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Abstract

A major challenge in Natural Language Pro-
cessing is obtaining annotated data for super-
vised learning. An option is the use of crowd-
sourcing platforms for data annotation. How-
ever, crowdsourcing introduces issues related
to the annotator’s experience, consistency, and
biases. An alternative is to use zero-shot meth-
ods, which in turn have limitations compared to
their few-shot or fully supervised counterparts.
Recent advancements driven by large language
models show potential, but struggle to adapt
to specialized domains with severely limited
data. The most common approaches therefore
involve the human itself randomly annotating
a set of datapoints to build initial datasets. But
randomly sampling data to be annotated is of-
ten inefficient as it ignores the characteristics
of the data and the specific needs of the model.
The situation worsens when working with im-
balanced datasets, as random sampling tends
to heavily bias towards the majority classes,
leading to excessive annotated data. To ad-
dress these issues, this paper contributes an
automatic and informed data selection archi-
tecture to build a small dataset for few-shot
learning. Our proposal minimizes the quan-
tity and maximizes diversity of data selected
for human annotation, while improving model
performance.

1 Introduction

In real-life scenarios, particularly in the realm of
Machine Learning (ML) in Natural Language Pro-
cessing (NLP), annotated data is often a scarce and
challenging resource to acquire. In many cases,
researchers and practitioners are faced with the
daunting task of developing accurate models with
extremely limited or even non-existent annotated

training data. To address this challenge, the pro-
cess is typically initiated by building a small anno-
tated dataset and using it as a basis for training ML
models using supervised learning methods. Sub-
sequently, this process can be iterated by creating
annotated datasets of increasing size through tech-
niques commonly referred to as Active Learning
(AL) (Ren et al., 2021).

As an alternative approach to acquiring anno-
tated data, crowdsourcing platforms like Amazon
Mechanical Turk have been used in recent years.
However, relying solely on human annotation ser-
vices from these platforms brings its own set of
challenges (Nowak and Rüger, 2010; Karpinska
et al., 2021). Variability in expertise among annota-
tors often results in inconsistent annotation criteria
and, at times, conflicting annotations. Moreover,
human annotators may encounter difficulties when
dealing with large datasets, leading to errors and
delays in data annotation processes. An additional
concern lies in the potential introduction of bias
through annotators’ subjectivity and personal bi-
ases, which can negatively affect the performance
of trained models. To mitigate these challenges,
numerous research works have attempted to ad-
dress these issues, either by selecting high-quality
annotators in multiple-annotated-data setups or by
employing diverse methods to weight each annota-
tor’s input (Zhang et al., 2023a; Hsueh et al., 2009;
Hovy et al., 2013; Basile et al., 2021).

In low-resource settings, a common practice is
to randomly sample a subset of the unlabeled data
for the annotation process (Tunstall et al., 2022;
Beijbom, 2014). This approach involves selecting
a few examples at random, which are then anno-
tated to form the initial training dataset. However,



this methodology may be suboptimal since it ne-
glects the specific characteristics of the data and
the requirements of the learning model. In other
words, randomly sampled data may fail to ade-
quately represent the full spectrum of classes or
concepts present within the dataset.

The advent of zero-shot methods has provided
an intriguing approach to perform initial annota-
tion without any annotated training data (Alco-
forado et al., 2022). Nonetheless, historical short-
comings have often placed zero-shot methods be-
hind their few-shot counterparts in terms of per-
formance. Recent strides in the field of NLP, par-
ticularly the emergence of general-purpose Large
Language Models (LLMs), have opened up excit-
ing avenues in multi-task learning and zero-shot
problem-solving (Ferraz et al., 2023). These mod-
els exhibit remarkable skills across various tasks
(Brown et al., 2020; Touvron et al., 2023) but still
encounter difficulties when adapting to specific do-
mains where highly specialized knowledge may be
entirely absent from their training data (Yang et al.,
2023; Zhang et al., 2023b).

