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Abstract
In recent years, there has been increased de-
mand for speech-to-speech translation (S2ST)
systems in industry settings. Although suc-
cessfully commercialized, cloning-based S2ST
systems expose their distributors to liabilities
when misused by individuals and can infringe
on personality rights when exploited by media
organizations. This work proposes a regulated
S2ST framework called Preset-Voice Match-
ing (PVM). PVM removes cross-lingual voice
cloning in S2ST by first matching the input
voice to a similar prior consenting speaker
voice in the target-language. With this separa-
tion, PVM avoids cloning the input speaker, en-
suring PVM systems comply with regulations
and reduce risk of misuse. Our results demon-
strate PVM can significantly improve S2ST sys-
tem run-time in multi-speaker settings and the
naturalness of S2ST synthesized speech. To our
knowledge, PVM is the first explicitly regulated
S2ST framework leveraging similarly-matched
preset-voices for dynamic S2ST tasks.

1 Introduction

Progress in deep learning and voice cloning tech-
nology has enhanced public access to robust AI-
driven voice cloning systems. These systems can
help solve complicated speech-to-speech trans-
lation (S2ST) tasks like automated video dub-
bing (auto-dubbing) by generating audio deepfakes
(Brannon et al., 2022; Shoaib et al., 2023; Amezaga
and Hajek, 2022). Cloning systems are desirable
for dynamic speech tasks because they can gen-
erate a clone from an input voice given an audio
sample as short as a few seconds (Arik et al., 2018).
Currently, voice cloning technology is highly un-
regulated and can be harmful if misused or com-
mercialized irresponsibly (Liu et al., 2023a).

As voice cloning systems can clone an arbitrary
voice and do not require permission, they raise
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several privacy concerns (Baris, 2024). Risks re-
lated to voice cloning technology include lack of
informed consent, biometric privacy, and the spread
of misinformation through deepfakes (Frankovits
and Mirsky, 2023; Okolie, 2023). Robust regula-
tions are necessary to mitigate these risks, protect
individual rights, and prevent misuse (Baris, 2024;
Moreno, 2024; Sudhakar and Shanthi, 2023).

The risks of unregulated voice cloning technolo-
gies are compounded by a high demand for voice
cloning-based products. Pressure to capitalize on a
newly budding market of cloning-based products
can lead businesses to emphasize speed over care-
ful and tested development. Since voice cloning
technology is so new, regulatory measures are re-
quired and in the process of being implemented,
but not yet fully in place. Given these challenges,
it is crucial to integrate privacy regulations into AI-
powered voice cloning systems (Liu et al., 2023b;
Tee and Murugesan, 2021; Tariq et al., 2023).

To address the need for regulated voice cloning
technology, we propose Preset-Voice Matching
(PVM), a regulated S2ST framework. PVM bakes
regulatory precautions into the S2ST process by re-
moving the explicit training objective of cloning an
unknown input speaker’s voice, and instead cloning
a similar preset-voice of a consenting speaker.
PVM can be easily installed on top of existing cas-
caded S2ST pipelines, improving regulatory com-
pliance. We find this process also decreases system
run-time in multi-speaker auto-dubbing scenarios
and improves speaker naturalness relative to state-
of-the-art voice cloning systems when translating
across our tested languages.

The intention of this paper is to put forward
a regulated PVM S2ST framework that is robust
against legislative changes and future liability con-
cerns. We demonstrate PVM is desirable for S2ST
over current benchmark voice cloning frameworks
due to its inherent safety, lower run-time in multi-
speaker scenarios, and enhanced speaker natural-

52



ness. We show this by providing and testing a PVM
algorithm which we call GEMO-Match. We hope
this work inspires others to develop and tune the
framework for different high-performance environ-
ments. Our main contributions are as follows:

1. We propose PVM, a novel privacy-regulated
S2ST framework which leverages consented
preset-voices to clone a preset-voice similar
to the input voice.

2. We provide a gender-emotion based PVM al-
gorithm, GEMO-Match, and use it to demon-
strate PVM in multilingual settings.

3. We empirically analyze GEMO-Match in
terms of robustness, multilingual capability,
and run-time, on two speech emotion datasets
and discuss the implications of our system.

