.7 0.1 60.1 0.1 -
TANS 51.1 0.3 46.7 0.5 52.7 0.1 60.0 0.1 -0.1

Table 6: Results on WN18RR.
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YAGO3-10

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

RotatE

None

NS 43.5 0.1 32.8 0.2 49.1 0.2 63.7 0.3 -
SANS 49.6 0.2 39.9 0.1 55.3 0.3 67.3 0.2 -
TANS 49.6 0.2 40.0 0.2 55.4 0.5 67.2 0.3 -0.05

Base

NS 44.8 0.1 34.5 0.3 50.0 0.2 64.7 0.2 -
SANS 49.6 0.3 40.1 0.3 55.2 0.4 67.4 0.3 -
TANS 49.5 0.3 40.1 0.3 55.0 0.5 67.3 0.3 -0.05

Freq

NS 44.8 0.2 34.5 0.3 50.0 0.1 64.7 0.2 -
SANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.3 -
TANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.2 0.01

Uniq

NS 44.4 0.2 34.0 0.3 49.8 0.2 64.3 0.2 -
SANS 50.0 0.3 40.6 0.2 55.6 0.3 67.5 0.2 -

TANS †50.1 0.2 †40.7 0.1 †55.7 0.3 †67.6 0.3 0.05

HAKE

None

NS 47.4 0.3 36.6 0.5 53.9 0.1 67.0 0.1 -
SANS 53.5 0.2 44.6 0.3 59.1 0.4 69.0 0.2 -
TANS 53.7 0.1 45.3 0.3 59.0 0.1 68.8 0.1 0.05

Base

NS 48.8 0.3 38.4 0.4 55.0 0.2 68.1 0.3 -
SANS 54.6 0.2 46.2 0.3 59.9 0.2 69.6 0.2 -
TANS 54.5 0.2 45.9 0.3 59.9 0.2 69.9 0.1 -0.1

Freq

NS 49.3 0.2 39.1 0.3 55.4 0.1 68.1 0.2 -
SANS 54.6 0.4 46.0 0.7 60.2 0.1 69.6 0.3 -
TANS 54.8 0.2 46.4 0.3 60.1 0.1 69.6 0.3 0.05

Uniq

NS 45.2 0.1 34.3 0.1 51.1 0.1 65.8 0.3 -

SANS †55.2 0.3 †46.8 0.5 †60.5 0.2 †70.0 0.3 -

TANS 55.1 0.2 †46.8 0.3 60.3 0.1 69.9 0.2 -0.1

HousE

None

NS 29.2 0.0 18.3 0.1 33.6 0.2 50.1 0.2 -
SANS 54.8 1.3 46.8 1.3 59.7 1.2 68.9 1.2 -
TANS 54.8 1.2 46.9 1.2 59.6 1.2 68.8 1.1 0.01

Base

NS 29.6 0.1 19.8 0.1 33.6 0.2 48.9 0.1 -
SANS 56.7 0.1 48.6 0.2 61.7 0.2 71.3 0.1 -

TANS 57.0 0.2 49.0 0.4 61.9 0.3 †71.5 0.2 -0.1

Freq

NS 27.3 0.8 17.5 0.9 31.0 0.8 46.6 0.8 -
SANS 57.0 0.1 49.0 0.2 62.0 0.1 71.4 0.1 -

TANS 57.2 0.1 49.3 0.1 †62.3 0.1 71.4 0.1 -0.1

Uniq

NS 28.1 0.2 18.2 0.4 31.8 0.1 47.6 0.0 -
SANS 57.2 0.1 49.3 0.2 62.0 0.0 71.4 0.2 -

TANS †57.3 0.2 †49.5 0.3 62.2 0.1 †71.5 0.1 -0.05

Table 7: Results on YAGO3-10.
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Figure 6: Training loss and validation MRR Curve on FB15k-237.
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Figure 7: Training loss and validation MRR Curve on WN18RR.
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Figure 8: Training loss and validation MRR Curve on YAGO3-10.
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FB15k-237-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 38.1 0.3 28.4 0.5 -