In the realm of few-shot text classification, the
challenge of acquiring annotated data becomes in-
creasingly daunting, particularly when confronted
with imbalanced datasets (Ferraz et al., 2021).
Common benchmark datasets used for few-shot
text classification tasks often exhibit a semblance
of balance or slight imbalance. However, such
datasets represent rare exceptions in the real-world
landscape, where data distributions are typically
skewed and imbalanced, mirroring the inherent
complexity of practical scenarios. The prevalence
of imbalanced data poses a significant challenge,
as traditional random sampling strategies become
increasingly suboptimal. In scenarios where one
class overwhelmingly dominates, random sampling
tends to favor the majority class, resulting in data
selection that inadequately represents the underrep-
resented and rare classes.

To address these challenges, in this paper we
introduce an innovative automatic data selection
architecture for few-shot learning. Our approach
is designed to identify the most informative and
representative data points that should be annotated
by humans in low-resource, annotation-scarce sce-
narios. It leverages a framework that systemati-
cally orders data points based on their likelihood to
(i) belong to distinct classes, thereby avoiding un-
necessary redundancy in human annotation efforts,
and (ii) enhance the overall performance of the

learning model. Our evaluation of this approach en-
compasses various low-resource natural language
processing datasets, demonstrating its capacity to
minimize redundancy in human annotation efforts
and improve model performance compared to tra-
ditional random sampling or manual data selection
strategies, particularly in cases with a limited num-
ber of annotated examples.

In summary, this work presents two primary con-
tributions:

1. The introduction of an automatic data selec-
tion architecture for few-shot learning that
leverages active learning principles to iden-
tify the most informative and representative
data points for annotation.

2. An extensive analysis of various implementa-
tions of our architecture, highlighting its effec-
tiveness to build the first version of a dataset in
the context of low-resource text classification.

Our results emphasize the benefits of informed
data selection, which not only streamlines the an-
notation process but also results in a more diverse
set of annotated data. Furthermore, models trained
with these diverse datasets exhibit improved perfor-
mance, which may benefit subsequential iterations
of the dataset with Active Learning techniques. Our
experiments unveil the potential of informed data
selection strategies in addressing the challenges of
few-shot learning in low-resource NLP scenarios.

2 Background

In low-resource NLP settings, where annotated data
is scarce and expensive to obtain, Active Learning
(AL) (Ren et al., 2021) methods show themselves
as a very promising approach. AL attempts to max-
imize the performance gain of a model by annotat-
ing the smallest number of samples. AL algorithms
select data from an unlabeled dataset and query a
human annotator only on this selected data, which
aims to minimize human efforts in annotation by
using only the most informative data.

Uncertainty sampling (Zhu et al., 2010) is among
the most used method to select which points to be
annotated. It employs a single classifier to pinpoint
unlabeled instances where the classifier exhibits the
lowest confidence. Other approaches include query-
by-committee (Kee et al., 2018), where a pool of
models is used to find diverse disagreements, mar-
gin sampling (Ducoffe and Precioso, 2018), and



entropy sampling (Li et al., 2011). The first one
looks for points where models disagree the most
on the predicted labels; while the second selects
data points with the highest entropy, indicating the
lowest classification probability across all potential
classes

An essential aspect of AL involves the allocation
of annotation budgets. Given that human effort is
dedicated to annotating data, it is crucial to maxi-
mize its utility and minimize human effort. Various
strategies have emerged to address this challenge.
Recent research suggests optimizing directly for
human effort, while others combine model uncer-
tainty with diverse data representation through di-
versity sampling. A holistic approach combines
these factors with cost-effectiveness, weighting
data based on anticipated reductions in loss, clas-
sification entropy, and acquisition cost. These ap-
proaches collectively aim to minimize redundancy,
which occurs when a human annotates a data point
that the model would predict the correct label in
subsequent iterations.

In this work, we deal with the very first version
of a dataset, which will serve as the foundation for
iterative model improvement using AL methods.
Consequently, our primary focus is not on opti-
mizing cost-effectiveness, as the data was obtained
through random sampling. Instead, we are explor-
ing alternative data selection strategies to ensure
that the initial data pool closely resembles a “near-
ideal” random sample. This selection should not
only minimize unnecessary annotations but also
elevate the model’s performance above the ran-
dom average. To achieve this goal, we employ
an uncertainty-based strategy to address two dis-
tinct challenges: identifying data points that are
distant from the decision boundary and selecting
examples that offer a more diverse and informative
perspective on the dataset.

