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Abstract

Computational models of mental health pre-
diction from social media data are typically
built from the textual contents produced by
the individuals to be assessed, but the use of
non-textual information available from the net-
work structure may also have relevant predic-
tive power. Based on these observations, this
work presents initial experiments on mental
health prediction from textual and non-textual
Twitter data in Portuguese, comparing a tra-
ditional content-based approach using BERT
with models based on social media connections
(friends, followers and mentions), and which
is inspired from the well-known Bag-of-Words
text representation. Results highlight an advan-
tage for the model based on textual contents,
but also suggest that the use of non-textual in-
formation may provide a significant contribu-
tion to these tasks.

1 Introduction

The detection of mental health disorders such as
depression and anxiety from social media data is a
current application of great social interest, and has
been the focus of a wide range of recent studies in
NLP and related fields (Lin et al., 2020; Chancel-
lor and Choudhury, 2020; Su et al., 2020; Parapar
et al., 2023). Computational models of this kind are
typically built from the textual content produced
by the individuals to be assessed (e.g., social media
users) and, although user-generated text is possi-
bly the richest source of information for tasks of
this kind, the use of non-textual information avail-
able from the network structure (e.g., connections
between users) may also have relevant predictive
power (Cheng and Chen, 2022; Zogan et al., 2022b)
according to the principle of homophily (McPher-
son et al., 2001), i.e., the tendency of users with
similar interests establish connections.

Using non-textual social media information as
learning features for mental heath prediction may

however pose a number of challenges. In particular,
although the number of social media connections
may be large (e.g., a typical Twitter user may have
thousands of friends and followers), hence sug-
gesting a potentially rich source of information, it
remains unclear how often we will find a connec-
tion between, e.g., two depressed individuals. For
instance, in the SetembroBR depression and anxi-
ety disorder corpus (dos Santos et al., 2023), 3903
individuals were randomly sampled from a large
pool of Portuguese-speaking Twitter users based
on their diagnoses and, crucially, these individuals
are largely unrelated, that is, they do not make a
connected community.

When social media users are unacquainted to
each other, building meaningful graph represen-
tations may not be possible, and the use of estab-
lished social network measures (e.g., of distance be-
tween nodes) for prediction purposes may become
unhelpful. However, this is not to say that social
media connections to other individuals (i.e., users
not represented in the corpus) are unhelpful as well.
On the contrary, homophily suggests that some of
these individuals may be prone to interacting with
particular users or accounts (e.g., a discussion fo-
rum on mental health issues, a celebrity known
for having disclosed their mental health struggle,
etc.), and this information may be predictive of
mental health statuses alongside more traditional
(i.e., user-generated) information.

One possible way of using non-textual informa-
tion for mental health prediction when a fully con-
nected network is unavailable is by regarding social
media connections not as relations between the in-
dividuals represented in the corpus, but rather as
atomic properties of these individual. More specif-
ically, the information that a user u follows, e.g., a
Twitter account that promotes information on men-
tal health, may be regarded as a learning feature to
help classify u as being depressed or not, and this
may be implemented, for instance, by modelling



social media relations as sets of connections.
Based on these observations, this work presents

an initial study of depression and anxiety disorder
prediction in the Portuguese language from textual
and non-textual data alike. Using the aforemen-
tioned SetembroBR corpus as a basis, we compare
a traditional content-based approach built from pre-
trained BERT (Devlin et al., 2019) with models
solely based on social media connections in a so-
called Bag-of-Users approach. In doing so, the
objective of the study is to compare the two types
of strategy, which may be seen as a first step to-
wards the development of multimodal predictive
models for these tasks.

The rest of this paper is structured as follows.
Section 2 reviews existing work in mental health
prediction from mutimodal social media data. Sec-
tion 3 introduces our present models for depression
and anxiety disorder prediction in Portuguese. Sec-
tion 4 describes our main experiments. Section 5
draws our conclusions and discusses future work.

2 Related work

Table 1 summarises recent studies in mental
health prediction based on multimodal social
media data. These studies are categorised by task
(A=anxiety, D=depression), genre (In=Instagram,
Fb=Facebook, Fl=Flicker, Sw=Sina Weibo,
Tw=Twitter), language (Ch=Chinese, En=English),
textual features (bow=Bag-of-Words, we=word
embeddings, lex=lexicon, LIWC (Pennebaker
et al., 2001), st=sentiment), non-textual features
(ti=time, pc=posts, mc=mentions, rt=reposts,
rc=replies, lc=likes, ac=friends, fc=followers,
cc=comments, vc=views, nm=other).

