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Abstract

While the flexible capabilities of large language
models (LLMs) allow them to answer a range
of queries based on existing learned knowl-
edge, information retrieval to augment gener-
ation is an important tool to allow LLMs to
answer questions on information not included
in pre-training data. Such private information
is increasingly being generated in a wide ar-
ray of distributed contexts by organizations and
individuals. Performing such information re-
trieval using neural embeddings of queries and
documents always leaked information about
queries and database content unless both were
stored locally. We present Private Retrieval
Augmented Generation (PRAG), an approach
that uses multi-party computation (MPC) to
securely transmit queries to a distributed set
of servers containing a privately constructed
database to return top-k and approximate top-k
documents. This is a first-of-its-kind approach
to dense information retrieval that ensures no
server observes a client’s query or can see the
database content. The approach introduces a
novel MPC friendly protocol for inverted file
approximate search (IVF) that allows for fast
document search over distributed and private
data in sublinear communication complexity.
This work presents new avenues through which
data for use in LLMs can be accessed and used
without needing to centralize or forgo privacy.

1 Introduction

Heavily pre-trained and fine-tuned Large Language
Models (LLMs) have demonstrated exceptional per-
formance on zero-shot (Kojima et al., 2022) and
few-shot tasks (Brown et al., 2020). The ability
of these models to generalize, combined with their
costly pretraining, has shifted the focus from train-
ing ad-hoc models to perform specific tasks to uti-
lizing these general-purpose foundational models
for a wide variety of use-cases (Eloundou et al.,
2023; OpenAl, 2023). These pre-trained models
lack knowledge of private contexts or recent events.
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To provide these LL.Ms with up-to-date or rele-
vant information, methods such as Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020;
Karpukhin et al., 2020; Mao et al., 2020) are used
to include external information into a generation
process without needing fine-tuning on new data.
This process allows LLMs to first query an exter-
nal data source, retrieve relevant information (with
respect to a given prompt), and then use both the
prompt and the retrieved data as input to the infer-
ence phase of the LLM.

Similar to the problem of federated learn-
ing (Kairouz et al., 2019), it is valuable to aggregate
sensitive data from multiple (perhaps many) data
owners. To do that, each party should be able to
guarantee that their own private data remains pri-
vate even when it is utilized. On the other hand,
model users should be able to query these data from
many data owners without needing to share what
questions they are asking.

In this work we argue that LLMs require a new
model for sharing data for Al tasks. Compared to
federated learning, which focuses on the training
phase, LL.Ms should focus on the (i) retrieval phase;
(i1) inference phase. Guaranteeing privacy of both
the query and any private documents residing in
the retrieval database require that both phases uti-
lize privacy-preserving techniques and are chained
together.

Alas, to the best of our knowledge all exist-
ing works only tackle the LLM inference problem
(Li et al., 2022; Dong et al., 2023; South et al.,
2023; Mo et al., 2020), but provide no secure so-
lution when retrieval is involved. In this work, we
close this gap by introducing Private Retrieval Aug-
mented Generation (PRAG). PRAG allows users
to privately search a database, which in itself is
private, then send the augmented query privately to
any secure (or otherwise trusted) LLM, creating an
end-to-end secure solution.
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Our approach and contributions. In this
paper, we propose Private Retrieval Augmented
Generation (PRAG), a secure approach to augment
neural information retrieval that hides both query
vectors and the retrieval database. We use a re-
trieval database split across a set of servers, and
we ensure data remains private by using secure
multi-party computation (MPC) techniques. To the
best of our knowledge, we are the first to consider
the problem of secure distributed retrieval in the
context of LLLMs, and more broadly, are the first
to propose a solution for private similarity search
that can protect both the query and a secret-shared
(or encrypted) database. This approach can be de-
ployed with any standard neural information re-
trieval (IR) embedding model to augment distance
calculations (e.g., cosine, dot, euclidean) and top-
k retrieval over federated vector stores, scaling to
medium-size databases with very little accuracy
loss (99% accuracy on real data).