In addition to uncertainty estimation, vari-
ous strategies are available for actively selecting
data points to enhance low-resource NLP mod-
els. Diversity-based methods place their focus on
achieving a balance between informativeness and
the diversity of concepts or linguistic structures
within the selected subset. This approach aims to
prevent the model from learning biased informa-
tion. Such balance can be achieved through tech-
niques like calculating pairwise distances between
data points and employing sampling strategies to
select diverse examples. For instance, Sener and
Savarese (2018) employed the cosine similarity be-

tween word vector representations and a k-center
greedy algorithm to identify the most diverse sub-
set of data. Meanwhile, Zhang et al. (2021) utilized
a mutual information-based criterion to ensure that
the selected data points are positioned far apart
from each other in the embedding space. Addi-
tionally, there are works that combine diversity
and uncertainty sampling in order to enhance the
model’s performance.

3 Methods

To tackle the challenge of determining which data
to annotate, we have devised Informed Data Selec-
tion methods, which, in practice, can be thought of
as ordering algorithms when executed to comple-
tion. Random data selection can sometimes result
in an imbalanced distribution of labels for human
annotation, leading to an overabundance of certain
labels while leaving others underrepresented. Our
proposed methods also address this issue since the
labels are not known before the annotation process.
However, our findings indicate that our approach
may be conducive to achieving a more equitable
distribution of documents across various labels. We
contend that our method is particularly well-suited
for situations where humans are faced with a com-
plete lack of labeled data. Here, a dataset consists
of words, phrases or documents that must be la-
beled, and will be referred to in this paper as “doc-
uments”.

We have selected random sampling as our
baseline method and have developed three addi-
tional methods for comparison against this base-
line. These methods are constructed using distinct
heuristics: (i) The first method assesses semantic
similarity and prioritizes documents with low sim-
ilarity to those already selected; (ii) The second
method involves clustering embeddings and sys-
tematically selects one document from each cluster
based on cluster size; and (iii) The third method em-
ploys random sampling to choose documents with
lower lexical similarity, excluding those that share
too many common n-grams. Further elaboration
on these methods is provided below.

Let D be a set of documents di. Let E be the set
of embeddings for each document di ∈ D. We de-
fine C = {c1, ..., cnclasses

}, |C| = nclasses, as the
set of target classes for the classification task in su-
pervised training. Dselected is the set D rearranged
by f according to the Informed DataSelection meth-



ods proposed here, with |Dselected| = |D|,

Dselected = f(nclasses,D, E), (1)

Elements from Dselected are then selected to consti-
tute Da with the most relevant documents for label-
ing. Let nshots be the target number of annotated
documents per class. The set of annotated doc-
uments is Da = {Dc1

a , Dc2
a , ..., D

cnclasses
a }, with

|Da| = |Dc1
a |+ |Dc2

a |+ ...+ |Dcnclasses
a |. Ideally,

we want |Dci
a | = nshots.

The overannotation rate θ is defined as the ex-
cess of documents annotated with the respective
method used up to the target number nshots of an-
notated documents for each class ci ∈ C, with:

θ = |Da|/(nclasses ∗ nshots). (2)

It measures the excess of annotated documents gen-
erated by the method until the desired target nshots

is achieved for each specific class ci.
We now describe the three Informed Data Selec-

tion methods proposed in this paper.
1) Reverse Semantic Search (RSS): Given a set

of documents D, its respective set of embeddings
E, and a similarity function between pairs of em-
beddings sim(x1, x2), RSS calculates the similar-
ity matrix between all embeddings of E. The simi-
larity matrix S is an |D| × |D| matrix whose (i, j)
element equals the similarity sim(ei, ej) between
ei, ej ∈ E, with ei and ej being the embeddings of
di, dj ∈ D, di ̸= dj . RSS initially selects the two
documents with the least similarity and puts both in
a new set named Dselected. Then, iteratively, RSS
continues to select the next most dissimilar element
from the rest of the set {D−Dselected}. RSS stops
when |Dselected| = |D|. In fact, RSS sorts the doc-
uments in D based on their dissimilarity. The idea
is that the annotation process is performed for each
document in the new set generated Dselected, in or-
der, until at least nshots are obtained for each of the
nclasses.

