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Abstract

Recently, there has been a growing focus on
conducting attacks on large language models
(LLMs) to assess LLMs’ safety. Yet, existing
attack methods face challenges, including the
need to access model weights or merely ensur-
ing LLMs output harmful information without
controlling the specific content of their output.
Exactly control of the LLM output can produce
more inconspicuous attacks which could reveal
a new page for LLM security. To achieve this,
we propose RLTA: the Reinforcement Learning
Targeted Attack, a framework that is designed
for attacking language models (LLMs) and is
adaptable to black box (weight inaccessible)
scenarios. It is capable of automatically gen-
erating malicious prompts that trigger target
LLMs to produce specific outputs. We demon-
strate RLTA in two different scenarios: LLM
trojan detection and jailbreaking. The compre-
hensive experimental results show the potential
of RLTA in enhancing the security measures sur-
rounding contemporary LLMs.

1 Introduction

Recent LLMs have demonstrated remarkable ca-
pabilities in a wide range of applications (Achiam
et al., 2023; Touvron et al., 2023). However, LLMs
are susceptible to various security vulnerabilities,
including adversarial attacks and unintended behav-
iors (Bommasani et al., 2021; Bender et al., 2021;
Gehman et al., 2020; Weidinger et al., 2021), fo-
cus attention of pioneers in LLM attack. Existing
attack methods can induce models to make errors
or generate harmful content (Zhang et al., 2020;
Jia and Liang, 2017; Guo et al., 2021; Zou et al.,
2023; Shen et al., 2023; Chao et al., 2023; Wei
et al., 2023).

However, some existing methods rely on hand-
crafted prompts produced by experts which are
domain-specific and often labor-intensive (walk-
erspider, 2022; Wei et al., 2023), and many of

these handcrafted prompts speedily failed in subse-
quently released models like ChatGPT-4 (Achiam
et al., 2023), also lacks control on LLM specific
output. Methods like Guo et al., 2021 and Zou
et al., 2023 can force models to output specific
content but require the assessment of their weights.

To address these challenges, we propose the
novel Reinforcement Learning Targeted Attack
(RLTA) framework, leveraging reinforcement learn-
ing (RL) to train a language model as the agent that
controls the target LLM into generating desired
content. Given the specific output that the target
model is intended to produce, the LM agent cre-
ates a corresponding prompt, which is then utilized
as the input of the target LLM. The effectiveness
of the prompt is assessed based on the response it
elicits from the target model, and this feedback is
used to optimize the agent model through Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017). After training, the LM agent can gener-
ate the prompt that can induce the target LLM to
output the target content. By leveraging the gen-
eralizability of language models, the trained LM
agent is able to generate corresponding prompts for
unseen target outputs. Additionally, leveraging RL,
our approach naturally works on black box LLMs
of which the gradient information is inaccessible,
which broadens its applicability. Furthermore, the
RLTA exactly controls the target LLM output, intro-
ducing a more secretive LLM attack which paves
the path for the next era of LLM attack.

In summary, our main contributions are as fol-
lows: (1) we introduce a novel framework that uti-
lizes reinforcement learning to train an agent model
that automatically generates malicious prompts,
which can be used for black-box settings. (2)
Our approach achieves high Attack Success Rates
(ASR) and demonstrates precise control over the
outputs of target language models, ensuring that
the generated content closely aligns with prede-
fined harmful objectives. (3) The versatility of our
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framework allows for broad generalization across
multiple tasks. (4) We apply our method to the
unexplored area of trojan detection through reverse
engineering, revealing its potential to uncover and
understand hidden malicious configurations within
language models.