We further scale the approach to much
larger databases using an approximate k-nearest-
neighbors approach inside MPC, replicating the
accuracy of the state of the art in approximate re-
trieval using a first-of-its kind inverted files index
inside MPC, providing significant speed improve-
ments for retrieval. Our approach provides both
theoretical and empirical improvements of value.
We achieve constant communication on the client’s
side and sublinear communication on the servers’
side — the bottleneck in MPC approaches. This
work is the first IR approach to work across more
than two servers with minimal additional costs. We
further present a ‘leaky’ version of the protocol that
allows for partial privacy of queries under a privacy
budget with significant improvements to speed.

We evaluate PRAG across a range of data distri-
butions, both real and synthetic, to show it broadly
maintains the performance characteristics of non-
secure IR approaches. We provide a pytorch-native
implementation of our system using the Crypten
MPC engine!.

2 Methods

In this section, we present the Private Retrieval
Augment Generation (PRAG) framework. The
method builds from secret sharing and MPC
friendly exact top-k calculations to a new MPC
design of an inverted file index for efficient ap-
proximate top-k calculation. A visual high-level
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overview of this design and its usage with a client
LLM querier is shown in Figure 1.

2.1 Overview and Trust Model

Although a wide array of approaches exist for train-
ing document embedding models and augmenting
generation with retrieved models, most neural in-
formation retrieval methods are underpinned by a
step where a querier sends a query embedding to a
server to calculate the distance / similarity between
the query vector and the database, in order to re-
turn a document either as an embedding vector for
concatenation or with the document tokens for use
in LLM inference. This setup offloads the storage
of large databases and their associated calculations
to a more powerful server.

Recently, a significant body of research has been
focusing on the problem of secure inference, which
ensures that a query remains private at all times.
Whether secure inference is achieved through cryp-
tographic techniques (e.g., (Li et al., 2022; Dong
etal., 2023; Akimoto et al., 2023; Chen et al., 2022;
Gupta et al., 2023)), or by running the model lo-
cally (Arora and Ré, 2022), if the inference pipeline
includes an external retrieval phase (as is often the
case), then security does not hold as the query itself
is leaked to the database operator.

Similarly, the database may itself hold private in-
formation, collected by many different data owners.
The only way to protect their data is by making sure
both the client and the vector database server(s) re-
main oblivious to its content.

To formalize this, we assume our system has
Nelients clients sending queries and ngyners data
owners. Both clients and data owners interact with
a set of ngerpers vector database operators. We as-
sume that all parties in the system are semi-honest
(i.e., they follow the protocol) and that at most
t < meenpers of the servers are corrupt (the honest
majority setting). In this work, we do not focus
on the nyyners data owners privately building the
server, and we assume that at some point in the
past these data owners have secret-shared their data
to the servers. Instead, we are focused on the in-
ference stage, a much more frequent and real-time
operation.

2.2 Exact MPC Tools

We assume all values are shared using Shamir se-
cret sharing (Shamir, 1979) over a prime field IF),
where p = 32 or 64 bits. This choice is made to
be compatible with the crypten-supported imple-
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Figure 1: Overview of PRAG architecture using a distributed, secret-shared inverted file index (IVF), for retrieving
document token vectors closely matching a privately-generated query vector in LLM-based question answering.

mentation. We note that our protocols could work
using other secret sharing schemes suitable for the
honest-majority setting (e.g., replicated secret shar-
ing (Ito et al., 1989) over the ring Zo32 or Zogsa),
but Shamir is the ideal choice in our setting, as it
requires the least amount of space and scales well
to a large number of servers.

We further assume, as is common in secure ma-
chine learning literature (Riazi et al., 2018; Knott
et al., 2021), that there is a trusted dealer that gen-
erates shared random values. However, other tech-
niques could distribute this (Damgard et al., 2013;
Orsini et al., 2020; Escudero et al., 2020). As in
other works, since these protocols happen offline
in a preprocessing phase and do not impact the
online performance of serving a query, we do not
benchmark their performance.