2) Ordered Clustering (OC): Given a set of doc-
uments D and its respective set of embeddings E,
OC applies a hierarchical and density-based clus-
tering algorithm that assigns a membership proba-
bility to each document in relation to each cluster,
indicating the probability of that document being
in that cluster. Then, OC orders the clusters based
on their size, i.e., based on the number of docu-
ments that belong to a given cluster. Finally, OC
exhaustively selects the document with the lowest
membership probability from each cluster, from

largest to smallest cluster, and removes it from the
cluster, placing it, in removal order, in Dselected.
The OC iterative process stops when all clusters
are empty. Here too, the annotation process is per-
formed for each document in the new set generated
Dselected, in order, until at least nshots are obtained
for each of the nclasses.

3) Limited Lexical Similarity (LLS): Given a
set of documents D, a lexical comparison function
g(d1, d2) (based on BLEU score, ROUGE score
or other metrics) and a threshold value β, LLS
chooses the first document di randomly and inserts
it into the initially empty set Dselected. LLS then
proceeds by choosing the next document di+1 at
random, discarding it if g(di+1, di) > β and keep-
ing it otherwise. LLS stops when there are no
more documents to select. Similar to the RSS and
OC methods, the generated set can have many el-
ements. Note that in this case, |Dselected| may be
smaller than |D|, given that some documents were
discarded. Thus, the annotation takes place by re-
moving documents from Dselected, in the order in
which they were inserted in Dselected, until at least
nshots are obtained for each of the nclasses.

4 Experimental Setup

This section outlines the experimental setup for
evaluating our proposed Informed Data Selection
architecture. The evaluation is conducted on five
text classification datasets, selected to explore vary-
ing degrees of data imbalance, class diversity, lan-
guage, and domain. In this section, we present the
datasets used and describe two key experimental
settings: Human Annotation and Few-shot learning
with selected data.

4.1 Datasets
We use the following datasets in our experiments:

• AgNews (Zhang et al., 2015): A news dataset
with 4 classes and balanced data distribution.
It consists of 120,000 training examples and
7,600 test examples, available only in English.

• SST5 (Socher et al., 2013): A sentiment anal-
ysis dataset with 5 classes and a slightly im-
balanced data distribution. It contains 8,544
training examples, 1,101 validation examples,
and 2,210 test examples, available in English.

• Emotion (Saravia et al., 2018): An emotion
analysis dataset with 5 classes and imbalanced
data distribution. It includes 16,000 training



Figure 1: Full Architecture of our Settings. Results from RQ 1 are evaluated with metric Overannotation Rate.
Results from RQ 2 use metrics Accuracy and Macro-F1 Score.

examples and 2,000 test examples, available
in English.

• Multilingual Sentiment Analysis (MSA) 1:
A multilingual sentiment analysis dataset with
3 classes and balanced data distribution. We
make use of the Portuguese subset of this
dataset, that contains 1,839 training examples
and 870 test examples.

• BRNews 2: A Brazilian Portuguese news
dataset with 19 classes and imbalanced data
distribution. It comprises 176,114 training ex-
amples and 176,114 test examples, available
only in Portuguese.

The train and test splits are utilized for train-
ing and evaluation, unless specified otherwise. An
overview of these datasets is provided in Table 1.
The choice of these datasets aims at isolating and
scrutinizing key data distribution variables. Our fo-
cus centers on examining the impact of factors such
as the number of samples per class, the quantity of
classes within each dataset, the extent of data imbal-
ance, and the language (English or Portuguese) on
the outcomes of Informed Data Selection methods.