4. We create and provide a Combined Gender-
Dependent Dataset (CGDD), which combines
various benchmark speech-emotion datasets
for training future gender-dependent PVM al-
gorithms.

The rest of this paper is organized as follows.
Background information is provided in Section 2.
Our PVM framework and GEMO-Match algorithm
are detailed in sections 3 and 4. Relevant datasets
are described in Section 5. Section 6 explains our
experimental setup as well as the techniques, algo-
rithms, and parameters used in the study. Section
7 includes experimental results and analysis. We
discuss potential future work towards PVM and
conclude the paper in sections 8 and 9. We address
PVM limitations in Section 10.

2 Background Information

Speech-to-speech translation (S2ST) is typically
achieved by direct translation or cascaded ap-
proaches (Etchegoyhen et al., 2022). Direct trans-
lation approaches use speech and linguistic en-
coder/decoders (Jia et al., 2019) to directly translate
speech signals from one language to another. Cas-
cading architectures split S2ST into three sub-tasks,
using separate but connected speech-to-text (STT),
text-to-text (TTT), and text-to-speech (TTS) mod-
ules (Huang et al., 2023). Cascading architectures
have been the traditional method for S2ST.

Two common approaches for synthesizing
speech from text are concatenative and parametric
TTS. Concatenative TTS combines pre-recorded

clips from a database to form a final speech out-
put (Gujarathi and Patil, 2021). Parametric TTS at-
tempts to model and predict speech variations given
text and a reference voice (King, 2011). Paramet-
ric deep learning methods have shown ubiquitous
success spanning various industries from computer
vision to text synthesis (Lecun and Bengio, 1995;
Fayyaz et al., 2022; Platnick et al., 2024; Ning et al.,
2019). As deep neural network (DNN) based TTS
methods can lead to natural and expressive synthe-
sized voices, they are desirable for many speech
tasks (Barakat et al., 2024).

Wavenet is a benchmark DNN-based TTS model
(van den Oord et al., 2016). Since its creation,
there have been many advancements in sequence-
to-sequence TTS models trained to produce human-
like speech (Wang et al., 2017). Wavenet performs
speech synthesis by training on a set of human
voices, conditioning on their unique speaker ID to
generate natural-sounding utterances in the voice of
a selected speaker (van den Oord et al., 2016). Re-
cently, there have been models which aim to extend
this behavior by cloning voices unseen in training,
resulting in zero-shot voice cloning (Zhang et al.,
2023).

Cross-lingual voice cloning is difficult due to
complexities in discriminating between language-
specific and speaker-specific features within a sin-
gular waveform, and mapping these features across
different languages (Eren and Team, 2023). Addi-
tionally, training robust multilingual speech gener-
ation models requires vast amounts of processed
language and speech data in multiple languages
with a variety of utterances and speakers. The per-
formance of these models depends on the data they
are trained on (Rebai et al., 2017).

Preset-voice TTS methods generate speech from
stored options of preset or pre-recorded voices.
Preset-voice methods are typically used in static
or repetitive systems which do not require dy-
namic adaptive functionality. Examples include
pre-programmed transit operator dispatch mes-
sages, medical alert systems in healthcare, and
emergency flight announcements (Strathman et al.,
2001; Eyesan and Okuboyejo, 2013; Samaras and
Ferreira, 2019).

Due to the static nature of current preset-voice
methods, they have not previously been used for
dynamic S2ST tasks like auto-dubbing. Such dy-
namic tasks require modelling different speakers
across languages based on incoming media data
(Brannon et al., 2022). In addition to providing a
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regulated PVM framework, this work aims to ex-
tend the application of preset-voice TTS methods
to more dynamic settings.

3 Preset-Voice Matching Framework

This section explains our privacy regulated Preset-
Voice Matching (PVM) framework.

PVM bakes privacy regulations into the S2ST
process by cloning a similar and prior consenting
preset-voice, instead of the voice originally input
to the S2ST system. The PVM framework connects
to cascading S2ST architectures, performing addi-
tional computations alongside the STT, TTT, and
TTS modules. The PVM framework consists of 3
sub-modules.

