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Abstract

This paper introduces a novel approach to spell checking and correction for low-resource and under-represented
languages, with a specific focus on an African language, Wolof. By leveraging the capabilities of transformer models
and neural networks, we propose an efficient and practical system capable of correcting typos and improving text
quality. Our proposed technique involves training a transformer model on a parallel corpus consisting of misspelled
sentences and their correctly spelled counterparts, generated using a semi-automatic method. As we fine tune the
model to transform misspelled text into accurate sentences, we demonstrate the immense potential of this approach
to overcome the challenges faced by resource-scarce and under-represented languages in the realm of spell checking
and correction. Our experimental results and evaluations exhibit promising outcomes, offering valuable insights that
contribute to the ongoing endeavors aimed at enriching linguistic diversity and inclusion and thus improving digital
communication accessibility for languages grappling with scarcity of resources and under-representation in the digital
landscape.

Keywords: Spell check and correction, low-ressource language, Wolof, endangererd, Indigenous, parallel
corpus, Transformer.

1. Introduction for low-resource languages like Wolof. Providing
speakers of the language with accurate and ef-
fective spell checking and correction systems can
enhance linguistic accessibility and promote digital
communication across diverse linguistic communi-
ties.

In recent years, Natural Language Processing
(NLP) has made impressive progress in under-
standing, analyzing and generating human lan-
guage. Yet, most of this progress is focused
on high-resource languages like English, French, Developing spell checkers and correction sys-
and Spanish, leaving low-resource and under- tems for low-resource languages is difficult due
represented languages with limited tools and re-  to the limited availability of annotated data, mor-
sources for effective NLP applications. This pa-  phological complexity, and the absence of well-
per aims to bridge this gap by introducing a novel  established computational resources. Traditional
approach for spell checking and correction in  methods like rule-based or dictionary-based sys-
resource-scarce languages. Specifically, we fo- tems may not adequately address these challenges,
cus on Wolof, an African spoken language that has  requiring alternative approaches. Deep learning
recently sparked interest in NLP research. We also  techniques, particularly transformer models, have
present a new dataset that can be used for word  demonstrated immense potential in various NLP
correction in Wolof. This study contributes to the  tasks lately. These techniques can learn complex
overarching objective of developing inclusive and  language patterns and generate context-sensitive
effective natural language processing (NLP) tools  representations, making them ideal for tackling
and resources, in alignment with the ethos of "no  challenges associated with low-resource language
language left behind”. spell checking and correction.

Wolof, a Senegambian language primarily spo- This paper presents a transformer-based model
ken in Senegal, Gambia and Mauritania (Diouf  for word correction and spelling in Wolof. Our
et al,, 2017), serves as an example of a low- modelis trained on a parallel corpus consisting of
resource language that could greatly benefit from  misspelled sentences and their error-free counter-
NLP advancements. Despite having over 10 million  parts, optimizing the model to translate error-prone
native speakers (Eberhard et al., 2019), thereisa  text into accurate sentences. Furthermore, we con-
significant lack of digital resources and computa- tribute to the advancement of NLP for the Wolof
tional tools for most of (if not all) African languages, language by creating a new corpus of misspelled
among them the Wolof language. As the world  sentences and their error-free counterparts. This
increasingly connects through digital platforms, it corpus serves as a benchmark and state-of-the-art
is vital to ensure robust NLP tools are available  in word correction and spelling for Wolof, provid-
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ing a valuable resource for future research. This
resource will facilitate the development of more ad-
vanced NLP tools and applications for Wolof.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work on the Wolof
language and offers an overview of low-resource
language spell checking and correction, as well as
neural networks and transformer models in NLP.
Section 3 details the methodology employed in de-
veloping our transformer-based spell checking and
correction system. Section 4 presents our evalua-
tion results, including a discussion of the system’s
performance. In Section 5, we examine the limi-
tations of our system and discuss potential areas
for improvement. Finally, Section 6 concludes the
paper, underlines the implications of our findings
and suggests future research directions.

