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Abstract
Dialect Identification is the task of determining
the regional or social variety of a spoken or writ-
ten language. While specific languages have
received considerable attention in this regard,
others, such as Portuguese, remain largely un-
explored. Furthermore, previous works on the
Portuguese language are often outdated in the
rapidly evolving landscape of NLP, and many
suffer from methodological flaws. We revisit
the task of differentiating between European
and Brazilian variants of Portuguese, address-
ing and rectifying the mistakes found in prior
research. For that, we carefully select a paral-
lel corpus and explore both feature-based tra-
ditional classifiers and state-of-the-art neural
approaches. Our findings1 demonstrate that
whereas Transformer-based models provide so-
lutions that are robust to out-of-distribution
data, traditional NLP techniques are still com-
petitive in this task.

1 Introduction

Dialect identification (DI) is crucial for enhancing
language processing tasks, enabling a better under-
standing of regional and social variations in com-
munication – an essential aspect in computational
sociolinguistics (Nguyen et al., 2016). These vari-
ations can range from subtle grammar changes to
the same word having entirely different meanings,
which may imply a different appropriate social set-
ting. Therefore, NLP applications must be aware of
the regional variety of the language they work with.
Several tasks have been created to encourage the
development of systems capable of handling these
tasks, such as the Discriminating between Simi-
lar Languages (DSL) shared task organized under
the Workshop on Applying NLP Tools to Similar
Languages, Varieties and Dialects (VarDial) (Aepli
et al., 2023) or the Nuanced Arabic Dialect Identi-
fication (NADI) shared task (Abdul-Mageed et al.,

1Code and results available at: https://github.com/d
tpreda/ata-portuguese-di

2023). These tasks cover a few languages and a
limited set of dialects.

Some work has been done on Portuguese DI.
Existing work in linguistics details grammatical
differences between European (PT-PT) and Brazil-
ian (PT-BR) Portuguese variants (Mattos e Silva,
2013; Rio-Torto et al., 2022). The task of distin-
guishing between what are arguably the most eco-
nomically relevant variants of Portuguese has re-
ceived some attention, including in the DSL shared
tasks (Zampieri et al., 2014; Aepli et al., 2023).
However, some of the past approaches to DI in
Portuguese suffer from methodological flaws. For
instance, Zampieri and Gebre (2012) mention how
entity names influence their models, thus deviat-
ing from DI through spurious correlations in the
training data, which affects model generalization.
On the other hand, the corpus collection used in
DSL shared tasks (Tan et al., 2014) reveals some
issues with the quality of the samples, namely their
size, provenance, and label quality (Zampieri et al.,
2023). By revisiting this problem, we intend to re-
fine good practices for training DI models through
careful data selection.

Our research strives to explore the task of Por-
tuguese Dialect Identification (PDI) further. To
accomplish this, we assess the performance of mod-
ern NLP techniques against classical methods. This
is especially pertinent in light of the rapid advance-
ments in NLP techniques. Additionally, we explore
text length variability during training and evalu-
ation, aiming to uncover its influence on model
performance. By addressing these two critical as-
pects, we contribute valuable insights to the field
and encourage others to join us in enhancing PDI.

Our contributions can be summarized as follows:

• We define a non-exhaustive set of useful fea-
tures to distinguish European Portuguese from
Brazilian Portuguese.

• We explore how different approaches perform
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in PDI, investigating whether traditional NLP
techniques do a good job compared to state-
of-the-art Transformer-based models.

• We analyze how text length variability influ-
ences PDI models’ performance.

• We provide robust state-of-the-art neural ap-
proaches for PDI.

2 Related Work

Language identification has been heavily studied
(Jauhiainen et al., 2019), as it is particularly signif-
icant in our multilingual digital landscape, where
diverse languages and dialects coexist. Identifying
the employed language (Bender, 2011) facilitates
effective communication and enhances the perfor-
mance of language-dependent applications. Di-
alect identification can be seen as a particular case
of language identification (Franco-Salvador et al.,
2017). An example of this closeness is the work
by Ljubesic et al. (2007) in distinguishing Croatian
from other Slavic languages, which contain a high
degree of lexical overlap.

