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Abstract

We introduce a simple yet effective Prior
Knowledge-Guided ADVersarial Training
(PKG-ADV) algorithm to improve adversar-
ial training for natural language understanding.
Our method simply utilizes task-specific label
distribution to guide the training process. By
prioritizing the use of prior knowledge of la-
bels, we aim to generate more informative ad-
versarial perturbations. We apply our model to
several challenging temporal reasoning tasks.
Our method enables a more reliable and con-
trollable data training process than relying on
randomized adversarial perturbation. Albeit
simple, our method achieved significant im-
provements in these tasks. To facilitate further
research, we will release the code and models.

1 Introduction

Class imbalance, a classification setting where one
or multiple classes (minority classes) are consid-
erably less frequent than others (majority classes),
is a common yet challenging problem in natural
language processing (NLP) (Henning et al., 2023).
The uneven distribution of target categories often
leads to lower performance for minority classes.
Despite that, NLP research often overlooks the im-
portance of incorporating methods for addressing
it, and finding effective solutions remains an open
research challenge (Henning et al., 2023). While
deep learning models have been successful in vari-
ous NLP tasks, they are sensitive to changes in the
input data distribution.

We explore the use of adversarial training tech-
niques to enhance model performance on such sce-
narios. More specifically, our proposed approach
incorporates the knowledge of task-specific label
distribution into the adversarial training process.
Typically, the perturbation direction is chosen to
mislead the model to flip the current model predic-
tion away from the correct label. However, this
strategy might not be optimal because it does not

make use of the knowledge of task-specific label
distribution during the training process. We hypoth-
esize that such information might indicate which
category a model is more likely to misclassify as
another category. We focus on temporal reasoning
tasks. These tasks are essential for NLP, for timing
events, for estimating their duration, frequencies,
ordering, etc. Due to the nature of the task, classes
are highly imbalanced, as shown in Figure 1 and
Table 2. Even the performance of recent large lan-
guage models (LLMs), such as ChatGPT, is still
underperformed by a large margin by simpler and
smaller models such as BERT and RoBERTa (Yuan
et al., 2023; Chan et al., 2024), indicating the in-
herent challenge of temporal reasoning tasks. For
instance, on the TB-Dense dataset (Cassidy et al.,
2014), due to the high label imbalance, the model
might misclassify the samples with the true label
“VAGUE” as “BEFORE” or "AFTER", as these
labels occur more often in the dataset, as shown in
Figure 1. Our model, PKG-ADV , can intentionally
attack those vulnerable categories and learn how to
better distinguish each label class, improving the
model performance.

Our experimental results show that, despite its
simplicity, our proposed model outperforms stan-
dard fine-tuning and a strong adversarial training
method on several challenging temporal reason-
ing tasks. Moreover, our model can outperform
ChatGPT-based models with a large gap. Our find-
ings contribute to the understanding and improve-
ment of adversarial training in NLP and can help
enhance model performance in scenarios with im-
balanced classes, such as temporal reasoning tasks.

2 Adversarial Training for NLP

Standard training objectives seek to learn a func-
tion (a classifier) f(x; θ) : x → C, parametrized
by θ, where C is the class label set. Given
a training dataset D of input-output pairs (x, y)

51



(a) Label Distribution (Train Set)

(b) RoBERTa with Standard Fine-Tuning

(c) RoBERTa with PKG-ADV Fine-Tuning

Figure 1: a) Label distribution from the TB-Dense
(Cassidy et al., 2014) training dataset. b) Confusion
matrix obtained after training on the RoBERTa_BASE
model. c) Confusion matrix obtained after training on
the RoBERTa_BASE model with the PKG-ADV algo-
rithm. X-axis and Y-axis represent the predicted and
gold labels, respectively.