Module 1, the Similarity Feature Extraction
module, extracts features from the inputted voice.
It then uses the extracted features to match the in-
put voice to the most similar preset-voice from the
Preset-Voice Library. Module 2, the Preset-Voice
Library, contains a collection of consented target-
language preset-voices, partitioned by discrete fea-
ture codes depending on the PVM implementa-
tion. Module 3, the TTS Module, generates TTS in
the target-language using the matched preset-voice
from the Preset-Voice Library.

We describe these 3 modules below in detail.

3.1 Feature Extraction and Voice Matching
The Similarity Feature Extraction module extracts
meaningful features from the input voice. These
features are used to determine the most similar con-
sented preset-voice in the target-language from our
preset-voice library. This module takes in speech
signals as input and outputs similarity feature en-
codings (gender-emotion pair combinations in the
case of GEMO-Match) to match a consented simi-
lar preset-voice.

3.2 Target-language Preset-Voice Libraries
Module 2, the Preset-Voice Library, contains a col-
lection of preset-voices in desired target-languages.
The Preset-Voice Library acts as a feature code-
book, informing the mapping between feature en-
codings and target-language preset-voice samples.
This module takes in a feature code as input, and
outputs a matched consenting speaker preset-voice
sample.

3.3 Text-to-Speech with Matched Preset-Voice
As input, the TTS Module takes in the matched con-
sented preset-voice and target-language text (from

an auxiliary TTT module). The TTS Module out-
puts a clone of the most similar preset-voice in a
desired language relative to the features extracted
in the Similarity Feature Extraction module. Any
voice cloning TTS model supporting the desired
target-languages can be used in the TTS Module.
Therefore, PVM is a general framework and is eas-
ily modifiable for many industry settings.

4 GEMO-Match Algorithm

In this section we describe GEMO-Match, an ex-
ample PVM framework implementation.

Following a similar notion to (Singh and
Prasad, 2023), GEMO-Match employs a hierar-
chical gender-dependent emotion classifier archi-
tecture trained with a gender-dependent training
method. The process of splitting gender and emo-
tion in emotion classification simplifies the emotion
classification problem. As GEMO-Match is a PVM
framework, it contains the 3 PVM modules: the
Similarity Feature Extraction module, the Preset-
Voice Library, and the TTS Module.

These modules and their process are described
below.

4.1 GEMO-Match Modules

The GEMO-Match Similarity Feature Extraction
module contains 3 classifiers in two stages. The
first stage contains the gender classifier, and the
second stage includes both the male-emotion clas-
sifier, and the female-emotion classifier. The Simi-
larity Feature Extraction classifiers are trained in
the source language (English).

In GEMO-Match, the Preset-Voice Library con-
tains previously consenting speakers in desired
target-languages for a given S2ST task. The Preset-
Voice Library partitions target-language preset-
voices by language, gender, and emotion. The num-
ber of target-languages supported by GEMO-Match
depends on the ability to gather preset-voices in
each desired target-language. The Preset-Voice
Library in our provided implementation includes
two target-languages, French and German. There-
fore, the GEMO-Match implementation can trans-
late from English to either French or German.

The GEMO-Match TTS Module performs TTS.
The TTS Module is straightforward and performs
TTS given a matched preset-voice and a text
prompt in the desired target-language. We imple-
ment GEMO-Match with two distinct TTS models,
discussed in 6.2 and 6.3.
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4.2 GEMO-Match Algorithm Flow

First, source language speech is input to the Sim-
ilarity Feature Extraction module. The gender
classifier then classifies the input voice as male
or female. Next, given the gender classification
result, the source speech is input to the correspond-
ing gender-dependent emotion classifier. The ap-
propriate gender-dependent emotion classifier will
then classify the source language speech as happy,
angry, sad, disgust, or neutral. The two-stage clas-
sifier output pair is then concatenated (i.e., Female
- Sad).

The resulting concatenation is used alongside the
intended target-language to query the most similar
preset-voice in the Preset-Voice Library. Finally,
the feature-matched preset-voice is passed along-
side a text prompt to the voice cloning TTS model.
This algorithm assumes that the intended target-
language will be an input to the system. The per-
formance of GEMO-Match depends primarily on
the robustness of the Similarity Feature Extraction
classifiers.