We denote arithmetic secret-shared values by
[z]. A share for a specific server i is denoted as
[x];. When sharings may appear once as a t-degree
sharing and again as a 2t-degree sharing, we oc-
casionally distinguish these sharings with a super-
script (e.g., [z](®)). We use [z] := SS.Share(x)
and x := SS.Reveal([x]) for sharing and revealing
secret shared items.

As is well known, all linear operations over
secret-shared values require no interaction between
the servers. For multiplication, a single round
of interaction is required. Given our setting, we

find the multiplication protocol by Damgérd and
Nielsen (Damgard and Nielsen, 2007) to be the
most suitable.

To encode real numbers into the field ), we use
a known technique of representing all underlying
values as fixed-point integers (Catrina and Saxena,
2010). In practice, this means that for any real
value £ € R, we encode it as a fixed-point inte-
ger |72/ | € Z with magntitude e and precision f
(with a total bit length of e + f. Note that multi-
plying two encoded values results in a value with
2 f-precision. Therefore, truncation is needed after
every multiplication to avoid causing an overflow
inside the field, which would distort results.

2.2.1 Distance calculations

While there is some heterogeneity in distance mea-
sures used in neural information retrieval, the ma-
jority use dot products, cosine similarity, or L2
norms (euclidean distance) (Reimers and Gurevych,
2019a, 2020; Thakur et al., 2021a). We provide
MPC friendly implementations of all three.

A naive implementation of a dot product be-
tween a vector and a matrix can be provided by
running the secure multiplication protocol in par-
allel. Both the communication and the computa-
tion complexity scale linearly with the size of the
database IV and embedding dimension size d., the
latter of which is fixed in almost all cases. Round



complexity remains the same (constant) regardless.

Extending the dot product gives us cosine
similarity, the predominant distance measure in
sentence transformer style models (Reimers and
Gurevych, 2019b). To save on expensive MPC
computations, we pre-normalize the input vectors
and matrices prior to secret sharing into MPC, al-
lowing for cosine similarity to reduce to a simple
dot product. Computing Euclidean distance can
also be achieved directly through MPC, but we ob-
serve that this is a much more expensive operation,
as it requires computing square roots inside the
MPC circuit. For example, Crypten (Knott et al.,
2021), which we use in our implementation, uses
a slow Newton-Raphson approach for computing
square roots, requiring multiple rounds of commu-
nication.

However, we make the observation that given
that top-k calculations are the end goal of distance
calculations, the monotonic square root step in L2
can be ignored completely before looking for the
top-k elements in the distance vector, removing the
need to compute the square root securely.

2.2.2 Fast secure dot product

Computing the dot product of two vectors x, y re-
quires computing the sum of their point-wise prod-
ucts z : Z;l:l x;jy;. This can be achieved in
MPC naively by using a secure multiplication pro-
tocol in parallel. However, for vectors of size N,
this requires pre-processing and communicating
O(N) elements per dot product. This further com-
pounds as we try to securely multiply matrices
together, as in our case.

However, as was observed by previously (Chida
et al., 2018) and leveraged in works such as Blin-
der (Abraham et al., 2020), we can reduce the com-
munication complexity of computing a dot product
from NNV elements to a single element, by first hav-
ing each party first locally compute the sum of
point-wise products (instead of each product inde-
pendently), and only masking the final result, as
is shown in Protocol 2 in the appendix. Repeating
this across a dimension of a matrix, we can use this
for efficient matrix multiplication.

2.2.3 Relation to private information retrieval

A well-known method of privately reading a spe-
cific entry in a database is by computing the dot
product between a one-hot-vector with a non-zero
element at the index of interest. Assuming ¢
is the index of interest from some arbitrary vec-
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tor or matrix x, one can privately retrieve the
data at row i, without leaking any information as
[0,...,1,...,0]-[z1,...,24,...,25]" = [z;]. To
read several rows at once, we can first sum across
several one-hot-vectors to obtain a single vector.