Table 1: Datasets Characteristics

Dataset # docs classes Balancing Lang
AgNews 127600 4 balanced En
SST5 11855 5 slightly imbalanced En
Emotion 18000 6 imbalanced En
MSA 3033 3 balanced Pt
BRNews 352228 19 very imbalanced Pt

4.2 Research Questions
In our study, we aim to address specific research
questions through distinct experimental settings,
each designed to provide insights into the efficacy
of our Informed Data Selection methods. These
experimental settings are detailed below.

1Available on https://huggingface.co/datasets/
tyqiangz/multilingual-sentiments

2Available on https://huggingface.co/datasets/
iara-project/news-articles-ptbr-dataset

4.2.1 RQ1: Which method allows for more
efficient human annotation?

To tackle this question, we simulate a real-life sce-
nario where no annotated data is initially avail-
able, and human annotators are required to anno-
tate the data. We compare different sorting methods
designed to prioritize annotation and, leveraging
known ground-truth, we quantify the overannota-
tion rate (see Eq. 1) that each method might entail.
In this context, we compare the performance of our
Informed Data Selection methods with that of a
random sampling strategy, referred to as Random.

4.2.2 RQ2: Which method yields better
few-shot learning?

To address this second question, we turn our atten-
tion to models trained on the dataset created in the
context of RQ1. The goal is to determine whether
the more efficient annotation process comes with a
price, and could potentially lead to biased models,
resulting in decreased performance compared to
conventional random sampling. Conversely, our
initial hypothesis suggests that Informed Data Se-
lection, by increasing data diversity, will lead to
model improvement, as it provides more knowl-
edge with same amount of training data.

4.3 Evaluation Metrics

Within the context of RQ1 setting, the primary eval-
uation metric is the overannotation rate θ (Eq. 2).
This metric is relevant as in resource-constrained
scenarios, the imperative lies in the minimization of
excessive annotation. For this metric lower values
mean more efficiency.

As for the RQ2 setting, we employ conven-
tional metrics commonly used in text classifica-
tion. These include Accuracy, which measures the
percentage of correctly classified instances, and,
exclusively for the very imbalanced dataset, the
Macro F1-score, a metric that calculates the har-
monic mean of precision and recall for each class
and then averages these values across all classes.

https://huggingface.co/datasets/tyqiangz/multilingual-sentiments
https://huggingface.co/datasets/tyqiangz/multilingual-sentiments
https://huggingface.co/datasets/iara-project/news-articles-ptbr-dataset
https://huggingface.co/datasets/iara-project/news-articles-ptbr-dataset


4.4 Implementation Details

For addressing RQ1, our chosen em-
bedding model for RSS and OC is
paraphrase-multilingual-mpnet-base-v23.
To perform clustering in OC, we employ the
HDBSCAN algorithm (Campello et al., 2013). We
employ BLEU score (Papineni et al., 2002) as
comparison function in LLS. The entire process
for LLS and Random is executed identically 10
times, and results are reported as mean values
along with confidence intervals.

Regarding RQ2, we train models under two dis-
tinct configurations to isolate the influence of the
training algorithm for few-shot learning. We utilize
the HuggingFace Transformers library (Wolf et al.,
2020) and employ the following methods:

• FINETUNE: We fine-tune the
XLM-Roberta-large (Conneau et al.,
2020), a pre-trained encoder-based Language
Model, following conventional fine-tuning
procedures for Sequence Classification. The
training process spans 30 epochs with a
learning rate of 2× 10−5.

• SETFIT: For this method, we utilize Sentence
Transform fine-tuning (SetFit) (Tunstall et al.,
2022), an efficient approach for few-shot
learning in encoder-based models. SetFit
dynamically generates training pairs from
annotated data and leverages contrastive
loss for training the model on the classifica-
tion task. As the base model, we also use
paraphrase-multilingual-mpnet-base-v2.

Results in RQ2 for LLS and Random, which
exhibit stochastic behavior, are presented in terms
of mean values and standard deviations across 10
runs. The experiments are conducted across a range
of nshots values, specifically 8, 16, 32, and 64, with
a batch size of 16 for the training process.