The DSL shared tasks started in 2014 (Zampieri
et al., 2014; Tan et al., 2014), with 13 languages and
varieties divided into six groups. One of the groups
is composed of the PT-PT and PT-BR Portuguese
variants. The task has seen four editions (Zampieri
et al., 2014, 2015; Malmasi et al., 2016; Zampieri
et al., 2017) using the DSL corpus collection (com-
posed of short excerpts of newspaper texts), which
has also evolved to cover other languages.

In the first edition (Zampieri et al., 2014), the
best system used a two-step classification approach:
first predicting the language group using a Naive
Bayes classifier and then discriminating between
varieties within the chosen group using an SVM
classifier. Most systems used words and charac-
ter n-grams as features, while some have also ex-
plored using lists of words exclusive to a particular
language or variety. Although the task included
an open submission track where systems were al-
lowed to be trained using data from outside the
DSL collection, those that did ended up performing
worse than the closed track submissions. In the sec-
ond edition (Zampieri et al., 2015), the organizers
included an additional test set, where capitalized
named entities were replaced by placeholders, to
avoid topic bias in classification while evaluating
the influence of proper names in the classifiers’ per-
formance. The best-performing system was based

on an ensemble of SVM classifiers, using word
unigrams and bigrams and character n-grams as
features. In this edition, the organizers conjectured
that it would be relevant to analyze the influence
of text length on the classification performance.
In the third edition of the task (Malmasi et al.,
2016), the organizers created two out-of-domain
test sets, based on Twitter posts, for a subset of
the languages to assess further the ability of the
participating models to generalize. As before, most
systems used standard word and character n-gram
features and standard classifiers such as SVM and
logistic regression. Some participants used neural
network-based approaches, which did not turn out
to be competitive. The fourth edition (Zampieri
et al., 2017) followed previous trends (Medvedeva
et al., 2017). The winning participant used an SVM-
based two-step approach for classification and re-
lied on BM25 weighting for feature representation,
which was found to work better than TF-IDF. It has
also added features such as the proportion of cap-
italized letters, punctuation marks, and POS tags
modeled as n-grams for Latin languages such as
French, Portuguese, and Spanish.

Acknowledging problems with the DSL corpus
collection (namely issues with sample sizes, prove-
nance, and label quality), a 2023 edition of DSL
used a human-annotated corpus (Aepli et al., 2023;
Zampieri et al., 2023). However, this new dataset
adds a layer of complexity, as it includes an addi-
tional “neutral” label for cases where a text excerpt
does not present enough information for discrimi-
nating between two similar languages or varieties.
As an outcome, most participating systems have
fallen below the provided baselines.

Some shared tasks have focused on a larger num-
ber of dialects within a language, such as for Arabic
(Malmasi et al., 2016), German (Zampieri et al.,
2017), Italian or French Aepli et al. (2022). The
NADI shared task (Abdul-Mageed et al., 2020)
aimed to address the complexity of Arabic, a lan-
guage with diverse dialects and language variants,
some of which lack mutual intelligibility. Despite
its linguistic diversity, Arabic is often erroneously
treated as a single, unified language. Some works
in these tasks have focused on Transformer-based
models (Camposampiero et al., 2022; Martin et al.,
2020; Shammary et al., 2022; Khered et al., 2022),
with some of these approaches reaching the best
performances on the leaderboard.

Specifically targeting Portuguese, two salient
works have explored the differences between PT-



PT and PT-BR. Marujo et al. (2011) translate be-
tween the two dialects. Zampieri and Gebre (2012)
use character and word n-gram models to classify
texts into PT-PT or PT-BR accurately. However,
potential bias was noted due to the choice of data,
as the authors have used two distinct journalistic
corpora, one from texts published in 2004 by the
Folha de São Paulo newspaper for Brazilian Por-
tuguese and the other from texts published in 2007
by Diário de Notícias for European Portuguese.

An important issue to consider in PDI is the
coming into force in 2009 of the Portuguese Lan-
guage Orthographic Agreement (Ricardo, 2009) in
both Portugal and Brazil. This spelling reform has
the potential to significantly impact the few prior
works done for PDI, given its effect on unifying
orthography in the Portuguese language.