and the loss function l(., .) (e.g., cross entropy),
f(x; θ) is trained to minimize the empirical risk:

minθ E(x,y)∼D[l(f(x; θ), y)]. While this is effec-
tive in training a classifier, it usually suffers from
overfitting and poor generalization to unseen cases.
Recently, adversarial training has been proven ef-
fective in several tasks in nlp (Zhu et al., 2019;
Jiang et al., 2019; Pereira et al., 2020). The stan-
dard approach is to add the adversarial perturbation
to the embeddings. The input is augmented with a
small perturbation that maximizes the adversarial
loss:

min
θ

E(x,y)∼D[max
δ

l(f(x+ δ; θ), y)],

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
More recent approaches have explored adding the
perturbation to other layers of the model (Pereira
et al., 2021). Although these adversarial train-
ing algorithms substantially enhance model per-
formance and generalization, such methods adopt
non-targeted attacks, where the model prediction
is not driven towards a specific incorrect label, i.e.,
such attacks lack a specific target. This might not
be optimal, since many natural language process-
ing (NLP) tasks are naturally imbalanced, as some
labels occur much more frequently than others. In
Figure 1, we illustrate this typical label imbalance
scenario with the MATRES dataset (Ning et al.,
2018a). Thus, there are consistently classes where
the trained classifier may exhibit a higher error
rate. This information can highlight the models’
weaknesses. Our goal is to incorporate this prior
knowledge to enhance model performance.

3 Prior Knowledge Guided Adversarial
Training

In our work, we propose to enhance the ALICE
(Pereira et al., 2020) algorithm. ALICE is an ad-
versarial training algorithm that combines the two
approaches to estimate the perturbation δ: one that
uses the label y (Zhu et al., 2019) and another that
uses the model prediction f(x; θ), i.e., a "virtual"
label (Miyato et al., 2018; Jiang et al., 2019). The
first goal is to improve the robustness of our target
label by preventing an increase in error for unper-
turbed inputs. The second goal is to enforce model
smoothness, ensuring the model’s output does not
change significantly when a small perturbation is
injected to the input. The formula of ALICE is
shown below:
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Algorithm 1 PKG-ADV : We explore incorporat-
ing the knowledge of task-specific label distribution
into the adversarial training process. The two lines
in blue color are the only changes from ALICE.
Input: T : the total number of iterations, X =
{(x1, y1), . . . , (xn, yn)}: the dataset, f(x; θ): the ma-
chine learning model parametrized by θ, σ2: the variance
of the random initialization of perturbation δ1 and δ2, δ1r
and δ2r : the perturbations added to the embedding vec-
tor, ϵ: perturbation bound, K: the number of iterations
for perturbation estimation, η: the step size for updating
perturbation, τ : the global learning rate, α: the smooth-
ing proportion of adversarial training in the augmented
learning objective, Π: the projection operation and C: the
classes.

1: for t = 1, .., T do
2: for (x, y) ∈ X do
3: δ1 ∼ N (0, σ2I)
4: δ2 ∼ N (0, σ2I)
5: yt = sample(C\y)
6: for m = 1, ..,K do
7: gadv ← ∇δ1 l(f(x+ δ1; θ), yt)
8: δ1 ← Π∥δ1∥∞≤ϵ(δ1 − ηgadv)
9: gadv ← ∇δ2 l(f(x+ δ2; θ), f(x; θ))

10: δ2 ← Π∥δ2∥∞≤ϵ(δ2 + ηgadv)
11: end for
12: gθ ← ∇θl(f(x+ δ1; θ), y)

+α∇θl(f(x+ δ2; θ), f(x; θ))
13: θ ← θ − τgθ
14: end for
15: end for
Output: θ

min
θ

E(x,y)∼D[max
δ1

l(f(x+ δ1; θ), y)+

αmax
δ2

l(f(x+ δ2; θ), f(x; θ))],

(1)

where δ1 and δ2 are two different perturbations,
bounded by a general lp norm ball, estimated by a
fixed K steps of the gradient-based optimization
approach and p = ∞. Effectively, the second term
encourages smoothness in the input neighborhood,
and α is a hyperparameter that controls the trade-
off between standard errors and adversarial errors.
ALICE has been originally applied for the com-
monsense reasoning task, however, it is a general
algorithm that can be applied to other tasks as well.