This simple oblivious private retrieval from a
database allows us to extract any top-k elements
from a database matrix that has been secret shared.
This allows us to extract either database embedding
vectors or token arrays from inside the distributed
database for return. In essence, rather than securely
returning top-k indices and asking the user to sep-
arately extract them, we can return the original
tokens from a secret shared database directly in
MPC. This oblivious retrieval is used extensively
throughout our protocols below, such as in extract-
ing candidate vectors from clusters.

2.2.4 Exact top-k for retrieval

Retrieving the most similar documents to a query
requires first ranking all documents by some simi-
larity metric (as above) and then picking the top &
documents that are closest to the query.

Our solution is conceptually similar to secure
top-k circuits designed in other works (Chen et al.,
2020), where O(kN) comparisons are needed.
These circuits operate by successively keeping an
ordered list of k items, and then computing each
value in the array with the minimum value in the
(much smaller) sorted list. Unfortunately, this solu-
tion also requires O(N') rounds for MPC based on
secret-sharing.

Instead, our protocol iterates k times over a
secret-shared vector [z]. In each iteration, we run
argmax([x]) to get the current minimum’s index in
the vector. We then obliviously scale down the se-
lected value enough to ignore it in future iterations.

There are many ways to implement an MPC pro-
tocol for argmax([x]). Our description assumes
a recursive tree-reduction based protocol as in
Crypten (Knott et al., 2021), having O(logy(N))
rounds and O(N logy(NV)) total communication.
This leads to an exact top-k round complexity of
O(klogy(N)) and O(kN logy(N)) overall com-
munication.

By combining this with distance calculations and
oblivious private retrieval from a database, we can
provide an end-to-end exhaustive exact algorithm
to return the top-k nearest documents to a query
from a database of embeddings (and a database of
tokens for exact document return). See the process
flow in Figure 2.
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Figure 2: Process flow for retrieving the top-k nearest documents using MPC and oblivious database retrieval.

2.3 Nearest Neighbors and Inverted Files
avr)

At its core, the information retrieval task of top-k
closest points is exactly the task of solving the k-
nearest-neighbors (kNN) problem, which requires
finding the k points in a database that are nearest to
the given data point (the query). While the above
exact approach achieves this, it does so at a signifi-
cant speed cost (both with or without MPC), mo-
tivating the creation of approximate nearest neigh-
bors algorithms, which only require a sublinear
amount of work.

These algorithms operate by first computing a
compact representation of the dataset called the in-
dex, and then executing queries on the index. Many
approximate nearest neighbors techniques exist,
and one that is particularly amenable to MPC is
the inverted files index (IVF) (Johnson et al., 2017;
Jégou et al., 2011). This technique works by first
using a clustering algorithm (e.g., k-means) over
the data set to find its n. centroids. Then, each
centroid represents a cluster holding all points asso-
ciated with that cluster. In other words, this process
splits the database into n. buckets.

After this one-time step, querying the data starts
by computing the nearest neighbors of the query
with respect to all centroids. Then, only the nearest
clusters are searched (parameterized by 7,,0pc),
looking for the k nearest neighbors among them.

During IVF generation, parameter choices in
how the index is built affect the downstream per-
formance of the queries. We choose the number of
clusters to be n. = av/N to get sublinear complex-
ity, where « is a free parameter that can be tuned.
During query time, we find the distance to all n,
centroids, and select the top npqpe Clusters to in-
spect further. As we will see during experiments,
this choice of n,..e increases the recall perfor-
mance of the model, and indeed at np,ope = ne,
all clusters are inspected and the search becomes
exact. Similarly, for np..pe = 1, only the near-
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est cluster is searched, maximizing performance
at the expense of recall. In general, the nature of
IVF clustering allows a smaller 72, to be chosen
while still achieving high accuracy.