SANS 35.2 0.2 24.5 0.3 -

TANS 41.1 0.1 33.0 0.1 -1

Base

NS 40.5 0.1 31.8 0.2 -

SANS 38.4 0.2 28.9 0.2 -

TANS 41.8 0.1 33.6 0.2 -1

Freq

NS 41.1 0.1 32.8 0.1 -

SANS 40.2 0.0 31.5 0.1 -

TANS †42.0 0.1 †33.7 0.1 -1

Uniq

NS 41.5 0.1 33.2 0.1 -

SANS 41.1 0.0 32.8 0.0 -

TANS 41.9 0.2 33.5 0.2 -0.1

RotatE

None

NS 40.0 0.1 30.8 0.1 -

SANS 36.3 0.1 25.3 0.2 -

TANS 41.5 0.0 33.1 0.1 -1

Base

NS 41.8 0.1 33.6 0.1 -

SANS 40.7 0.1 31.7 0.2 -

TANS 42.0 0.1 33.8 0.1 -0.5

Freq

NS 41.3 0.1 33.2 0.1 -

SANS 42.0 0.2 33.6 0.3 -

TANS †42.3 0.0 †34.1 0.1 -0.5

Uniq

NS 41.7 0.1 33.7 0.2 -

SANS 42.2 0.1 33.8 0.2 -

TANS 42.1 0.1 33.8 0.2 -0.05

HousE

None

NS 39.1 0.2 29.8 0.2 -

SANS 37.0 0.2 26.2 0.4 -

TANS 42.3 0.1 34.1 0.2 -2

Base

NS 40.3 0.1 31.3 0.2 -

SANS 40.5 0.4 31.3 0.4 -

TANS 42.4 0.2 34.2 0.3 -2

Freq

NS 39.8 0.3 31.0 0.3 -

SANS 42.1 0.2 33.8 0.2 -

TANS †42.8 0.3 †34.8 0.4 -1

Uniq

NS 40.5 0.2 31.9 0.2 -

SANS 42.4 0.2 34.4 0.2 -

TANS 42.5 0.1 34.5 0.0 -1

Table 8: Results on FB15k-237-HL.

WN18RR-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 10.8 0.1 8.7 0.2 -

SANS 10.3 0.1 7.8 0.1 -

TANS 13.9 0.2 †12.1 0.2 -2

Base

NS 12.1 0.2 9.5 0.3 -

SANS 11.1 0.1 9.1 0.1 -

TANS 13.7 0.1 11.7 0.3 -2

Freq

NS 12.4 0.1 10.4 0.1 -

SANS 11.9 0.2 9.5 0.2 -

TANS †14.2 0.5 11.9 0.4 -2

Uniq

NS 13.3 0.3 11.3 0.3 -

SANS 11.9 0.2 9.7 0.2 -

TANS 14.1 0.2 11.7 0.2 -2

RotatE

None

NS 14.2 0.2 11.8 0.3 -

SANS 13.9 0.3 11.7 0.3 -

TANS 14.4 0.1 11.8 0.2 -2

Base

NS 13.9 0.2 11.5 0.2 -

SANS 14.1 0.3 11.7 0.3 -

TANS 14.5 0.1 11.7 0.1 -2

Freq

NS 14.4 0.1 12.0 0.1 -

SANS 14.3 0.4 12.0 0.3 -

TANS †15.1 0.1 12.2 0.1 -2

Uniq

NS 14.4 0.2 12.2 0.1 -

SANS 14.2 0.2 11.9 0.2 -

TANS †15.1 0.2 †12.3 0.3 -2

HousE

None

NS 10.7 1.8 8.4 1.4 -

SANS 11.7 1.1 9.5 0.9 -

TANS 13.4 0.4 11.0 0.4 -2

Base

NS 9.9 0.4 8.4 0.4 -

SANS 11.5 0.2 9.5 0.2 -

TANS 13.4 0.2 11.3 0.3 -2

Freq

NS †13.9 0.1 11.8 0.2 -

SANS 13.8 0.2 11.9 0.3 -

TANS †13.9 0.3 †12.0 0.2 0.1

Uniq

NS 13.7 0.1 11.6 0.1 -

SANS 13.8 0.2 11.6 0.2 -

TANS 13.8 0.2 11.7 0.3 -0.05

Table 9: Results on WN18RR-HL.
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YAGO3-10-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 45.9 0.0 36.9 0.1 -

SANS 47.8 0.4 40.0 0.6 -

TANS 49.2 0.4 39.8 0.7 -0.5

Base

NS 50.2 0.3 43.0 0.3 -

SANS 47.7 0.4 40.5 0.7 -

TANS 50.1 0.3 41.4 0.3 -0.5

Freq

NS †50.8 0.3 †43.3 0.2 -

SANS 48.8 0.1 41.3 0.2 -

TANS 49.7 0.3 41.0 0.2 -0.5

Uniq

NS 49.4 0.2 40.8 0.2 -

SANS 46.9 0.4 39.8 0.5 -

TANS 49.4 0.6 40.6 0.8 -0.5

RotatE

None

NS 38.0 0.1 28.7 0.3 -

SANS 41.3 0.1 32.3 0.2 -

TANS 43.5 0.1 34.8 0.2 -0.5

Base

NS 40.6 0.2 31.8 0.5 -

SANS 43.8 0.2 35.1 0.1 -

TANS 43.8 0.2 35.2 0.1 -0.05

Freq

NS 40.3 0.2 31.4 0.4 -

SANS 43.5 0.2 34.6 0.1 -

TANS 43.7 0.0 35.1 0.1 -0.1

Uniq

NS 40.2 0.0 31.3 0.2 -

SANS 43.9 0.1 35.1 0.2 -

TANS †44.1 0.1 †35.4 0.3 -0.1

HousE

None

NS 37.8 0.3 26.9 0.4 -

SANS 50.3 0.1 40.7 0.3 -

TANS †52.5 0.5 †45.4 0.3 -0.5

Base

NS 42.8 1.2 34.3 1.9 -

SANS 51.9 0.3 44.4 0.2 -

TANS 51.9 0.6 44.3 0.8 0.05

Freq

NS 39.7 0.8 29.9 1.5 -

SANS 48.6 1.7 40.0 1.4 -

TANS 52.0 0.1 44.5 0.3 -1

Uniq

NS 41.0 0.1 31.6 0.1 -

SANS 49.4 0.3 41.1 1.1 -

TANS 52.2 0.1 44.7 0.1 -0.05

Table 10: Results on YAGO3-10-HL.
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