5 Dataset Descriptions

In this section, we describe the datasets used to test
our framework.

We experimented with two speech-emotion
datasets: the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) (Living-
stone and Russo, 2018), and the Combined Gender-
Dependent Dataset (CGDD), which we curated by
combining four benchmark speech datasets. To en-
sure compatibility with our gender-emotion based
GEMO-Match algorithm, we split the RAVDESS
dataset by gender and relabeled it with gender-
emotion pairs. Further details on RAVDESS and
CGDD are outlined in 5.1 and 5.2.

5.1 RAVDESS Dataset

RAVDESS is a benchmark emotional speech
dataset containing 1440 audio files of 24 profes-
sional actors (12 female and 12 male) with the emo-
tions calm, happy, sad, angry, fearful, surprise, and
disgust (Livingstone and Russo, 2018). As GEMO-
Match requires consistent labeling across source
and target-language data, we focus on a subset of 5
common emotions: happy, angry, sad, disgust, and
calm (neutral). Each speech sample was originally
provided with two intensities, normal and strong.
We filtered the speech files to include only strong
intensities as the emotion is more apparent in those

samples. After filtering, the RAVDESS subset con-
tains a total of 5 speech recordings per actor per
emotion.

5.2 Combined Gender-Dependent Dataset
Training a robust gender-emotion classifier requires
numerous samples of speakers from various de-
mographics, speaking a variety of utterances with
different emotional intensities. We found that
many available speech-emotion datasets have lim-
ited variance in regards to at least one of these
features. To help facilitate gender-dependent train-
ing research, we provide a Combined Gender-
Dependent Dataset (CGDD), made from combin-
ing four benchmark emotional speech datasets:
RAVDESS, CREMA-D, SAVEE, and TESS (Liv-
ingstone and Russo, 2018; Cao et al., 2014; Phukan
et al., 2023; Pichora-Fuller and Dupuis, 2020).

The RAVDESS dataset is explained in section
5.1. CREMA-D is comprised of 7,442 audio
recordings of 91 actors. These clips include 48
male actors and 43 female actors, with ages rang-
ing from 20 to 74. SAVEE database includes four
English male speakers aged between 27 and 31,
totaling 480 files. The TESS database contains two
female speakers, one aged 26 and the other aged
64, with a total of 2800 files.

The CGDD dataset is processed for gender-
dependent training, useful for hierarchical emotion
detection algorithms like GEMO-Match. We fur-
ther processed the audio based on pitch frequency
and loudness to obtain a higher-quality dataset. As
pitch and loudness are crucial attributes of speech,
we filter the data to ensure the files are within a
suitable range for speech recognition (Zaïdi et al.,
2021). Additionally, we use RMS loudness to elim-
inate excessively quiet or loud files. The best qual-
ity was found with a pitch frequency range of 75
Hz to 3000 Hz. We removed audio samples with
RMS loudness less than -23 dBFS and greater than
-20 dBFS.

5.3 Data Pre-processing
We processed the RAVDESS and CGDD datasets
to be compatible with the hierarchical gender-
dependent emotion classification architecture of the
GEMO-Match Similarity Feature Extraction mod-
ule. For both datasets, we partitioned the speech
signal files on gender and further organized them
into five gender-emotion directories. We then con-
verted the speech signals to mel-spectograms us-
ing the Fast Fourier Transform. Next, the mel-
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spectrograms were converted to image representa-
tion (PNG format) to be processed by a pre-trained
ResNet50 model initialized with ImageNet weights
(Deng et al., 2009). Our data pre-processing
methodology is similar to the procedures outlined
in (Sinha et al., 2020). The Python library Li-
brosa was used to convert speech signal files to
mel-spectrogram signals.

6 Experimental Setup

This section details the setup of each experiment,
which show additional strengths of the PVM frame-
work, beyond its inherent regulatory benefits.

We demonstrate the effectiveness of PVM for
S2ST with GEMO-Match in terms of robustness,
multilingual capability, and run-time. Our experi-
ments were run on a single Tesla T4 GPU with 40
cores. We discuss each experiment in detail below.