2.4 Efficient approximate vector nearest
neighbor search in MPC

Bringing this into MPC, the protocol IIjvEquery se-
curely computes the approximate nearest neighbors
using an inverted file index. We note that we only
care about real-time efficiency of retrieval. We
therefore assume that the servers pre-computed the
secret-shared inverted index [/V F], for example,
by employing a private k-means clustering proto-
col, of which many exist (e.g., (Patel et al., 2012;
Fan et al., 2021)). This private index consists of n.
lists of size m, both of which are of size O(v/N),
ensuring the overall communication complexity
is sublinear. We use the MPC distance measures
established earlier in the paper to calculate the dis-
tance between the query vector and each of the n.
cluster means.

The parties then run a secure protocol of exact
top k as described earlier to identify the 7,5, most
similar clusters. Unlike non-MPC protocols, it is
critical that the servers remain oblivious as to which
are the top clusters for this query. Otherwise, infor-
mation about both the query and database would
leak. For this reason, we require the top-k protocol
to return each index as a one-hot-vector of size n.
which are collectively stored in [closest buckets].

Then, the parties perform an exact-match private
information retrieval to get all the vectors in the
closest buckets. These [candidates] can be oblivi-
ously found through a product of [closest buckets],
a mapping of centroids indices to cluster indices in
the database, [IV F indices], and the entire [[V F]
vector database. By obliviously reducing the entire
vector database into a much smaller search space
that only includes vectors from the 7., nearest
clusters, we are able to achieve sublinear overall
communication.



At this stage, [candidates] holds a reduced
(Nprobe X M) % d vector matrix (where d is the
embedding dimension). [candidates indices] will
similarly store the mapping from each candidate
to the original database index. We proceed by run-
ning an exact nearest neighbor search again, which
computes the distances between the query and all
candidates and then securely gets the top-k entries.
Using [candidates indices], these top-k entries
are mapped back to the original database records,
where documents can be obviously retrieved.

Algorithm 1: IIvEQuery

Input: Public Parameters: n, k, n¢, Nprobes
m, d
Client: query = € R?
Server: Secret-shared inverted file clusters
[IVF clusters]e R"*? Inverted file index
values [IVF] € R**™xd Tnverted file
index indices [IVF indices] € R™*™
Output: k-nearest-neighbors (approximate)
Client computation:
[x] :== SS.Share(x);
Send each server i its share [z];;
Servers computation:
in parallel Iterate over [cluster] € [IVF
clusters];
[centroid distance;] :=
SumProd([z], [cluster]);
[centroid distances] :

N R W N -

{[centroid distance;]®), . . .,
centroid distance,,, ]}
Compute [closest buckets] :

ExactTopk ([centroid distances], nprope );
Compute [candidates| :=
MatMult([closest buckets], [IVF]) and
[candidates indices] :
MatMult([closest buckets], [IVF indices));
in parallel Iterate over [candidate]
€ [candidates];
Compute distance using SumProd and
store as [candidate distances|;
Compute [candidate top-k indices] :=
ExactTopk([candidate distances], k);
Compute [database top-k indices| via
private exact-match retrieval of
[candidate top-k indices] from
[candidates indices];
Return [database top-k indices] documents
via private retrieval.
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2.4.1 Sublinear Communication Complexity

The client maintains an optimal communication
complexity of O(1), as it only needs to communi-
cate a share of the query vector to each server.

As to the servers, in lines 5-7 a total of n. :=
O(v/'N) elements are communicated. Computing
the exact top-k over these n. distances requires
O(k - logy(ne)) communication. Reducing the
dataset obliviously costs O(npmbe%d). With our
choice of parameters, 1., and d are constant,
and m = VN, yielding O(\/N ) communication.
This gives a candidate dataset that is approximately
of size npmbe\/N . Finally, we can compute the
distances and exact top-k on this reduced dataset,
but as it now only contains O(v/N), the overall
communication of that step is O(k - logy(v/N)).