2. Background

2.1. Wolof Language

Wolof is a language belonging to the Senegambian
group within the Northern branch of the Atlantic
language family, which is part of the broader Niger-
Congo language family. It shares strong linguis-
tic connections with Pulaar and Serer languages
(Sapir, 1971; Doneux, 1978; Wilson, 1989). The
Atlantic language family includes approximately 40
languages, with Pulaar (a dialect of Fula) being the
exception, and most are spoken in regions near
of the Atlantic coast of Africa. Although Wolof is
fundamentally an oral language, its orthography
was standardized in 1972 (Robert, 2011).

Descriptive linguistic studies of Wolof can be
traced back to the colonial period (Boilat, 1858),
while other researches on Wolof morphology and
syntax have been conducted by Diagne (1971),
Mangold (1977), Church (1981), Dialo (1981), and
Ka (1981). In-depth analytical studies of Wolof
syntax can be primarily found in the works of Njie
(1982) and Dunigan (1994).

Wolof is mainly an aspectual language, focus-
ing on the aspect of an action rather than its tense.
This characteristic allows the imperfective marker to
combine with various tense markers. The language
features a rich verb system, which includes a wide
array of basic verbal forms and paradigms. Notably,
Mangold (1977) and Church (1981) provide system-
atic presentations of Wolof verbal paradigms.

In terms of literature and resources, Wolof ap-
pears in various forms, such as novels, short story
collections, and poetry. However, even in Senegal,
it is challenging to find materials written in Wolof.
Recent efforts have been made to improve the avail-
ability of resources for Wolof speakers. In a study
by Gauthier et al. (2016), researchers gathered
an Automatic Speech Recognition (ASR) dataset
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for four African languages, including Wolof. This
dataset was then used to create the first ASR sys-
tem for Wolof. Another initiative was proposed
by Nguer et al. (2015), who outlined the creation
process for the first collaborative online Wolof dic-
tionary. This project was part of the larger Dic-
tionnaires Langues Africaines - Frangais (DiLAF)
project’, which has produced dictionaries for seven
African languages, including Wolof. However, at
the time of writing, all dictionaries are accessible
online except for the Wolof one. More recently,
Cissé and Sadat (2023) have presented a range of
resources for the Wolof language, including a spell
checking tool mainly grounded in the language’s
writing rules.

2.2. Low-Resource Language Spell
Checking and Correction

Spell checking and correction for low-resource lan-
guages have been of great interest to many re-
searchers. Early approaches often depended on
rule-based systems (Armstrong et al., 1995) or sta-
tistical methods, such as noisy channel models
(Kernighan et al., 1990), n-gram models (Stolcke,
2000), and hidden Markov models (Viterbi, 1967).
However, these methods often require substantial
linguistic knowledge and annotated data, which
may be scarce or non-existent for low-resource lan-
guages.

In recent years, researchers have investigated
data-driven approaches for low-resource lan-
guages, such as unsupervised learning (Soricut
and Och, 2015) and bootstrapping techniques
(Yarowsky et al., 2001). Some studies have also
explored the use of cross-lingual transfer learn-
ing (Tackstrém et al., 2012) or leveraging com-
parable corpora (Madnani et al., 2012) to en-
hance spell checking and correction performance
in low-resource languages. Nevertheless, these ap-
proaches may still be constrained by the availability
and quality of parallel and comparable corpora.

2.3. Neural Networks in Spell Checking
and Correction

The emergence of deep learning techniques, in par-
ticular transformer models (Vaswani et al., 2017)
and neural networks, has had a significant impact
on the NLP field. These technigues have shown im-
mense potential in a wide range of tasks, including
machine translation (Bahdanau et al., 2015), infor-
mation retrieval, conversational agents, sentiment
analysis (Socher et al., 2013), and text summariza-
tion (See et al., 2017).