We enhance ALICE by modifying the first term
of Equation 1, to improve the robustness of our tar-
get label. PKG-ADV first samples a label from the
class label set (excluding the correct label). This la-
bel class is sampled with a probability proportional
to its frequency in the training dataset. Intuitively,
we would like to focus training on prior knowledge
at hand. This knowledge consists of the dataset
label information, generated offline.

More specifically, PKG-ADV explicitly picks
a target yt ̸= y and tries to steer the model to-
wards yt. We accomplish this by sampling yt from
C\y = C − {y} in proportion to the dataset label
distribution. PKG-ADV can flexibly use different
prior knowledge, i.e. the dataset label information,
as shown in line 5. Then the adversarial sample
is estimated by the opposite direction as in line 8.
The two lines in blue color are the only changes
from ALICE. At last, following Jiang et al. (2019)
and Miyato et al. (2018), the adversarial regular-
izer is added to the standard training objective (e.g.,
cross-entropy between the correct label and predic-
tion). The algorithm of PKG-ADV is depicted in
Algorithm 1.

4 Experiments

We compare PKG-ADV with ALICE (Pereira et al.,
2020), a strong adversarial training baseline, and
several state-of-the-art temporal reasoning models.
We use the standard uncased RoBERTaBASE model
(Liu et al., 2019b) as the text encoder, unless noted
otherwise.

4.1 Datasets and Evaluation Metrics
We evaluated our model on the following tasks:
temporal ordering prediction task, event duration
prediction, and temporal commonsense reasoning.
We used the following datasets, respectively: MA-
TRES (Ning et al., 2018b), TimeML (Pan et al.,
2006), MC-TACO (Ben Zhou and Roth, 2019), TB-
Dense (Cassidy et al., 2014), and MAVEN-ERE
(Wang et al., 2022). Details of each dataset are in
Appendix A. We evaluate the performance of MA-
TRES and MAVEN-ERE in terms of accuracy and
F1-score, and TimeML in terms of accuracy. For
the MC-TACO and TB-Dense datasets, we report
F1 scores.

4.2 Implementation Details
Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020). We
use RoBERTaBASE (Liu et al., 2019b) as the text
encoder. RoBERTa remains a competitive pre-
trained model for its size among NLP practition-
ers. We used ADAM (Kingma and Ba, 2014) as
our optimizer with a learning rate in the range
∈ {9 × 10−6, 1 × 10−5} and a batch size in the
range ∈ {16, 32, 64}. The maximum number of
epochs was set to 10. A linear learning rate decay
schedule with warm-up over 0.1 was used unless
stated otherwise. To avoid gradient exploding, we
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Model TimeML MC-TACO MATRES TB-Dense MAVEN-ERE
Acc F1 Acc F1 F1 Acc F1

Standard (RoBERTaBASE) 81.46 80.84 72.88 47.83 62.02 76.43 31.68
ALICE (RoBERTaBASE) 83.15 82.59 71.57 47.02 63.49 77.06 31.27
Multi-Task (ALBERT-xxlarge) (Kimura
et al., 2022)

81.10 80.30 77.20 - - - -

ChatGPT (Bian et al., 2023) - 46.79 - - - - -
ChatGPT_Prompt (Chan et al., 2024) - - - 35.00 23.30 - -
ChatGPT_PE (Chan et al., 2024) - - - 27.00 47.90 - -
ChatGPT_ICL (Chan et al., 2024) - - 25.00 44.90 - -
PKG-ADV (RoBERTaBASE) 84.75 83.01 73.00 49.93 65.59 78.09 32.06

Table 1: Test results. The best results are in bold. Standard denotes the standard fine-tuning procedure where we
fine-tune RoBERTa on each task specific temporal reasoning dataset. PKG-ADV denotes our proposed models.
Note that Standard, ALICE, and PKG-ADV models use RoBERTaBASE as the text encoder unless stated otherwise,
and for a fair comparison, all these results are produced by ourselves.

clipped the gradient norm within 1. All the texts
were tokenized using WordPiece and were chopped
to spans no longer than 512 tokens. We also set the
dropout rate of all the task-specific layers as 0.3.
During adversarial training, we follow Jiang et al.
(2019) and set the perturbation size to 1 × 10−5,
the step size to 1× 10−3, and to 1× 10−5 the vari-
ance for initializing perturbation. We search the
regularization weight α in {0.01, 0.1, 1}. We set
the number of projected gradient steps to 1.