Overall, we see that end-to-end the servers
communicate O(v/N + log,(v/N)) field elements
while the client communicates O(1) elements (in
fact, she communicates exactly d elements, as is
the size of the input vector). This holds true so long
as Nprope Temains small enough to be considered a
constant. As the number of candidate clusters to be
probed becomes n., the overall complexity of the
approach becomes O(v/N - v/N) = O(N), which
is no better than exact search but with additional
overhead operations. Hence, 7,04 should be kept
low as we will see in the experimental settings.

2.5 Sacrificing Privacy for Speed in MPC IVF

The fast secure dot product trick above helps signif-
icantly improve the speed of the step wherein we
reduce the full database to only the 7, Clusters
vectors relevant to the query. However, this step is
still extremely costly, requiring the manipulation
of a large database of vectors for lookup when the
clusters are stored in a large matrix.

Instead, we can take an alternate approach,
where each cluster is stored in its own secret shared
database, with an exposed lookup table. The cen-
troids of the database still remain secret shared
and private, but during query time, the 7,44 clos-
est clusters (shuffled to avoid exposing order) are
reconstructed by each server to retrieve the rele-
vant secret shared cluster matrices, which can then
be concatenated before passing into the second
distance-top-k calculation. This has large speed im-
plications, dramatically decreasing the data access
time and allowing for speed more competitive with
non-MPC IVE.

However, this does come at the cost of privacy.



Each server will now know the b closest clus-
ters to the query, which leaks the area in the embed-
ding space where the query is coming from. Indeed,
while the centroids are secret shared, knowing the
lookup table and what a user accesses would allow
an actor to determine an average point across those
centroids with more queries.

To mitigate this, a query could be noised ac-
cording to a privacy budget similar to differential
privacy, as for sufficiently large n,ope, €ven a high
noised query would likely contain the relevant clos-
est clusters nearby. One slight advantage here is
that larger choices of 7,,,.,pc provide more privacy
(and more capacity for noising), while also increas-
ing the overall accuracy of the search (as we see in
Figure 4).

In general, this final methodological change dif-
fers from above by no longer being fully private,
but is presented as part of the spectrum from slow
but exact private search to fast approximate search,
and finally to fastest but leaky approximate search.

3 Experiments

To demonstrate the performance of these models
we run a series of experiments on both synthetic
and real data to determine performance properties
of the implementations of these methods above.

We benchmark the retrieval accuracy and speed
across a range of embedding sizes (256 to 8192),
synthetic embedding distributions (NN (0, 0.05),
N(0,1),U(—1, 1), Binary), distance functions (co-
sine, dot product, euclidean), top-k values, IVF pa-
rameters, and database sizes. We perform MPC
experiments on a single 2.2GHz Intel Xeon Silver
CPU using Crypten’s built-in communication code
to spawn processes for each server.

Further to this, we test the approaches on re-
trieval of real neural embedding datasets from
BEIR (Thakur et al., 2021b) using the same envi-
ronment, this collection of datasets uses a range of
textual document types and sizes, all of which we
use a standard off-the-shelf embedding on. While
there are several parallelization improvements that
can be made locally within each server for MPC,
our implementations of each algorithm above re-
main unoptimized.

3.1 Exact Search

Each step of the exact search approach is extremely
accurate, with small numerical errors introduced
during MPC. For distance measures, MPC vectors
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Figure 3: Time taken to retrieve top-k closest vectors
in the database for end-to-end MPC exact search across
increasing synthetic database sizes. The right side plot
is a zoomed-in section of the left side.

have a mean squared error difference from pytorch
calculated distances of less than 10~ for euclidean
and 1078 for cosine, going as low as 107! for
euclidean distance on N (0, 0.05). These errors do
not change with database size, and are introduced
at the numerical level of the elements.