6.1 GEMO-Match Robustness

For this test, we assess the robustness of GEMO-
Match. The performance of GEMO-Match depends
on the three Similarity Feature Extraction classi-
fiers. We fine-tuned and evaluated these classifiers
on the RAVDESS and our CGDD dataset in terms
of accuracy and precision. Each classifier was im-
plemented as a ResNet50 previously pre-trained
on ImageNet. The results of the six classifiers are
shown in tables 1 and 2.

The same approach was used to train each
ResNet50. The gender classifiers were trained for
20 epochs, while the male-emotion and female-
emotion classifiers required 30 epochs to converge.
Each emotion classifier was trained using a dy-
namic learning rate schedule: 0.01 for the first 20
epochs, reduced to 0.001 for the remaining 10.

We used the Adam optimizer, and the Pytorch
ImageDataGenerator function for data augmenta-
tion (Kingma and Ba, 2017). The classifiers were
trained using a batch size of 32 and a train-test-
validation split of 60-20-20. The models were op-
timized using categorical cross entropy as the loss
function, incorporating batch normalization and
dropout layers for regularization. The activation
functions used were ReLU for internal layers and
softmax for the output layer.

6.2 GEMO-Match Multilingualism

We test GEMO-Match in terms of speaker natu-
ralness on the task of translating English speech
into French and German speech. GEMO-Match is

implemented within a cascaded S2ST system us-
ing SeamlessM4T for TTT, and XTTS as the TTS
module (Communication et al., 2023; Eren and
Team, 2023). XTTS is a state-of-the-art TTS model
which supports zero-shot voice cloning across 17
languages. Instead of performing STT, we pro-
vide ground truth source-language (English) text
directly to the TTT model (SeamlessM4T) to mea-
sure the isolated performance of GEMO-Match
across multiple languages. We measured speaker
naturalness using the standard metric Non-intrusive
Objective Speech Quality Assessment (NISQA)
(Mittag et al., 2021; Yi et al., 2022).

We show PVM algorithms lead to higher natu-
ralness in S2ST outputted speech by alleviating the
need to perform cross-lingual voice cloning. We
compare two cases of S2ST. The first case is when
XTTS performs cross-lingual cloning from an En-
glish voice input to the target-languages German
and French. In the second case, GEMO-Match per-
forms the cross-lingual matching, allowing XTTS
to run monolingual TTS given the matched target-
language voice as input.

The French and German preset-voices used in
this experiment are sourced from the CAFE, and
EmoDB datasets respectively (Gournay et al., 2018;
Burkhardt et al., 2005). For each target-language in
both experimental pipelines, we used 150 English
text transcriptions from the CREMA-D dataset
alongside emotive English audios from RAVDESS
as input (Cao et al., 2014). We ensured that
our RAVDESS audios had an average NISQA
(3.54) similar to the preset-voices in our target-
languages. For additional context, we included
the average preset-voice NISQA scores for both
target-languages in Table 3.

6.3 GEMO-Match Run-time
We compared the run-time of GEMO-Match to
state-of-the-art TTS models VALL-E X, XTTS,
SeamlessM4T, and OpenVoice, as shown in Figure
1 (Qin et al., 2024). The gender, male-emotion,
and female-emotion classifiers were implemented
using the same lightweight ResNet50 models as in
6.1. Each model was given 10 identical utterances
with their respective transcriptions, and average
inference run-times were calculated. The inputs
were each 15 seconds and varied in tone, emotion,
pacing, and vocabulary.

We compared PVM (using GEMO-Match) with
OpenVoice as they are both cascaded TTS frame-
works that decouple voice-cloning from voice syn-
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RAVDESS Precision CGDD Precision
Emotions Male-Emo Female-Emo Male-Emo Female-Emo

Happy 0.78 0.56 0.51 0.78
Angry 0.78 1.00 0.82 0.87

Sad 0.50 0.40 0.59 0.66
Disgust 0.30 0.40 0.78 0.72
Neutral 0.80 0.90 0.72 0.85

Table 1: Precision of GEMO-Match gender-dependent emotion classifiers (ResNet50 pre-trained) on 5 emotions
from RAVDESS and CGDD. Training the ResNet50 on the CGDD dataset results in better generalization across
emotions in terms of precision.