Among the selected studies, we notice that one
of our target applications – depression prediction
– is common in the field, but the second – anxi-
ety disorder prediction – was only addressed from
a multimodal perspective in Mendu et al. (2020).
Regarding the type of social media under consid-
eration, we notice that the use of microblog data
from Twitter and Sina Weibo prevails. Moreover,
all identified studies are dedicated to either English
or Chinese languages.

Although the use of word embeddings as a tex-
tual representation is common, we notice that sim-
pler strategies based on Bag-of-Words or LIWC
lexical category counts are also popular. This may
be explained by the observation that many of the
existing studies are more focused on the use of

network-related features, and that in many of these
studies the text model tends to take second place.
Furthermore, representations of this kind may sim-
plify the combination of textual and non-textual
features (e.g., by vector concatenation) than would
otherwise be the case if, for instance, using word
embeddings sequences.

Regarding the kinds of non-textual features un-
der consideration, we notice that these are largely
based on user counts (e.g., number of friends, etc.).
Structural information, however, does appear in
two studies (Sinha et al., 2019; Ruch, 2020) dedi-
cated to the related issues of detecting symptoms
of depression and suicidal thoughts, which were
not part of the present survey.

3 Models

We envisaged an experiment to compare the use of
textual and non-textual features in mental health
prediction using Portuguese social media data. To
this end, textual features were computed using a
pre-trained BERT (Devlin et al., 2019) language
model, and non-textual features correspond to so-
cial media connections represented by relationships
with Twitter friends and followers, and @ mentions
of other users.

All models were built from the SetembroBR cor-
pus (dos Santos et al., 2020, 2023) of Twitter time-
lines (i.e., lists of timestamped text publications),
divided into two classes: those produced by indi-
viduals who have been diagnosed with depression
or anxiety disorder (hereby referred to as the ‘Di-
agnosed’ class), and a seven times larger group of
random individuals (hereby ‘Control’ group)1. In
this setting, every Diagnosed user is paired with its
seven Control counterparts according to gender2,
timeline length and publication dates.

The corpus conveys 46.8 million tweets written
in Portuguese by 18,819 unique users, and their
sets of friends, followers, and mentions. Table
2 presents descriptive statistics of the textual and
non-textual portions of the data, showing the mean
number of connections (friends, followers and men-
tions) on the top, and mean text statistics (number
of timelines, tweets and tokens) at the bottom.

For the textual models, in which case the task
may be seen as an instance of Portuguese text au-

1A similarly heavy class imbalance, intended to help dis-
tinguish diagnosed from random individuals, is adopted in
Yates et al. (2017); Losada et al. (2017); Cohan et al. (2018).

2Estimated by the linguistic gender expressed in text, as
in, e.g., Paraboni and de Lima (1998).



Model Task Genre Lang. Textual Non-textual
(Yang et al., 2020) D Fb En LIWC ti,pc,ac
(Wu et al., 2020) D Fb Ch we ti,pc
(Mendu et al., 2020) A Fb En bow,LIWC ti,nm
(Xu et al., 2020) D Fl En bow,LIWC ti,vc
(Alsagri and Ykhlef, 2020) D Tw En bow ti,pc,mc,rc
(Ghosh and Anwar, 2021) D Tw En LIWC,st ti,pc,cc,rt
(Zogan et al., 2021) D Tw En we,lex ti,pc,rt,ac,fc
(Bi et al., 2021) D Sw Ch bow,LIWC,lex fc,ac,lc,cc,rt
(Cheng and Chen, 2022) D In Ch we ti
(Zogan et al., 2022a) D Tw En we,LDA ti,pc,rt,ac,fc

Table 1: Existing work using non-textual features for mental health prediction.