"http://pagesperso.ls2n.fr/
~enguehard-c/DiLAF/index.php
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In the context of spell checking and correction,
sequence-to-sequence models (Sutskever et al.,
2014) have been employed with promising results,
using an encoder-decoder architecture to map mis-
spelled sequences to their correct counterparts
(HIadek et al., 2019). Attention mechanisms (Bah-
danau et al., 2015) have also been integrated into
these models to enhance the alignment between
input and output sequences (Garg et al., 2019).

The development of transformer models has fur-
ther advanced the capabilities of neural networks
in spell checking and correction. Transformer mod-
els, which rely on self-attention mechanisms, have
proven effective in capturing long-range dependen-
cies and providing more accurate context-sensitive
representations (Devlin et al., 2019). Recent stud-
ies have applied transformer models, such as BERT
and GPT (Radford and Narasimhan, 2018), to
spelling error detection and correction (Sorokin
et al., 2016), or fine-tuned them for specific low-
resource languages (Al-Ghamdi et al., 2023).

3. Methodology

Our approach consists of three main steps, namely
data preparation, model architecture building, and
model training configuration.

Initially, we discuss the process of data acquisition
and corpus annotation, which is crucial for training
an effective model, especially in the context of low-
resource languages. Subsequently, we delve into
the architecture of the transformer model, detailing
its components and design choices. Finally, we
describe the training configurations, including the
parameters and settings used to train the model.

3.1. Data selection and annotation

process

The data acquisition and corpus annotation pro-
cess encompasses two principal phases. Initially,
we identified suitable sources for the corpus data,
which were available in various formats (e.g., PDF,
text, HTML), and subsequently carried out the ex-
traction of content. Following this, we employed a
hybrid approach, incorporating both manual and
automatic annotation techniques, and conducted
thorough proofreading to generate a corpus of ac-
curately corrected sentences.

3.1.1. Data Selection

The data collection process for our Wolof spell cor-
rection study involved gathering data from various
sources such as news websites?, social media plat-

’https://www.wolof-online.com
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forms® 4, religious websites®, religious PDF files
(Diagne, 1997), bilingual Wolof-French dictionaries
(Diouf and Kenkyujo, 2001; Cissé, 2004) and bilin-
gual Wolof-French corpora released (Adelani et al.,
2022; Costa-jussa et al., 2022).

In total, we collected 78,384 sentences for our cor-
pus. During the collection process, we emphasized
the quality and diversity of the content, ensuring
that our corpus included sentences from various
domains and genres.

3.1.2. Corpus annotation

First, we used Python scripts to scrape data from
news websites, social media platforms, and re-
ligious websites. This process yielded 25,860
sentences from religious websites, 21,341 sen-
tences from social media platforms, and 13,245
sentences from news websites. Next, we extracted
10,087 sentences from religious PDF files and
Wolof-French bilingual dictionaries. Additionally,
we used the Wolof data from the bilingual Wolof-
French corpora released by Masakhane (Adelani
et al., 2022) and Facebook (Costa-jussa et al.,
2022; Goyal et al., 2022). The detailed statistics of
each corpus, including the number of sentences,
are outlined in Table 1.

Splits | Masakhane | Facebook
Train 3360 997
Dev 1506 1012
Test 1500 N/A

Table 1: Corpora statistics

All collected sentences were saved in plain text

files using the UTF-8 encoding. We observed that
many of the collected sentences contained lexical
or grammatical errors. To create a parallel cor-
pus of misspelled sentences and their error-free
counterparts, we used a Wolof rule-based spell cor-
rection tool (Cissé and Sadat, 2023) to generate a
file containing the corrected forms of the sentences.
We then manually proofread the generated file to
correct any remaining grammatical and lexical er-
rors.
For sentences that were initially error-free, we intro-
duced various typographical errors. Most of the in-
troduced errors involve duplication, omission, trans-
position, or substitution of characters. Table 2 pro-
vides an overview on the typos introduced.