RAVDESS CGDD
Classifier Accuracy Accuracy
Gender 94.00 97.00

Male-Emotion 62.00 63.21
Female-Emotion 65.00 71.29

Table 2: Test set accuracies of GEMO-Match classifiers.

thesis. OpenVoice uses a variation of VITS for
TTS in its open-source implementation (Kim et al.,
2021). For consistent comparisons with OpenVoice,
we use StyleTTS2 for TTS with GEMO-Match
(Li et al., 2023). StyleTTS2 and VITS are both
styling-based models and display similar run-times.
StyleTTS2 is a monolingual TTS model, and we
use it to show the run-time benefits of PVM remov-
ing cross-lingual voice cloning in cascaded S2ST
systems.

Figure 2 compares GEMO-Match with the Open-
Voice framework in terms of run-time scaling in
multi-speaker scenarios. We plotted the number of
times each system must re-run auxiliary modules
while performing TTS over time in multi-speaker
instances. The plots were generated using Python.

7 Experimental Results and Analysis

In this section, we discuss and analyze our experi-
mental results.

Section 7.1 describes the results of the GEMO-
Match robustness experiment, contained in tables
1 and 2. Next, section 7.2 provides an analysis on
the results in Table 3. Section 7.3 then highlights
our run-time experiment results.

7.1 GEMO-Match Robustness Results

Tables 1 and 2 show the precision and accuracy
of the Similarity Feature Extraction module classi-
fiers. Testing GEMO-Match on RAVDESS across
emotions, the Male-Emotion Classifier performs

best on happy, angry, and neutral, which have pre-
cision scores of 78%, 78%, and 80%, respectively.
The Female-Emotion Classifier performs well on
angry and neutral, achieving 100% and 90% pre-
cision, respectively. We find GEMO-Match over-
fits to certain gender-emotion classes when trained
on RAVDESS. This is prevalent in the Female-
Emotion Classifier performance, as it classifies an-
gry emotions with perfect precision, but classifies
sad and disgust with 40% precision.

As illustrated in Table 1, GEMO-Match gen-
eralizes more consistently across emotions when
trained on CGDD compared to RAVDESS. In the
cases of both datasets shown in Table 1, GEMO-
Match tends to classify angry and neutral effec-
tively. The improvements in generalization de-
scribed in Table 1 when using CGDD instead of
RAVDESS showcases that some benchmarks are
currently lacking variation. CGDD can remedy this,
as it has higher variance compared to RAVDESS,
comprising of multiple benchmark datasets as de-
scribed in section 5.2.

Table 2 shows the accuracy of GEMO-Match on
RAVDESS and CGDD. The GEMO-Match gender
classifier scored 94% accuracy on the RAVDESS
dataset, and 97% on CGDD. The best GEMO-
Match emotion classifier results are found when
training and testing on CGDD, which results in
63% accuracy for the Male-Emotion Classifier and
71% for the Female-Emotion Classifier. Therefore,
our proposed CGDD dataset can improve model
generalization compared to benchmark datasets
like RAVDESS.

7.2 GEMO-Match Multilingual Results

The results in Table 3 show PVM implementations
can significantly improve the output naturalness
of S2ST systems by enabling monolingual TTS
within S2ST. We find this trend holds across the
two tested languages, French and German. When
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Target XTTS Input XTTS Output
Language NISQA NISQA
Cross-lingual Cloning (English prompt)

French 3.54 3.54
German 3.54 3.41

Monolingual Cloning (PVM-matched preset)
French 3.39 3.43
German 3.47 3.69

Table 3: Speech quality behavior when decoupling
multilingual transformation and voice cloning in S2ST.
XTTS performs significantly better when cloning in a
monolingual context. Inputs are shown in parentheses.

XTTS performs cross-lingual TTS from English to
German, NISQA values decrease from 3.54 (En-
glish) to 3.41 (German). Similarly, when XTTS
cross-lingually clones from English to French, the
input-output NISQA values are 3.54 and 3.54, re-
spectively. Overall, XTTS either maintained or
degraded the input naturalness when performing
cross-lingual cloning in our experiments.