3 Dataset

The dataset choice for dialect identification is of
utmost importance – a careless choice may lead to
a biased model, predicting something other than
the dialect. Zampieri and Gebre (2012) kickstarted
the development of PDI, but the authors mention
that region-specific entity names easily influence
the model. This is due to the models being trained
on local newspapers from different time periods
without masking any content that may flag which
newspaper the text comes from.

Furthermore, in the same way a model may tie
dialects with entity names, it can also associate
writing styles, genres or topics with each class. For
example, if one of the dialects is represented by a
set of medical texts while others focus on sports
news, the model may deviate from its intended
purpose and distinguish between themes instead.

To avoid these issues, one should rely on com-
parable corpora (Zanettin, 2014) containing doc-
uments that share some thematic or topical simi-
larity while being produced in different languages.
However, obtaining such corpora for different lan-
guage variants is hard, as ensuring that documents
within comparable corpora share thematic or topi-
cal similarity requires careful curation to create a
meaningful and coherent collection. To circumvent
this problem, we rely instead on a parallel corpus
containing the same text translated into various lan-
guages and dialects. Note that a parallel corpus
can also be seen as a comparable one, even though
different versions of the same text are actually trans-
lations instead of being natively created in differ-

ent languages. Tiedemann and Thottingal (2020)
collect and maintain parallel corpora with several
different topics, genres, and formats. In particular,
we focus on the Ted Talks 2020 (TED2020) dataset
(Reimers and Gurevych, 2020), which contains a
crawl of nearly 4,000 TED and TED-X transcripts
both in European (PT-PT) and Brazilian Portuguese
(PT-BR). This allows us to focus solely on the dif-
ferences between dialects instead of getting other
aspects of the text mixed up during training.

3.1 Data Preparation
We gathered the first 2,000 samples from the orig-
inal TED2020 dataset. However, to investigate
the impact of varying text length on model per-
formance, we created three different versions of
the dataset: (1S) transcripts are split at a sentence
level; (4S) transcripts are split into groups of 4 sen-
tences; (FT) original unsplit form (full transcripts).
While allowing us to increase the amount of data,
this multi-faceted approach will enable us to draw
meaningful conclusions about the effectiveness of
our models under various text length conditions.

If the samples are too short (particularly at a sen-
tence level), insufficient information will be avail-
able to distinguish between the dialects. Therefore,
for each version, we group the instances into bins
according to their size, and a threshold is set so
that most instances with lengths smaller than that
of the most common bin (the mode) are removed.
Ultimately, we filter out samples with less than 10,
40, and 500 characters for the 1S, 4S, and FT ver-
sions, respectively. Afterwards, a quality filter is
passed through the data, removing entries contain-
ing special characters. Furthermore, identical entry
pairs from different dialects were removed (these
are likely to occur in sentence-level splits, given
the high similarity between PT-PT and PT-BR).

We split each dataset into a 60:20:20
train/dev/test split. Table 1 shows the final
composition of all three dataset versions – the
number of samples per class slightly differs due to
the quality filters.

3.2 Morphosyntactic Features
Finally, we run Part-Of-Speech (POS) tagging on
all samples, to incorporate POS tags as features
during training. We use a POS tagger2 trained on
the Mac-Morpho (Fonseca et al., 2015) corpus. We
default to a single tagger for two different reasons.

2Available at https://github.com/inoueMashuu/POS
-tagger-portuguese-nltk
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Version
Train Dev Test

PT-PT PT-BR PT-PT PT-BR PT-PT PT-BR
Single Sentence (1S) 84719 85759 22219 22324 24129 23952
4 Sentences (4S) 26523 26793 6913 6856 7454 7324
Full Transcript (FT) 914 905 337 297 355 304

Table 1: Dataset composition (number of samples) after data preparation.

Firstly, using a tagger per language may imply the
usage of two different tagsets, which would intro-
duce unwanted bias into the data. Secondly, even
if the tagset was the same for all taggers, we have
no way of knowing which dialect we are dealing
with at test time, and we would be unable to decide
on one tagger over the other.

4 Feature-Based Approaches

We begin exploring PDI through feature-based
models. Based on previous works on Portuguese
variant conversion (Marujo et al., 2011) and on a
compilation of representative linguistic aspects that
characterize the differences between PT-PT and
PT-BR (Rio-Torto et al., 2022), we developed a
set of handcrafted features, which we present in
Table 2. It is worth noting that vocabulary-based
features are non-exhaustive, as there are many vo-
cabulary differences between the dialects, and, to
the best of our knowledge, a readily available list
with corresponding word pairs does not exist.