Once our synthetic parallel corpus was com-
pleted, we were faced with a crucial decision before
embarking on the data preprocessing and model
training phase, as we needed to determine the

3https://twitter.com/SaabalN
*https://www.facebook.com/wolofakxamle
Shttp://biblewolof.com
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Initial word Typo category Misspelled word

Waxtu Duplication Waxxtu
Bunt Omission Bnt

Juddu Transposition udJdu
Néw Substitution Gneuw
Xaar Substitution + Omission Khare

Jappale Substitution + Omission Diapalé
Caabi Substitution + Omission Thiabi
Sakk Substitution Spkk

Table 2: Types of errors

atomic linguistic unit that the model will operate on.
A substantial number of NLP models have tradition-
ally used tokens as their smallest unit. However,
an emerging trend has been noted towards the use
of subword units (Sennrich et al., 2016b) as the
fundamental building blocks.

The notion of using words as inputs to our model
initially appears to be a logical default strategy, mir-
roring the approach observed in numerous NLP
models. However, when applied to spell correc-
tion, the token approach can become overly com-
plicated, owing to potential inaccuracies stemming
from punctuation use. Additionally, the necessity
for NLP models to function on a fixed vocabulary
implies that our spell correction tool’s vocabulary
would need to be comprehensive enough to include
every single possible misspelling of every single
word encountered during the training process. The
implications of this requirement would result in a
costly model, both in terms of training and mainte-
nance.

In consideration of these factors, we have decided
to use the character as the fundamental building
block for our spell checker. This approach has
proven to be very effective in translation tasks by
Lee et al. (2017). The adoption of character-level
segmentation also allows us to preserve a manage-
able vocabulary size.

For experimental purposes, the overall dataset is
divided into three subsets: a training set, a valida-
tion set and a test set. We randomly selected 10%
of the generated corpus to form the validation and
test sets. This was done to make sure that these
sets accurately represent the entire dataset. The
leftover 90% of the data was then used to create
our training set.

3.2. Model architecture

In this study, we employed a customized Trans-
former model architecture (Vaswani et al., 2017)
for the task of Wolof spell correction. The Trans-
former model has demonstrated remarkable suc-
cess in various natural language processing tasks
by leveraging self-attention mechanisms, which al-
low it to efficiently process input sequences without
the need for recurrent or convolutional layers.

Our model consists of two components: an en-
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coder and a decoder, each comprising five identical
layers (Biljon et al., 2020). The encoder’s primary
task is to manage the input sequences containing
misspellings, while the decoder focuses on pro-
ducing output sequences without misspellings, as
illustrated in Figure 1.
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Figure 1: Transformer model(Vaswani et al., 2017)

During the encoding phase, each input word is
converted into a vector representation using an
embedding layer. To incorporate positional infor-
mation into the input embeddings, positional en-
coding is applied. In both the encoder and decoder
components of the model, each layer comprises
a multi-head self-attention mechanism with two at-
tention heads. This is followed by position-wise
feed-forward networks (FFNs) with a hidden size
of 256 and a feed-forward size of 1024.

The self-attention process involves generating
query (Q), key (K), and value (V) vectors from the
input. These vectors are then used to compute a
score matrix by performing matrix multiplication be-
tween the query and the key vector. The resulting
matrix is scaled by the square root of the key vector
dimension (dg). To obtain attention weights, the
score matrix is normalized using softmax, repre-
senting the importance assigned to different parts



of the input sequence. These attention weights
are utilized to derive an output vector, as demon-
strated in Eq. 1 (Vaswani et al., 2017). To enable
efficient training and stable gradients, residual con-
nections and layer normalization are implemented
throughout the network.

. Qx KT
Attention(Q, K,V) = Softmax ( NG > xV (1)

The decoder includes two multi-headed attention
blocks within a single layer: one for the target se-
quences and another for the encoder’s output. The
former multi-head attention is masked to prevent
computing attention scores for subsequent words.
The latter multi-head attention layer employs the en-
coder’s outputs as queries and keys, while the out-
puts of the first multi-headed attention layer serve
as values. This mechanism empowers the decoder
to determine the encoder inputs that are most rele-
vant to its generation process, thereby producing
an output sequence without any misspellings. The
output from the final pointwise feed-forward layer
is then forwarded to a linear layer, serving as a
classifier, followed by a softmax layer to generate
the corrected text.