We find XTTS performs much better in a mono-
lingual setting, which can significantly enhance
S2ST quality. The average NISQA score when
XTTS cloned from German preset-voices to Ger-
man outputs increased from 3.47 to 3.69. The same
increase is seen with French, though to a lesser de-
gree. For our tested language pairs, GEMO-Match
consistently improves output naturalness by allow-
ing S2ST pipelines to clone in a monolingual con-
text while maintaining cross-lingual behavior.

7.3 GEMO-Match Run-time Results

The run-time results of different TTS approaches
are shown in Figure 1. VALL-E X and XTTS, deep
multilingual voice cloning models, are slowest on
average. SeamlessM4T offers multilingualism in
multiple modalities, but does not clone voices, and
has significantly lower runtime than the aforemen-
tioned models. This underscores additional com-
plexities inherent to achieving speech translation
and voice cloning in a single embedding space.

In our experiments, the lowest run-times were
achieved by our PVM implementation (GEMO-
Match with StyleTTS2) and OpenVoice. Both of
these frameworks are not strictly limited to a spe-
cific TTS module for processing. As such, the
runtime of their auxiliary, decoupled systems are
noted separately in Figure 1. OpenVoice uses the
post-processing tone extractor described in (Qin
et al., 2024), and PVM uses GEMO-Match. For

Figure 1: Comparative processing times of different
models. OpenVoice’s tone extractor and GEMO-Match
are distinguished from their TTS processing times.

these isolated auxiliary modules, we achieved an
average runtime of 0.52 for OpenVoice and 0.61
seconds for GEMO-Match.

Figure 2 compares these auxiliary modules un-
der sequential inference on long multi-speaker in-
puts. For this comparison, we focus on the run-time
of the entire S2ST system. Figure 2 shows that
GEMO-Match need only run when a new speaker
is presented in the input, while OpenVoice must
always post-process the TTS output to achieve the
desired result. Therefore, PVM offers favourable
scaling properties, making it desirable for many
commercial use-cases.

8 Future Work

PVM is a general framework for regulated S2ST
that can be integrated into pre-existing cascaded
S2ST pipelines. The performance of PVM is di-
rectly dependent on the quality of the individual
swappable components of the pipeline. Conse-
quently, the efficacy of any PVM implementation is
expected to increase with general advancements in
TTS technology. There are many ways to improve
the PVM framework, and we propose some ideas
for future work.

For future work, we propose a cascaded voice
cloning TTS system which uses an initial vocal
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Figure 2: The OpenVoice tone extractor post-processes
every TTS output. GEMO-Match only needs to re-run
on the arrival of a different speaker from the one present
in the previous input.

encoder with learned weights to extract and com-
press relevant features from the input voice. The
system would perform the classical cloning tasks
on this encoded voice in a downstream, decoupled
TTS model. This would allow voices to be stored
in the Preset-Voice Library in their encoded for-
mats rather than speech signals, likely decreasing
run-time complexity. Using a cascaded learning
process, the TTS module would learn to effectively
clone and only synthesize voices encoded by the vo-
cal encoder. During distribution of the system, the
vocal encoder would not be published. In this way,
the system could not be used to clone a voice out-
side of the pre-encoded preset-voices in the Preset-
Voice Library.

GEMO-Match uses classifiers which depend on
labeled data. This dependency motivates the de-
velopment of alternative PVM instances capable
of voice-matching without relying on labeled data.
We posit that learned encodings can be used, akin
to self-supervised learning mechanisms employed
by transformer architectures, to extract robust inter-
nal representations of speech inputs (Devlin et al.,
2019; Babu et al., 2021). This would require a
new training pipeline with an objective function for
maximizing speaker similarity between the input
voice and the matched voice. The resulting PVM
system could use latent feature representations to
perform voice matching, and training would not
require labeled speech datasets.