We present the results for our first models in
Table 3. The macro-F1 score is used as it gives a
better picture of how the model is handling both
classes, and it is used extensively in DI literature
(Jauhiainen et al., 2022a, 2021; Bayrak and Issifu,
2022). We opt for exploring Naive-Bayes (NB) as
it is reported to have a good performance on dialect
identification shared tasks for other languages, in
particular, European Romance languages (Jauhi-
ainen et al., 2022a, 2021), more similar to Por-
tuguese. Furthermore, we also train Logistic Re-
gression (LR) classifiers, which have also been
reported as suitable for DI (Camposampiero et al.,
2022). Albeit the crudeness of the features and the
simplicity of the models, the results are promising,
especially for longer samples, where the repetitive
occurrence of the crafted features allows the mod-
els to learn the distinction between classes despite
having a smaller number of examples. As these
models are feature-based, with most features rely-
ing on grammar (thus being context-agnostic), we
believe them to be good baselines for later models.

A question that might arise when looking at Ta-
ble 3 is whether better results for longer texts are
due to the model’s performance or the nature of
the dev set being evaluated. In other words, how
differently will the models perform when provided
with texts of varying lengths? To investigate this,
we evaluate models for each combination of train
and dev sets. The results obtained are shown in Ta-
ble 4. The differences are, in fact, primarily due to
the text length in the validation set. It is interesting
to observe that training on longer text leads to only
marginally better results.

The results of feature-based approaches in the
TED2020 test sets are included in Table 9 of the
Appendix.

5 N-Gram-based Models

As done in works for DI in other languages (Cam-
posampiero et al., 2022; Jauhiainen et al., 2022a),
we explore word-level n-grams in conjunction with
shallow NLP techniques. We conducted an investi-
gation into how increasing the n-gram count influ-
ences the results while reanalyzing the impact of
variations in text length. At the same time, we also
explore how POS tags can help these classifiers
achieve better performance.

Our experimentsrevealed that, for most cases,
bigrams report better performance than any other
n-gram count. In Table 5, we report the results for
all models trained on bigrams. It is worth noting
that the features passed to each classifier are simple
word counts with a limit of 10,000 features.

As in Camposampiero et al. (2022), Logistic
Regression reports the best results, especially with
the help of POS tags. However, contrary to feature-
based model results in Table 4, training with shorter
text obtains slightly better results. It is, therefore,
uncertain which option is more suitable as a general
rule. Still, similar to Table 4, longer texts in the
validation set lead to better results.

The results of bigram-based approaches in the
TED2020 test sets are included in Table 10 of the
Appendix.



Name Description

Pearson Correlation
with Label

(Training set)
1S 4S FT

pt_pt_pronoun_
position_hints_bool

PT-PT pronoun-based hints, in the
format verb-personal_pronoun

0.191 0.338 0.352

pt_pt_pronoun_position_hints 0.185 0.321 0.641
a_plus_infinitive_count_bool PT-PT verb-based hints: preposition a

followed by an infinitive verb
0.174 0.281 0.175

a_plus_infinitive_count 0.171 0.280 0.586
count_article_before

_possessive_pronoun_bool
PT-PT article based hints, verifying

the presence of an article
before a possessive pronoun

0.125 0.213 0.453

count_article_before
_possessive_pronoun

0.122 0.204 0.523

count_portuguese_words
PT-PT vocabulary-based hints,
detecting PT-PT specific words

0.060 0.099 0.358

pt_pt_second_
person_hints_bool

PT-PT vocabulary-based hints,
verifying the use of typical PT-PT
personal and possessive pronouns

0.039 0.060 0.036

pt_pt_second_
person_hints

0.038 0.057 0.098

count_acute_accent
Count of acute accents,

typically more frequent in PT-PT
0.018 0.026 0.020

count_uncontracted_
words_bool

Count of uncontracted prepositions,
typically more frequent in PT-BR

-0.017 -0.028 -0.044

count_uncontracted_words -0.016 -0.074 -0.106

count_brazilian_words
PT-BR vocabulary-based hints,
detecting PT-BR specific words