For initialization, we employ Xavier initialization

with a gain of 1.0 (Glorot and Bengio, 2010) for all
trainable weights, while the bias terms are initial-
ized with zeros. The embeddings undergo Xavier
initialization with a distinct gain of 1.0. To minimize
the number of trainable parameters, a common
practice is to tie the source and target embeddings,
as well as the softmax layer (Press and Wolf, 2017).
Since our model operates at the character level,
the default vocabulary size is relatively small. We
set the embedding dimension to 256 in both the
encoder and decoder, which corresponds to the
hidden size of the Feed-Forward Network (FFN) for
compatibility. Furthermore, we scale the embed-
dings by the square root of their size.
To address the issue of overfitting, we employ
dropout techniques on various Transformer com-
ponents. Initially, we apply an embedding dropout
rate of 10~! to the encoder and decoder, which
helps in dropping words from the embedding ma-
trix (Gal and Ghahramani, 2016). Furthermore, we
apply dropout only within the decoder layers at a
rate of 3 x 10~ (Srivastava et al., 2014).

3.3. Model Training

The model training procedure was carefully de-
signed, considering various parameters to ensure
rigorous and repeatable results.

We employed deterministic training by using a
fixed random seed of 42. To optimize the model,
we chose the widely used Adam optimizer (Kingma
and Ba, 2015), which features adaptive learning

rates and momentum-based parameter updates.
For the first and second-order moments, we as-
signed beta values of [9 x 10~1, 999 x 10~3], respec-
tively. The learning rate was initialized at 10~#, and
a minimum threshold of 10~8 was set to terminate
training upon convergence or near-convergence.

To optimize the learning process, we adopted a
plateau-based scheduling strategy (Smith, 2017).
With a patience value of 5, the learning rate was re-
duced by a factor of 7 x 10~ if the validation score
did not improve over five consecutive validation
rounds. This dynamic adaptation of the learning
rate, based on performance feedback, led to en-
hanced convergence and optimization.

We facilitated efficient parallel computation dur-
ing training by using a batch size of 4096 tokens
(Ott et al., 2018). The token-based batching ap-
proach optimized computational resources by form-
ing batches based on the total number of tokens
instead of the number of sentences.

Throughout the entire training process, we

placed significant emphasis on the model’s ability
to generalize and perform well by conducting regu-
lar evaluations. To ensure a thorough assessment,
we established validation intervals of 2000 updates,
covering 50 epochs. We carefully selected this inter-
val, considering that setting a validation frequency
that is too high might not provide ample opportu-
nities for the model to learn and improve during
validation. Furthermore, excessively frequent val-
idation could lead to extended training times and
potentially prematurely terminate the training if the
validation patience value is not set high enough.
Thus, we decided on the mentioned interval to strike
a balance.
Moreover, to enhance our ability to closely track the
training process and gain comprehensive insights
into the model’s development, we implemented a
logging frequency of 200 updates.

We implemented early stopping by minimizing
our cross-entropy loss function, which is a common
approach in model training. Continuously monitor-
ing the loss function allowed us to terminate the
training when a new low score was reached, effec-
tively preventing overfitting.

To promote diverse predictions and mitigate over-
fitting, we incorporated two regularization tech-
niques: label smoothing and weight decay. Specif-
ically, we employed label smoothing with a coeffi-
cient of 10! (Szegedy et al., 2016), and weight
decay at a rate of 10~* (Srivastava et al., 2014).
Label smoothing is a regularization method that
redistributes the probability weight from reference
tokens to other vocabulary tokens. By reducing the
overemphasis on specific reference tokens, label
smoothing fosters diversity in the model’s output
and helps prevent overconfidence in predictions.
Weight decay, also known as L2 regularization, is
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a technique used to control the complexity of the
model. During training, it reduces the magnitude
of the model’s weights by adding a penalty term
proportional to the weight values to the loss func-
tion. This regularization term encourages smaller
weight values, preventing the model from overfit-
ting the training data and improving generalization
performance.