4.3 Main Results

We present our results in Table 1. We compare our
model, PKG-ADV , with ALICE and other tempo-
ral reasoning models. Overall, the adversarial meth-
ods, ALICE and PKG-ADV , were able to outper-
form the standard fine-tuning approach (Standard)
and the other baselines, without using any addi-
tional knowledge source, and without using any ad-
ditional datasets other than the target task datasets.
Overall, PKG-ADV was able to outperform the
other baselines. Kimura et al. (2022) trains an AL-
BERT XXLarge v2 model using multi-task learn-
ing with several additional temporal datasets. Note
that ALBERT XXLarge v2 is around 2x larger
than the RoBERTa_BASE model. Except on the
MATRES dataset, our PKG-ADV model trained
on RoBERTa_BASE can outperform their model,
without using any additional dataset. Bian et al.
(2023) and Chan et al. (2024) use zero-shot in-
ference and designs prompt templates for differ-
ent datasets in the ChatGPT and ChatGPT_Prompt
baselines. In the ChatGPT_PE baseline, Chan et al.
(2024) manually designed a more sophisticated
prompt template based on the expert understanding.
The ChatGPT_ICL baseline refers to the in-context
learning approach (Brown et al., 2020), where a

number of input-output exemplars for the prompt
were manually selected. We observe that still there
is a considerable gap between these models and
that of supervised methods. Chan et al. (2024) hy-
pothesizes that the poor performance of ChatGPT
might be attributed to inadequate human feedback
during the model’s training process on temporal
features.

5 Conclusion

We have presented a Prior Knowledge Guided Ad-
versarial Training (PKG-ADV) algorithm to im-
prove adversarial training for natural language un-
derstanding. Albeit simple and drawn from a sim-
ple observation (label imbalance, common in most
nlp tasks), incorporating task-specific label distribu-
tion into the training process for generating better
adversarial perturbations has not yet been explored
in the literature. PKG-ADV overall shows supe-
rior performance compared to standard fine-tuning,
strong adversarial training baselines, and ChatGPT-
based baselines. PKG-ADV can be applied to other
language models as well by incorporating label dis-
tribution information. Other types of knowledge,
such as annotator agreement data, might help fur-
ther enhance the performance, and we leave this
for future work.

6 Limitations and Ethical Statement

Although our method is task, model, and language-
agnostic, we have conducted experiments only on
English classification benchmarks, and using only
the RoBERTa model. We focus on sentence-level
tasks at this time. Although we focused on tempo-
ral reasoning tasks, our model can be generalized to
other tasks as well. We plan to expand the scope of
the experiments in the future. In our work, we have
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only used publicly available datasets in our experi-
ments, ensuring that there are no privacy concerns
or violations.
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A Evaluation Datasets

TimeML (Pan et al., 2006): This task involves
predicting whether a given event has a duration
longer or shorter than a day.
TB-Dense (Cassidy et al., 2014): TB-Dense is a
public benchmark for temporal relation extraction
(TRE). It was annotated from TimeBank (Puste-
jovsky et al., 2003) and TempEval (UzZaman et al.,
2013). Given a passage and two event points, the
task is to classify the relations between events into
one of 6 types: BEFORE, AFTER, SIMULTANE-
OUS, VAGUE, IS_INCLUDED, and INCLUDES.
An example of a sentence with two events, e1 and
e2 (in bold) that hold the SIMULTANEOUS rela-
tion is shown below:

Nobody (e1:hurried) her up. No one
(e2:held) her back.