-0.043 -0.074 -0.269

count_circumflex_accent
Count of acute accents,

typically more frequent in PT-BR
-0.148 -0.234 -0.400

pt_br_pronoun_position_
hints_bool

PT-BR pronoun-based hints,
in the format personal_pronoun verb

-0.164 -0.203 –∗

pt_br_pronoun_position_hints -0.175 -0.286 -0.423
pt_br_second_

person_hints_bool
PT-BR vocabulary-based hints,

verifying the use of typical PT-BR
personal and possessive pronouns

-0.172 -0.260 -0.174

pt_br_second_
person_hints

-0.170 -0.264 -0.488

gerund_count_bool PT-BR verb-based hints, gerund verbs,
detected by ndo end of word

-0.207 -0.343 -0.229
gerund_count -0.195 -0.321 -0.643

Table 2: Full list of features for distinguishing PT-PT (positive class, label=1) from PT-BR (negative class, label=0).
Suffix _bool refers to a flag that signals the presence of the feature. *Missing due to an unknown error during
calculation.



Dataset NB LR
1S 0.650 0.671
4S 0.772 0.778
FT 0.965 0.976

Table 3: Macro-F1 scores for feature-based models on
dev sets. NB = Naive Bayes, LR = Logistic Regression

Train Set Dev Set NB LR
1S 1S 0.650 0.671
1S 4S 0.775 0.769
1S FT 0.964 0.972
4S 1S 0.649 0.690
4S 4S 0.772 0.778
4S FT 0.971 0.972
FT 1S 0.683 0.692
FT 4S 0.778 0.762
FT FT 0.965 0.976

Table 4: Macro-F1 scores for all combinations for
feature-based models on the dev sets. Values in bold are
the best for each dev set and classifier type.

5.1 Adaptive Naive-Bayes

Jauhianien et al. (Jauhiainen et al., 2021, 2022b,a)
have shown promising results with European Lan-
guages using an adaptive version of Naive-Bayes
(ANB). Instead of starting with a new model and
train it with the available data, this method be-
gins with a pre-trained model. In Jauhiainen et al.
(2021), the authors start with another of their NB
approaches as the base model. The training data is
divided into n fractions. Then, for each fraction,
the top k samples for which the model is more con-
fident are used to continue training the model. In
this context, confidence is the difference between
the probabilities of the sample belonging to one
class or the other. A simple threshold α defines
whether the model is confident about an example.
This process is repeated for all fractions until one of
two conditions is met: all samples within the frac-
tion have been processed, or a maximum number i
of iterations has been reached. In this approach, α,
n, k, and i are hyper-parameters of the model.

We adapt this method to our needs and resources
– we start from simpler models trained on a subset
of the data, and we do not fine-tune the algorithm
parameters (such as the number of iterations or the
fixed size fraction of lines with the highest score).
We restrict our experiments to only the 4S and FT
versions of the datasets due to the computational

demand in running this algorithm for the 1S ver-
sions. For all models, we set n to one-tenth of the
size of each split and experiment with i equal to 4
and 10. We report our top 3 results for each dataset
version and split size combination in Table 6. Once
again, we focus on bigrams, which perform better
than other n-gram counts.

Although the difference in performance is no-
table when varying the number of iterations for the
4S version, we observe no significant improvement
compared to the results in Table 5.

The results of ANB-based approaches in the
TED2020 test sets are included in Table 11 of the
Appendix.

6 Transformer-Based Models

Following recent trends in efficiently fine-tuning
Transformer-based models, we perform low-ranked
adaptations (Hu et al., 2022) on Albertina (Ro-
drigues et al., 2023), a DeBERTa V2 base model
(He et al., 2021) pre-trained on Brazilian or Euro-
pean Portuguese text. A linear layer is stacked on
top of the model, converting it to a binary classifier
that is then fine-tuned for PDI.

Low-ranked adaptations (LoRA) is a method
to enhance the efficiency of language models cus-
tomized for specific tasks by reducing the number
of training parameters while surpassing the per-
formance of other fine-tuning techniques. This is
achieved by freezing pre-trained model weights
and incorporating two additional weight matrices
for task-specific adaptation. After training, these
weights can be combined with the frozen weights,
eliminating latency during inference and providing
a significant advantage over alternative low-rank
adapters (Houlsby et al., 2019; mahabadi et al.,
2021; He et al., 2022).