5 Results

We compare the performance of our proposed In-
formed Data Selection methods with random sam-
pling strategy on the five datasets.

5.1 Efficiency in Human Annotation (RQ1)

Charts in Figure 2 show results for experiments
where we measure the overannotation rate θ as

3Available on https://huggingface.co/
sentence-transformers/paraphrase-mpnet-base-v2
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Figure 2: Overannotation Rate θ per Dataset and
Method.

https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2


a function of the number of samples per class in
the Dataset, for each method (RSS, OC, LLS and
Random as baseline). Methods LLS and Random
are executed 10 times, and averaged results (along
with confidence interval) are shown.

In balanced datasets, we observe that no
method consistently outperforms the random
baseline. This is seen in AgNews and MSA. It
can be explained, as we have mentioned before, by
the distribution of classes in these datasets: both are
heavily balanced, which tend to favor random sam-
pling methods. So, when it comes to balanced data
distributions, the human may not worry about over-
annotation of the random method. It is interesting
to note that in MSA, when nshots is in the range of
30 to 60, RSS would indeed be a better choice than
random sampling. Also, our methods are slightly
more competent in MSA than in AgNews. The lan-
guage factor may play a minor role here: because
our embedding model, although multilingual, was
trained on more English than Portuguese data, its
embeddings are less tuned to the Portuguese lan-
guage, which might explain why RSS promotes
variety for a longer range of nshots, but eventually
converges with most other methods. Aside from
this possible model-related factor, language does
not seem to be a relevant factor for our selection
methods.

For imbalanced data distributions, two of our
methods consistently outperform random sampling:
RSS and OC. We observe a lower overannotation
rate θ in SST5 and Emotion when nshots < 30,
indicating that both RSS and OC are a better fit
than random sampling in imbalanced distributions.
As we increase nshots further from 30, only RSS
in the Emotion dataset worsens, but methods are
overall are more efficient in choosing which data
to annotate, generating less excess of annotations.

For a heavily imbalanced distribution, we see
a different behavior. We observe that as number
of classes and data imbalance grow, overanno-
tation rate θ increases for every method tested
(BRNews has 10 times more overannotation rate
than balanced datasets). In turn, OC generates too
much overannotation rate (more than 6 times than
Random baseline), and is thus considered an outlier
and excluded from the chart.

Results show that RSS considerably outper-
forms Random baseline for nshots < 40. This
is once again due to the fact that this dataset has
a much higher number of classes, with very im-
balanced distribution of documents per each class,

much closer to a real-life scenario humans find
themselves. In these scenarios, our method thrives,
generating as few as half excess annotations when
compared to the Random method. However, as
observed for every dataset, our methods and Ran-
dom baseline also converge when nshots increases
further away from around 50.

5.2 Model Performance (RQ2)
Figure 3 shows results for experiments where we
compare the performance of classifiers trained with
data selected by our methods and the Random
method. Because OC fails to generate a feasible
excess of annotation for BRNews, it is deemed as
not applicable and therefore excluded from reports.

As a general result, we observe that our meth-
ods OC and LLS fail to consistently outperform
the Random baseline. However, RSS outperforms
random sampling in almost every scenario. For
both FINETUNE and SETFIT, RSS is better than
random sampling for every dataset with the excep-
tion of the AgNews, where random sampling yields
higher accuracy. A mix of many factors may be re-
sponsible for this: first, AgNews is balanced, which
favors random sampling when selecting training
data; second, the task of AgNews is simple when
compared to other datasets, because classes in it
have distinct traits (ie. they refer to distinct themes,
such as Sports, Technology, etc) which may help
with decision boundaries of the model. The other
balanced dataset, MSA, does not have these distinct
traits for its classes, which instead express a kind of
gradation (ie. Positive, Neutral, Negative). In other
words, the classification task in MSA is tougher,
which means that selecting data with more variabil-
ity can effectively boost model performance.