During training, our primary evaluation metric
was the well-established BLEU score (Papineni
etal., 2002), which measures the similarity between
predicted and reference sequences. For efficient
evaluation, we used a token-based batching strat-
egy with a batch size of 1024 tokens.

To manage the length of generated sequences
during decoding, we set a maximum output length
of 175 tokens. Furthermore, we maintained
progress monitoring and validation integrity by con-
sistently printing three validation sentences during
each validation run.

4. Evaluations

Evaluating spell-checking and correction systems
is a crucial task that will help understand their ef-
fectiveness and general applicability. While there
is no universally accepted standard for evaluating
spellchecking and correction systems, three main
methodologies have emerged. These methodolo-
gies involve classification metrics, machine transla-
tion metrics, and information retrieval metrics.

Classification metrics, such as precision, recall,
and F-score, are used to assess the performance
of automatic spelling correction systems (Starlan-
der and Popescu-Belis, 2002). Machine Transla-
tion metrics, including BLEU score (Papineni et al.,
2002), CER or WER (Popovi¢ and Ney, 2007), and
ChrF++ (Popovi¢, 2015, 2017), are also employed
in the evaluation. Additionally, information retrieval
metrics like MRR (Mangu et al., 2000) can be used.

Considering that our spell checker operates by
translating a source text with errors into its most
likely correct form, machine translation metrics are
the most suitable for measuring our system’s per-
formance. For example, the BLEU metric has
been widely used to evaluate spell-checking tools
in various studies, including those conducted by
researchers like Gerdjikov et al. (2013); Mitankin
et al. (2014); Sariev et al. (2014). The WER metric
was also used in a study by Evershed and Fitch
(2014).

After training and evaluating our model on the
test set, our spell checker demonstrated high profi-
ciency in various aspects of spelling correction, as
shown in Table 3.

The BLEU score, a measure of how well the
corrected text matches the reference text in terms of
n-gram overlap, is 83%. This high score indicates
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Metrics | Scores
BLEU 0.83
WER 0.08
CER 0.03

ChrF++ 0.94

Table 3: Performance measures of the spell
checker

that the model is capable of producing text that
closely aligns with the reference text in both lexical
choice and grammatical structure.

The WER of 0.08 signifies that, on average, only
8% of the words in the corrected sentences differ
from the reference sentences. Similarly, the CER of
0.03 indicates that the corrected sentences have,
on average, only 3% character-level differences
from the reference sentences. These metrics high-
light the effectiveness of the spell checker in accu-
rately identifying and correcting errors at both the
word and character levels.

Furthermore, the ChrF++ score of 94% demon-
strates a high level of similarity between the cor-
rected sentences and the reference sentences, con-
sidering various factors such as precision, recall,
and character-level F-score.

4.1.

In addition to the performance metrics mentioned
above, itis crucial to conduct a comprehensive error
analysis to gain deeper insights into the behavior
of our spell checker. We provide a qualitative eval-
uation of our model on a selection of misspelled
Wolof sentences in Table 4. This table presents
corrected sentences alongside their corresponding
references.

Error Analysis

References
Ngir yaa ma def antalpareet
Almaain dékk bou mag la
Woorlu askan wi fiuy jot ci téere yi

Predictions
Ngir ya ma def antalpareet
Allemaiie dékk bou mag la
Woorlu askan wi fiuy jot ci téere yi

Table 4: Qualitative evaluation

An examination of errors on a subset of the test
data has revealed three primary categories of re-
curring errors produced by our model.

The first group of errors revolves around the cor-
rection of long vowels in words. In the Wolof lan-
guage, distinguishing between long and short vow-
els significantly impacts word meanings. However,
our model consistently struggles to accurately de-
termine when to substitute a short vowel with a long
one, resulting in incorrect corrections.