We use the 4S version dataset (taking the FT ver-
sion would surpass the model’s max input length
while the 1S version would contain too little infor-
mation). We train the models for ten epochs with
a batch size of 8, a maximum context length of
128, and the following hyper-parameters for low-
rank adaptation: r = 8, alpha = 32, dropout = 0.05,
learning rate = 2× 10−5, weight decay = 0.05.

The scores shown in Table 7 are from the check-
point with the highest macro-F1 score on the val-
idation set. Despite beating all other models for
identical data setups (that is, compared with the
models for the 4S train / test sets in Table 10), the
edge provided by these models is negligible if we



Train Set Dev Set NB LR NB-POS LR-POS
1S 1S 0.784 0.794 0.801 0.818
1S 4S 0.908 0.926 0.924 0.945
1S FT 0.996 1.0 0.996 1.0
4S 1S 0.785 0.774 0.801 0.790
4S 4S 0.907 0.907 0.923 0.927
4S FT 0.994 1.0 0.996 1.0
FT 1S 0.783 0.701 0.797 0.690
FT 4S 0.903 0.800 0.921 0.806
FT FT 0.994 0.988 0.996 0.988

Table 5: Macro-F1 scores for bigram-based models on the dev set. Values in bold are the best for each train-dev pair.

Dataset #Splits #Iter ANB ANB-POS
4S 2 4 0.854 0.887
4S 4 4 0.813 0.857
4S 8 4 0.792 0.835
4S 2 10 0.907 0.923
4S 4 10 0.907 0.923
4S 8 10 0.908 0.923
FT 2 4 0.991 0.996
FT 4 4 0.991 0.993
FT 8 4 0.991 0.994
FT 2 10 0.991 0.996
FT 4 10 0.996 0.996
FT 8 10 0.993 0.996

Table 6: Macro-F1 scores for the bigram-based ANB
models on the dev set. Values in bold represent the best
score for each train/dev set and number of iterations.

take into account their computational requirements.

Model Train/Test Set Macro-F1
Albertina PT-PT 4S 0.936
Albertina PT-BR 4S 0.938

Table 7: Macro-F1 scores for the fine-tuned Albertina
with LoRA models on the test set.

7 Cross-Dataset Analysis

Despite our satisfactory results, we have only
worked within the closed domain of a parallel cor-
pus on TED talks. A good PDI model should
be able to exhibit equally good cross-dataset per-
formance. To assess that, we evaluate our best-
performing models against out-of-distribution cor-
pora. We pick two distinct datasets whose exam-
ples we feed to any of our models as full transcripts.

7.1 Folha de São Paulo

We test our models against a Folha de São Paulo
(FSP) dataset3, which contains PT-BR news articles
from between 2015 and 2017. After filtering out
samples with less than 200 characters, we ended
up with 2256 samples.

7.2 FEUP news corpus

To obtain a similar out-of-distribution corpus for
PT-PT, we sampled articles from the FEUP news
corpus4, which contains articles from several Por-
tuguese media channels, namely newspapers, from
2016. Again, we filtered out samples with less than
200 characters and sampled 2256 news articles.

7.3 Results

We show cross-dataset results for our models in
Table 8. For feature-based models, we pick those
trained on the FT data versions (Table 9 shows
a best overall performance in this setup). As for
bigram-based models (see Table 10), those trained
on the 1S data versions seem to have a slight edge.

Feature-based models exhibit a considerable
drop in performance, comparing the results for
feature-based approaches using FT for both train
and test sets (last line in Table 9) with those ob-
tained here. This is also the case for bigram models
for the FSP dataset, comparing the excellent results
relying on 1S train and FT test datasets (third line
in Table 10) with those for FSP using these models.
For the FEUP News Corpus, on the other hand, the
classifiers remain very competent. In fact, the LR
bigrams model stands out as the one with the high-
est Macro-F1 score in cross-dataset results. We

3https://www.kaggle.com/datasets/marlesson/ne
ws-of-the-site-folhauol

4https://hdl.handle.net/21.11129/0000-000D-F
8C2-0

https://www.kaggle.com/datasets/marlesson/news-of-the-site-folhauol
https://www.kaggle.com/datasets/marlesson/news-of-the-site-folhauol
https://hdl.handle.net/21.11129/0000-000D-F8C2-0
https://hdl.handle.net/21.11129/0000-000D-F8C2-0