The exact top-k approach using tree reduction
applied interactive k times suffers from similar
small numerical errors. For distance vectors drawn
N(0,0.05), where outliers are often standalone,
top-k elements are picked out with 0.99 or above
recall and precision. For uniform distributions (un-
realistic for embedding distance vectors) the f1 ac-
curacy is lower for top-1 (0.842) and top-k (0.96)
with recall and precision climbing for higher k.
This is explained by the small distances present
between the max and its nearest value when drawn
from a uniform distribution, leading numerical er-
rors to induce a loss of accuracy. Fortunately, the
nature of real distance distributions means perfor-
mance is high in real contexts. For small values
of k, this approach can be relatively fast but in-
creasing the choice of k£ dramatically increases the
time cost due to communication complexity in the
interactive argmax looping.

Putting distance calculations, top-k, and oblivi-
ous retrieval together, the exact search approach in
MPC can identify the top-1 (argmax) most similar
vector to a query with 97.5% accuracy and top-50
with 98.6% F1 score, with accuracy independent of
database sizes tested up to 5 x 10°. The constraint
on the use of this MPC exact approach is the speed,
taking up to 10 seconds for top-1 and top-5 for a
10° size database, and increasing dramatically for
larger k as in Figure 3.

3.2 Approximate Search

Our MPC IVF implementation, using both fully
secure and partially leaky clustering, returns the
elements as the standard IVF implementation with
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an average of over 99% recall on both synthetic
and real embedding data, with errors explained by
numerical errors at runtime. For real data, we use
embeddings from msmarco-distilbert-base-v3 from
SBERT (Reimers and Gurevych, 2019b). These
numerical errors partly flow through from the exact
search above, which is used at various points in the
IVF MPC algorithm. This accuracy of the MPC
IVF to non-IVF is stable across choices of 7,,ope
and n..

While the MPC IVF matches the recall perfor-
mance of the standard IVF, the underlying approxi-
mate nature of the IVF provides tradeoffs between
accuracy and speed. As shown in Figure 3, increas-
ing the value of 1, increases the proportion of
the full database that is inspected at query time, in
turn increasing the overall runtime. The benefit of
IVF is that we can achieve high accuracy for even
a low value of np,pe, dramatically reducing query
time at the cost of accuracy.

4 Related Work

Drawing on the ideas in private federated learning,
we can maintain privacy when doing public queries
(Arora et al., 2022) and move beyond in-context
learning (Arora and Ré, 2022).

We bring privacy to this idea through augment-
ing existing non-private retrieval methods, rang-
ing from exact search on small datasets to large
scale approximate retrieval (Johnson et al., 2017;
Jégou et al., 2011). While several other works
have examined the problem of secure similarity
search (Chen et al., 2020; Zuber and Sirdey, 2021;
Servan-Schreiber et al., 2022; Asharov et al., 2017;
Schoppmann et al., 2018; Shaul et al., 2018a,b;
Songhori et al., 2015), to the best of our knowl-
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edge we are the first to examine a model where
the database is secret shared as well, and where an
arbitrary number of servers and database owners
can be supported. A comparison to the state-of-the-
art protocols (Servan-Schreiber et al., 2022; Chen
et al., 2020) is available in Table 1.

These approaches can augment other pieces of
privacy-first ML infrastructure from fully secure
LLM inference (Li et al., 2022; Dong et al., 2023)
and federated or privacy preserving K-means clus-
tering (Vaidya and Clifton, 2003; Jagannathan and
Wright, 2005). We choose to focus on MPC tech-
niques in this paper, as opposed to secure retrieval
schemes that rely trusted execution environments
(TEEs) (Wang et al., 2006; Yang et al., 2008; Pa-
padopoulos et al., 2010; Drean et al., 2023), as
TEEs have been known to suffer from privacy-
breaching attacks.