The second group of errors is related to named
entities. Named entities, which often deviate from
standard Wolof writing conventions, introduce con-
siderable confusion for the model. In some in-
stances, the model incorrectly assumes that these



named entities are erroneous and attempts to rec-
tify them. In other cases, when specific named
entities are indeed misspelled and not part of the
vocabulary, the model suggests incorrect correc-
tions.

The third group of errors is associated with ac-
cent management. Accents play a crucial role
in distinguishing and pronouncing words in Wolof.
Our model consistently faces challenges when ac-
curately identifying and reinstating missing accents
in words.

These findings underscore the need for further
refinement of our spell checker, particularly in ad-
dressing the complexities of vowel length, handling
named entities, and preserving accents within the
Wolof language. Moreover, it is essential to explore
potential solutions for mitigating these recurring er-
rors, such as incorporating contextual language
comprehension and enhancing the model’s ability
to discern linguistic nuances.

4.2. Test of significance

To establish the statistical significance of the results
derived from our evaluation of the spell checker, we
conducted a significance test, comparing our model
against the sole existing Wolof spell checker® ac-
cessible online. The objective of this test is to deter-
mine the robustness of the observed performance
metrics, ensuring that they are not merely a product
of random chance.

Our initial step involved the random selection of
100 Wolof sentences from our constructed corpus.
Following this preliminary stage, each chosen sen-
tence was input into both correction systems to
observe and analyze the proposed corrections.

Subsequently, the correction proposals gener-
ated by both systems underwent evaluation by a
native Wolof speaker. The evaluator was kept un-
aware of the source of each correction to maintain
impartiality. The applied grading system was as
follows: a score of "3” was assigned to sentences
that were perfectly corrected and aligned with the
reference sentence. A score of "2” was reserved for
corrections that, despite minor errors, preserved
the original sentence’s intended meaning. Lastly,
a score of ”1” was given to corrections that were
entirely incorrect or inadequate.

In order to summarize the evaluations conducted
on all the sentences, we have compiled the results
in Table 5, which offers an overview of the distribu-
tion of scores attributed to each system.

Given the ordinal nature of the evaluations, we
opted for the Wilcoxon signed-rank test as the most
appropriate statistical tool to discern whether a sta-
tistically significant difference exists between the

Shttps://github.com/TiDev00/Wolof_
SpellChecker
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Grade | Existing system
36/100 (36%)
51/100 (51%)

13/100 (13%)

Proposed system
0/100 (0%)
54/100 (54%)
46/100 (46%)

Table 5: Systems grades

two systems.
For this test, we formulated the following null and
alternative hypotheses:

Hy : There is no significant difference
between the two systems.
H, :The neural model is significantly

superior.

The Wilcoxon test, initially introduced by
Wilcoxon (1945), represents a non-parametric ap-
proach widely employed for comparing two paired
samples. This method is particularly useful when
assumptions regarding data distribution are not met
or when dealing with ordinal data. We adopted a
standard significance level (o« = 0.05) for this test,
considering a result to be statistically significant
if the p-value falls below «. In accordance with
this methodology, the results obtained for the W-
statistic and the p-value are documented in Table
6.

Metrics Scores
W-Statistic 0.0
p-Value 4.92 x 10717

Table 6: W-Statistic and p-Value

The W-statistic serves as an indicator of the cu-
mulative ranks assigned to differences between
paired observations, favoring our neural model. A
W-statistic value of 0.0 signifies that, in the majority
of the compared instances, our proposed neural
system has exhibited superior performance when
contrasted with the existing rule-based system.

The p-value reflects the likelihood of obtaining
such a pronounced difference between the two sys-
tems purely by chance, assuming the null hypoth-
esis to be valid. In the context of our Wilcoxon
signed-rank test, the null hypothesis postulates that
there is no significant difference in the performance
of the two systems. An extremely low p-value, such
as the one calculated (4.92 x 10~17), provides com-
pelling evidence against this null hypothesis (Hy),
thereby reinforcing the validity of our alternative
hypothesis (H,).