We note that the higher the degree of data
imbalance, the more consistently RSS will out-
perform random sampling. However, reporting
only accuracy in a heavily imbalanced dataset is
insufficient to adequately represent performance of
a classifier. Thus, Table 2 shows results of Macro-
F1 Score for both training methods in BRNews.
We see that for FINETUNE, RSS performs con-
sistently better, while SETFIT also shows a slight
improvement when compared to Random, falling
above the confidence interval only for nshots = 8.
This is an indicative that both RSS and Random
methods perform almost equally well across
classes, disconsidering imbalance among classes.
This indicates that both methods succeed at select-
ing diverse data for model training. Still, RSS
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Figure 3: Accuracy over evaluation datasets.

provides higher accuracy, turning it into the rec-
ommended method for low-resource setups.

Table 2: FineTune and SetFit F1-Score Macro for Ran-
dom Selection on BRNews dataset.

Training nshots RSS Random
FINETUNE 8 58.6 56.7 ±2.3
FINETUNE 16 62.0 60.6 ±0.8
FINETUNE 32 65.2 62.8 ±0.9
FINETUNE 64 66.8 63.6 ±0.5
SETFIT 8 46.83 45.0 ±1.7
SETFIT 16 48.8 48.8 ±1.9
SETFIT 32 52.3 52.2 ±1.0
SETFIT 64 55.9 55.6 ±1.2

Another important result is the convergence of
all methods when nshots grows. Because our
methods are suited to the construction of a very
first version of a dataset for Active Learning, both
overannotation rate and model performance con-
verge when nshots > 64. A reason is that, as the
number of selected data grows, diversity will also
grow. Although results show that our selection
methods promote more diversity for lower nshots,
any selection method that does not apply oversam-
pling will bring diversity if nshots keeps increasing.
Thus, other methods outpace ours in promoting di-
versity when we leave the realm of few-shot – i.e.
when we annotate too much data. This means that
when the desire is to annotate lots of data per
class, most methods evaluated in this work are
not suited to the selection, with random sampling
being a better strategy.

6 Conclusion

This work has proposed an automatic Informed
Data Selection architecture which aims to select
which data should be annotated by a human to build
a first dataset. We simulated 2 scenarios, and exper-
imental results we report show our architecture is
a better option than random sampling methods for
few-shot learning. We have shown that the higher
the imbalance in the dataset, the more competent
our method is – both in generating less excess of
annotation and in improving model performance.
As far as we know, there are few works that address
the imbalance problem as a variable of a supervised
dataset.

In particular, the Reverse Semantic Search (RSS)
method has shown to be the most competent in ex-
periments across different languages, number and
imbalance across classes. However, it should be
noted that for Limited Lexical Similarity (LLS), a
numeric threshold is specified. This work has not



fine-tuned this hyperparameter, instead it was cho-
sen by manually inspecting results with different
thresholds.

Results indicate that fine-tuning this threshold
can improve the overannotation rate and accuracy
of LLS, as its standard deviation in many datasets
is smaller than that of the Random method. The
same can be said about using another comparison
function, such as ROUGE score. The need for
fine-tuning may be amplified in very specialized
domains with unusual vocabulary – however, more
experiments are needed to confirm this observation.

We also note that the Ordered Clustering (OC)
method did not provide consistent results across
many datasets. Because our method relies on pick-
ing one document from each cluster, when the num-
ber of identified clusters is high, OC fail to select
quality data. This can be addressed by combining
clustering with RSS or LLS, and is an attractive
direction for future work.

Our concluding remark underscores a frequently
overlooked aspect in the realm of few-shot learn-
ing, particularly in scenarios where labeled data
is scarce. Many studies in few-shot learning of-
ten assess their methods across a range of datasets,
typically characterized by a balance or slight imbal-
ance in class distribution. While there are excep-
tions, those works that do evaluate on imbalanced
datasets often fail to adequately address the con-
sequences of such imbalance. The reality is that
in real-world applications, balanced data distribu-
tions are a rarity. Hence, we advocate that authors
engaged in few-shot learning techniques should be
cognizant of this reality, and whenever feasible,
report metrics that account for imbalance in their
evaluations.
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