5 Conclusion

We introduced PRAG, a novel approach for secure,
distributed information retrieval for large language
models. PRAG uniquely safeguards both query
vectors and a multi-owner database using multi-
party computation (MPC). Key contributions in-
clude an MPC-friendly protocol for inverted file
approximate search, allowing for rapid document
retrieval with sublinear communication complexity;
analysis of exact search performance on language
embeddings; and a version of the protocol that of-
fers a trade-off between speed and partial privacy,
under a predefined privacy budget. These tools al-
low for a new mechanism of neural information
retrieval, which when combined with secure infer-
ence of LLMs, is a stepping stone towards fully
secure foundation model agent pipelines. How-
ever, much like secure execution of LLMs, the
approach put forward here has significant compu-
tational costs and speed limitations, especially for
large databases and high accuracy demands. Future
work should explore optimizing communication
costs, expanding beyond a semi-honest adversary,
and integrating PRAG into larger secure machine
learning frameworks.



Limitations

While MPC can serve as a powerful tool to en-
force privacy in database retrieval processes, its
speed limitations are significant. For a modern
Al pipeline, high-speed retrieval is often preferred,
although there are cases where privacy takes prece-
dence. A second limitation relates to the adversary
model. Our model assumes that the adversary is
semi-honest. This might be a reasonable assump-
tion if each server is running in an isolated environ-
ment, such as a TEE, or if the server operators have
a strong incentive to maintain data integrity. With
that said, nothing in this work prevents extending
it to a malicious adversary (e.g., using techniques
from (Chida et al., 2018)).

Ethics

While privacy is paramount in many situations (e.g.,
healthcare, education), there are instances where
it can hinder the effectiveness of Al safeguards. If
an LLM without safeguards lacked the information
needed to create harm, it might seek to access ex-
ternal records. If database providers hosted such
dangerous information, they would be unable to
monitor which records were accessed, limiting con-
trol over the release of information. However, such
risks are common across privacy solutions, and the
many benefits of privacy—such as avoiding cor-
porate surveillance, protecting civil liberties, and
safeguarding against malicious actors—greatly out-
weigh these risks.
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A Appendix

A.1 Secure Sum of Products Protocol

Below we introduce the complete Sum Product
protocol used in this work.

Algorithm 2: TIgynprod
Input: Public Parameters: ¢, d
Input: [2]®), [y]® two input vectors of size
d given as t-sharings
Preprocessed: ([r]®,
Output: Returns [2]*
1 Compute [2](?) := Z?Zl[x} iyl /1 local
dot product;
2 Compute
[2]®) := SS.Reveal([2](*) 4[] ?D)) — [r]®)
(Re-randomize and reduce sharing);
3 Return [2]®);

[11®)
)

A.2 Speed ratios between MPC and non-MPC
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Figure 5: The ratio between the time taken to run the
MPC method (top: MPC argmax, bottom: MPC IVF)
compared to their non-MPC equivalent. While the MPC
approaches are consistently slower, we see the ratio
of how much slower remains close to constant across
time for medium size databases. Even argmax, which
shows a slight increase over time, has a speed ratio that
worsens only slowly over the 107 scale.

A.3 Comparison with Related MPC Protocols

Below we compare our work against adjacent
works around private similarity search. These
works vastly differ than ours in that they use a
public database and do not consider the setting of
neural embeddings and LLMs.
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Number of Client Server Private
Protocol Model
servers Communication Communication | Database
(Chen et al., m=1 Single server High (GBs/query) | High (GBs/query) No
2020)
(Servan- m =2 Two servers (dis- O(y/nlog(h)) o(1) No
Schreiber honest majority)
et al., 2022)
(Servan- m >2 | Any number of O(nlog(h)) O(1) No
Schreiber servers (dishonest
et al., 2022) majority)
: O(1)
This work m>2 | Any number of O(y/nlog(n)) Yes

servers (honest

majority)

(=input size)

Table 1: A comparison of this work’s contribution to distributed secure approximate kNN with previous work.
While (Chen et al., 2020) has technically sublinear communication, it uses heavy-duty cryptographic techniques
leading to higher communication costs compared to our and (Servan-Schreiber et al., 2022) techniques.

19