5. Limitations

Our spell checking system has demonstrated good
performance, as indicated by its high BLEU and
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ChrF++ scores, as well as the relatively low WER
and CER scores. However, there are still limita-
tions that require further investigations and improve-
ments.

Firstly, character-level models, such as the one
used in this study, are inherently complex and can
be time consuming to train. This is due to the larger
sequence of data they need to learn from, com-
pared to word-level models. The computational
cost of training such models can be particularly high
when working with large datasets or languages with
extensive character sets.

Secondly, our model may struggle with capturing
long-range dependencies within the text. The de-
pendencies between words in a sentence, which
often span across several characters, can be diffi-
cult for character-level models to understand. This
could potentially affect the model’s performance
in cases that require a deep understanding of
sentence-level semantics.

Thirdly, our model lacks the advantage of leverag-
ing pre-trained word embeddings, which capture se-
mantic and syntactic relationships between words.
As a result, the model’'s semantic understanding
may be less nuanced compared to models that
operate at the word level.

Fourthly, character-level models can be more
sensitive to noise in the input data. Spelling errors,
inconsistent punctuation usage, and other forms of
noise can have a more significant impact on these
models, which could lead to lower performance in
certain situations.

Additionally, while our model is designed to han-
dle any language that utilizes an alphabet similar
to that of the Wolof language, it may struggle with
languages that rely heavily on word order. This is
due to the model’s lack of word-level understanding,
which could help in these situations.

Lastly, our model may face difficulties with disam-
biguation. For instance, words spelled the same
but with different meanings can pose a challenge
for character-level models, as these models lack
access to word-level semantic information.

Given these considerations, there are several ar-
eas that could be targeted for improvement. Firstly,
the model could be further trained on a wider va-
riety of textual data in order to improve its capac-
ity to handle of less common or more complex er-
rors. Given our current focus on a language with
limited available resources, the use of the back-
translation technique emerges as a promising strat-
egy. This approach has consistently demonstrated
its effectiveness in various domains, such as Sta-
tistical Machine Translation (SMT) (Bojar and Tam-
chyna, 2011), supervised Neural Machine Trans-
lation (Sennrich et al., 2016a), and unsupervised
Machine Translation (Lample et al., 2017).

In the context of spell-checking and correction,
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adopting this approach would involve training a
model to intentionally introduce a substantial num-
ber of realistic spelling errors within clean text. Sub-
sequently, the resulting corpus of corrupted text can
be employed to refine our spell checking model.

Furthermore, we suggest further exploration of
hybrid models that combine the benefits of both
character-level and word-level processing. Such
models could potentially leverage the granularity
of character-level models while still maintaining a
higher-level understanding of word and sentence
semantics.

Lastly, considering the computational expenses
associated with character-level models, it would
be beneficial to conduct research on more efficient
training methods. By doing so, we can mitigate
the computational burden and improve the overall
efficiency of the training process.

6. Conclusion

The present study represents significant progress
in the field of automatic spelling correction, partic-
ularly for under-resourced and under-represented
spoken languages. Our model, which utilizes a
transformer-based architecture has produced en-
couraging results across several evaluation metrics,
including BLEU, WER, CER and ChrF++. These
outcomes highlight the potential of advanced deep
learning techniques to overcome the challenge of
spelling errors, even in languages with limited avail-
able data.

Despite these promising results, our work has
also highlighted certain areas of improvement that
could further refine the performance of the pro-
posed system. Our model, being character-level,
exhibits certain limitations such as computational
complexity, difficulty in capturing long-range de-
pendencies, and sensitivity to noise in the input
data. Moreover, the lack of word-level understand-
ing could lead to potential difficulties with languages
that heavily rely on word order or face challenges
with disambiguation. Furthermore, the investigation
of hybrid models, combining the benefits of both
character-level and word-level processing, could
be a promising direction for future work.

We hope that our findings will encourage further
research in this direction, ultimately contributing
to the broader goal of building inclusive and ef-
fective natural language processing tools for all
languages.
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