Model FSP
FEUP

News Corpus
Macro-F1

NB feature-based 0.661 0.792 0.720
LR feature-based 0.829 0.700 0.766
NB bigrams 0.747 0.968 0.847
LR bigrams 0.894 0.952 0.920
NB-POS bigrams 0.634 0.982 0.789
LR-POS bigrams 0.840 0.968 0.898
Albertina PT-PT 0.723 0.990 0.854
Albertina PT-BR 0.938 0.712 0.823

Table 8: Cross-dataset results (accuracy for each corpus, Macro-F1 for the joint corpus). Feature-based models were
trained on the TED2020 FT dataset, bigram-based ones on the 1S, and Albertina-based ones on the 4S version.

leave a further analysis of the different accuracy
scores in both datasets for future work.

By comparing the results of Albertina-based
models (Table 7) with cross-dataset results, we ob-
serve they generalize well to out-of-domain data for
a corpus in the same language variant: Albertina
PT-PT generalizes well to the FEUP News Corpus,
while Albertina PT-BR generalizes well to FSP.

8 Conclusion

We revisit the problem of dialect identification and
attempt to bring attention to this task for the Por-
tuguese language, which has been underexplored
in this regard. We address the issue by following
good practices when choosing the training data for
PDI models. Differences between the European
and Brazilian dialects of Portuguese were com-
piled into a non-exhaustive, comprehensive list of
features, which is one of this work’s contributions.

In line with previous works for Romance lan-
guages (Camposampiero et al., 2022), we find tra-
ditional techniques to work reasonably well for
PDI. Transformer-based models seem to be robust
for out-of-domain data. However, the best perfor-
mance was obtained using simple representation
techniques and a traditional classifier.

Lastly, we would like to encourage others to
work on PDI. According to the Community of
Portuguese-speaking Countries5, nine countries
have Portuguese as (one of) their official language:
Angola, Brazil, Cape Verde, East Timor, Equato-
rial Guinea, Guinea Bissau, Mozambique, Portugal,
and São Tomé and Príncipe. As such, PDI goes
well beyond distinguishing between the variants
addressed in this paper.

5https://www.cplp.org/
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A Appendix

We include the results for feature-based and n-
gram-based models in the test sets.

Train Set Test Set NB LR
1S 1S 0.648 0.668
1S 4S 0.764 0.758
1S FT 0.947 0.959
4S 1S 0.645 0.686
4S 4S 0.762 0.765
4S FT 0.953 0.960
FT 1S 0.687 0.687
FT 4S 0.767 0.758
FT FT 0.944 0.965

Table 9: Macro-F1 scores for all combinations for
feature-based models on the TED2020 test sets. Values
in bold represent the best score for each test set.
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Train Set Test Set NB LR NB-POS LR-POS
1S 1S 0.781 0.790 0.799 0.815
1S 4S 0.905 0.925 0.920 0.940
1S FT 0.999 0.999 0.996 1.0
4S 1S 0.781 0.772 0.798 0.787
4S 4S 0.904 0.904 0.920 0.923
4S FT 0.997 0.999 0.996 0.996
FT 1S 0.779 0.694 0.795 0.685
FT 4S 0.900 0.789 0.914 0.685
FT FT 0.997 0.987 0.994 0.990

Table 10: Macro-F1 scores for bigram-based models on the TED2020 test sets. Values in bold represent the best
score for each test set.

Train/Test Set # Splits # Iterations NB NB-POS
4S 2 4 0.848 0.882
4S 4 4 0.809 0.845
4S 8 4 0.789 0.826
4S 2 10 0.902 0.919
4S 4 10 0.902 0.919
4S 8 10 0.904 0.920
FT 2 4 0.990 0.992
FT 4 4 0.997 0.986
FT 8 4 0.987 0.989
FT 2 10 0.997 0.994
FT 4 10 0.997 0.994
FT 8 10 0.997 0.994

Table 11: Macro-F1 scores for the bigram-based ANB models on the TED2020 test sets. Values in bold represent
the best score for each test set and number of iterations.
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