Statistics Depres. Ctrl Anxiety Ctrl
Friends 659 710 678 729
Followers 777 945 810 975
Mentions 125 122 115 114
Timelines 1,684 11,788 2,219 15,533
Tweets (mi) 2.43 16.99 3.43 23.98
Tokens (mi) 29.32 201.94 42.24 281.51

Table 2: SetembroBR descriptive statistics, taken from
dos Santos et al. (2023).

thor profiling (da Silva et al., 2020; Flores et al.,
2022; Pavan et al., 2023), we used the BERT ap-
proach introduced in dos Santos et al. (2023). This
consists of the Portuguese Twitter BERT model in
da Costa et al. (2023), which has been presently
fine-tuned for the tasks at hand. In this approach,
user timelines are classified in batches of 10 con-
secutive tweets each, and the class label (to be
associated with the timeline under analysis) is de-
cided by majority vote. The model architecture
consists of a BiLSTM network with ReLU activa-
tion function followed by a fully connected layer
with softmax activation and using a cross entropy
type loss function with balanced class weights. The
model is trained in up to three epochs and the input
messages are truncated to 30 tokens.

For the non-textual models, connections between
users of the corpus and their friends, followers
and mentions of other network users were repre-
sented as binary ‘Bag-of-Users’ models indicating
whether each individual in the corpus had a rela-
tionship with others, mostly not represented in the
corpus. A fragment of this representation is illus-
trated as follows, showing three corpus users (who
may belong to the Diagnosed or Control class), and
some of their friendship relations.

Friend 1 Friend 2 ... Friend N
User 1 1 0 ... 0
User 2 0 0 ... 0
User 3 0 0 ... 1

As in a conventional (i.e., textual) Bag-of-Words
approach, this representation is highly sparse, with
approximately one million possible connections (or
dimensions), but a very low number of actual con-
nections per user. Thus, we initially attempted to
select only the 15 thousand users with the highest
number of connections for each (Diagnosed and
Control) class, but even with this pruning the rep-
resentation of friends, followers and mentions was
still highly sparse. For that reason, a second feature
selection method was used, once again inspired by
techniques normally used in text pre-processing.

We performed univariate feature selection over
a development portion of the training data using
F1 as a score function to select the K most rele-
vant characteristics (i.e., connections) for each of
the three non-textual models. More specifically,
candidate K values were attempted based on the
maximum number of connections available in each
of the three (friends, followers and mentions) net-
works, with 500-unit decreases until identifying
the K value that maximised the F1 measure. The
optimal K values obtained for the depression (D)
and anxiety (A) prediction tasks are summarised in
Table 3.

Model Depression Anxiety
Friends 14,500 17,000
Followers 13,000 21,000
Mentions 19,500 10,500

Table 3: Non-textual model K values.



Depression Control Anxiety Control
Model P R F1 P R F1 P R F1 P R F1
BERT 0.34 0.49 0.40 0.92 0.87 0.89 0.36 0.36 0.36 0.91 0.91 0.91
Friends 0.25 0.44 0.32 0.92 0.82 0.86 0.23 0.43 0.30 0.91 0.80 0.85
Followers 0.22 0.60 0.32 0.92 0.69 0.79 0.20 0.50 0.29 0.91 0.72 0.80
Mentions 0.36 0.32 0.34 0.90 0.92 0.91 0.30 0.31 0.30 0.90 0.90 0.90

Table 4: Main results. Best F1 scores for the positive class in each task are highlighted.

4 Evaluation

From the fixed training and test portions of the
SetembroBR corpus data described in (dos Santos
et al., 2023), we built and evaluated both BERT
and Bag-of-User models. Results are summarised
in Table 4.

For both tasks, results suggest that the BERT
textual model is still superior to the non-textual al-
ternatives. However, we notice that the difference
may in some cases be considered small, particu-
larly if one takes into account the computational
cost involved in building these models, which is
vastly superior in the case of BERT. Moreover, the
observation that learning features that do not rely
upon user-generated contents have considerable
predictive power is a useful insight in its own right.

5 Final remarks

This study presented initial experiments on mental
health prediction from social media data in Por-
tuguese using on textual and non-textual data alike,
and focusing on settings in which the available so-
cial media users are in principle unacquainted to
each other, in which case standard network-related
metrics or models may be unhelpful.

As an alternative to these methods, a so-called
Bag-of-Users approach, analogous to a simple
count-based text model, was presented. Although
results obtained from this method still point to the
advantage of the model based on textual content
using BERT, the use of non-textual information in
this way also presents a potentially useful contribu-
tion, and suggests that the combination of the two
strategies (for example, with the use of ensemble
methods) may improve current results.

Thus, in addition to an investigation on how to
combine textual and non-textual data into a single
model, as future work we also envisage improv-
ing the representation of non-textual models using
more expressive network embeddings representa-
tions, such as those computed by using node2vec
(Grover and Leskovec, 2016) and related methods.
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