MATRES (Ning et al., 2018b): This dataset
was annotated from TimeBank (Pustejovsky et al.,
2003), AQUAINT, and Platinum documents. The
task involves predicting the temporal relation be-
tween a pair of input events in a span of text. It
originally contains 13,577 pairs of events anno-
tated with a temporal relation (BEFORE, AFTER,
EQUAL, VAGUE). The relations named EQUAL
and VAGUE are equivalent to SIMULTANEOUS
and NONE in TB-Dense. An example of a sen-
tence with two events, e1 and e2 (in bold) that hold
the BEFORE relation is shown below:

At one point , when it (e1:became) clear
controllers could not contact the plane,
someone (e2:said) a prayer.

MC-TACO (Ben Zhou and Roth, 2019): This task
entirely focuses on temporal commonsense rea-
soning. It considers five temporal properties, (1)
duration (how long an event takes), (2) temporal
ordering (typical order of events), (3) typical time
(when an event occurs), (4) frequency (how often
an event occurs), and (5) stationarity (whether a
state is maintained for a very long time or indefi-
nitely). It contains 13k tuples, each consisting of a
sentence, a question, and a candidate answer, that
should be judged as plausible or not. An example
from the dataset is below. The correct answer is in
bold.

Paragraph: Carl Laemmle, head of Uni-
versal Studios, gave Einstein a tour of his
studio and introduced him to Chaplin.

Question: How long did the tour last?

a) 9 hours

b) 45 minutes

c) 15 days

d) 5 seconds

MAVEN-ERE (Wang et al., 2022): This is a uni-
fied large-scale human-annotated event relation
extraction dataset. It was annotated at the docu-
ment level from Wikipedia and FrameNet (Baker
et al., 1998), for four tasks: event coreference,
temporal, causal, and subevent relations. In our
work, we focus on the sentence level temporal
event pair relations. Given a passage and two event
points, the task is to classify the relations between
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Dataset #Train #Test #Label Label Distribution Metrics
Train Test

TimeML 1,248 1,003 2 yes: 789, no: 459 yes: 610, no: 393 Accuracy
MC-TACO 3,783 9,442 2 yes: 1,229, no: 2,554 yes: 3,198, no: 6,244 F1-Score
TB-Dense 4,177 1,426 6 VAGUE: 2015, BE-

FORE: 885, AFTER:
730, IS_INCLUDED:
275, INCLUDES: 209,
SIMULTANEOUS: 63

VAGUE: 638, BE-
FORE: 380, AFTER:
278, IS_INCLUDED:
52, INCLUDES: 57,
SIMULTANEOUS: 22

F1-Score

MATRES 12,740 837 4 BEFORE: 6,425, AF-
TER: 1,416, VAGUE:
4,481, OVERLAP: 418

BEFORE: 427, AFTER:
271, VAGUE: 30,
OVERLAP: 109

Accuracy & F1-score

MAVEN-ERE 44,586 10,488 6 BEFORE: 35273,
CONTAINS: 5204,
SIMULTANEOUS:
2392, OVERLAP:
1605, BEGINS-ON: 58,
ENDS-ON: 54

BEFORE: 8092,
CONTAINS: 1426,
SIMULTANEOUS:
609, OVERLAP: 346,
BEGINS-ON: 6, ENDS-
ON: 9

Accuracy & F1-score

Table 2: Summary of the English evaluation datasets.

events into one of 6 types: BEFORE, SIMULTA-
NEOUS, CONTAINS, OVERLAP, ENDS-ON, and
BEGINS-ON. Despite its larger size, the authors
highlight that the label distribution in the dataset
is severely unbalanced, but decided to keep the un-
balanced distribution so that the dataset reflects the
real-world data distribution (Wang et al., 2022). An
example of a sentence with two events, e1 and e2
(in bold) that hold the BEFORE relation is shown
below:

It (e1: turned) again to 270 then began
an abnormal (e2: descent).
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