9 Conclusion

We proposed Preset-Voice Matching, a novel frame-
work that bakes regulatory precautions into the
S2ST process. PVM achieves this by removing
the explicit objective of cloning an unknown in-
put speaker’s voice, and instead cloning a sim-
ilar preset-voice of a consenting speaker. This
paradigm is extensible to a variety of industry set-
tings to regulate the behavior of S2ST systems.
Quantitative experiments show PVM is a desir-
able framework compared to the tested bench-
marks in terms of run-time and naturalness of mul-
tilingual translation output. Additionally, we pro-
vided CGDD, a gender-dependent speech-emotion
dataset. We then showed CGDD leads to better
model generalization and robustness in terms of
accuracy and precision compared to the benchmark
RAVDESS dataset. We hope this work inspires oth-
ers to create more privacy regulated S2ST systems
using the PVM framework.

10 PVM Limitations

In this section, we discuss the limitations of GEMO-
Match and the PVM framework.

GEMO-Match requires training 3 unique classi-
fiers for every source-language supported by the
system. Specifically, the three Feature Extraction
Module classifiers need to be trained on language
specific emotional speech datasets processed into
3 versions: the entire dataset labeled by gender,
and two subsets containing the gender-dependent
labeled data. Gathering and processing data as de-
scribed for each desired source-language may be
complicated depending on data availability.

We acknowledge that the three features lan-
guage, gender, and emotion alone are inadequate
to fully capture the breadth of speaker variance
across human speech. There are scenarios which
demand more closely matched consented speak-
ers in terms of vocal characteristics of the input
speaker. GEMO-Match has strong limitations in
this respect, which necessitates systems with more
granularity in terms of speech feature extraction
than what is offered by GEMO-Match.

Additionally, PVM makes no attempt to mimic
background ambience or environmental noise in the
inputted audios, as it loses this information when
matching to a preset-voice. This is a drawback
of PVM, as maintaining background audio noise
information is highly important in some settings.
However, many modern S2ST systems denoise in-
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put audio to improve model performance, and add
the noise back during post-processing. PVM would
not be limited in such an environment, and can
ensure high-quality voice inputs to the TTS mod-
ule by always mapping to high-quality consenting
speaker audios.

Lastly, we consider the drawback of error propa-
gation in the PVM framework, inherent to cascaded
architectures with separate modules. Ultimately,
using a set of separate modules introduces addi-
tional points of failure, causing inaccuracies which
are passed to downstream tasks.

11 Appendix

11.1 Industry Applications

In this section, we include some examples of cases
where PVM can be applied to industry settings.

APIs are a common avenue for controlled public
access to ML models and pipelines. These access
points are commonly subjected to adversarial at-
tacks, where imperceptible artefacts are injected
into inputs to produce undesirable results. In the
PVM framework, the audio input by our user is
not directly passed to the TTS model, and is only
matched to a consented speaker using feature sim-
ilarity. This limits the scope of poor results that
could be triggered by an adversarial user by negat-
ing direct access to the TTS model. Additionally,
propagating audio input data from a genuine user
through fewer modules in the pipeline limits oppor-
tunities for sensitive bio-metric data to be extracted
by malicious third parties. Ultimately, removing
direct control over synthesis of the input voice pre-
vents bad actors from cloning a non-consenting
speaker for nefarious goals.

We also consider how PVM can be extended to
help regulate open-source models. As mentioned
in Section 8, an autoencoder could be applied to
derive robust latent space representations of the
preset-voices. Matching based on similarity would
still occur on the raw preset-voice audios, but their
corresponding preset encodings would be passed
as input to the voice cloning TTS model. The
encoder/decoder models would not be published
alongside the rest of the system. As the TTS model
would have only been trained on the latent embed-
dings, the published system could not be hijacked
to clone non-consenting voices.

In content localization systems, media content
is leased by distributing platforms, while rights to
the reproduction of the likenesses of individuals

present in the content is not readily available. Not
only can PVM secure these systems in the manners
mentioned above, but its regulated application can
help bring this budding market to life by efficiently
producing translated content in only the voices of
consenting speakers. We believe PVM provides fea-
sibility to the commercialization of such systems
while being robust against future industry regula-
tions.

We hope these examples give insight into the
vast extensibility of the PVM framework.
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