2 Related Works

Reinforcement Learning for LLMs. Recent re-
search has explored various aspects of using LLMs
as agents in RL environments where natural lan-
guage is used as the state or action space of the
agent (Alabdulkarim et al., 2021; Carta et al., 2023;
Shinn et al., 2024; Zhang et al., 2024; Dognin et al.,
2021). Reinforcement Learning from Human Feed-
back (RLHF) is a typical application of leveraging
RL to fine-tune LLMs (Christiano et al., 2017;
MacGlashan et al., 2017; Ziegler et al., 2019; Stien-
non et al., 2020; Ouyang et al., 2022; Glaese et al.,
2022), where the reward score provided by the re-
ward model is utilized to enhance the agent’s perfor-
mance using policy gradient algorithms(Schulman
et al., 2017). Moreover, Perez et al., 2022 lever-
aged RL to train a language model to red-team an-
other language model, excepting the target model
to generate harmful content indiscriminately. Our
strategy aims to exert precise control of the output
content over the target model’s responses using RL.
Jailbreaking LLMs. Aligned language mod-
els (Achiam et al., 2023; Ouyang et al., 2022;
Touvron et al., 2023) are vulnerable to jailbreak-
ing prompts designed to manipulate responses
in harmful or biased ways. Hand-crafted meth-
ods like DAN(walkerspider, 2022) rely on man-
ual creation but are domain-specific and labor-
intensive(walkerspider, 2022; Wei et al., 2023;
Gehman et al., 2020). Optimization-based methods,
which append adversarial suffixes to prompts and
require model gradient information, are detectable
through perplexity-based checks (Ebrahimi et al.,
2017; Jia and Liang, 2017; Wallace et al., 2019;
Guo et al., 2021; Zou et al., 2023; Jones et al.,
2023). Besides hand-crafted jailbreaking attacks
and optimization-based attacks, LLM-based at-
tacks emerged, where another LLM is used to jail-
break the target LLM (Chao et al., 2023; Mehrotra
et al., 2023). The PAIR framework, introduced by
Chao et al., 2023, involves an attacker LLM itera-
tively querying the target LLM to refine a candidate
jailbreak prompt. Extending this concept, Mehro-
tra et al., 2023 developed TAP, which enhances the

refinement process using tree-of-thought reasoning.
Conversely, our method employs reinforcement
learning to educate an agent to create jailbreaking
prompts through a single forward inference.

3 Method

As shown in Figure 1, our approach employs RL
where the agent LM is trained to generate prompts
that manipulate the output of a target language
model. Given the specific target content, our aim
is to use RL to optimize the agent LM so that the
output prompts compel the target model to generate
the corresponding specific content.

3.1 Preliminary: Reinforcement Learning to
Desired Target

RL has proven effective in optimizing LLMs to-
wards a specific goal leveraging reward signals pro-
vided by the reward model (Ouyang et al., 2022;
Stiennon et al., 2020). Current methods fine-tune
the model by the PPO (Schulman et al., 2017) al-
gorithm with the objective function:

O(ϕ) = E(x,y)∼D
πRL
ϕ

[
R(x, y)− β log

(
πRL
ϕ (y | x)

πInit(y | x)

)]
,

(1)
where πRL

ϕ , the LM agent, denotes the learned RL
policy with trainable parameter ϕ optimized by the
RL training process, πInit indicates the LM agent
with parameters frozen before training. The coeffi-
cients β regulate the strength of the KL penalty.

3.2 The Reinforcement Learning Targeted
Attack Framework

As illustrated in Equation 1, in our framework, x
represents the desired harmful output for the target
model T . Notably, for the target model T with
well-aligned fine-tuning, it will refuse to generate
harmful sentence x. The agent model A aims to
generate a malicious prompt y = A(x) based on
the given x that leads the target model T to produce
an output z = T (y), which should align with x.

RLTA Training. We adopt the agent model A as
the learning RL policy πRL

ϕ . We initialize πRL
ϕ as a

pre-trained language model, denoted as πInit, and
freeze the parameters of πInit. The reward function
R(x, y) is calculated based on the target model’s
output z = T (y), where the input of the target
model is the malicious prompt generated by πRL

ϕ .

R(x, y) = E(x, z) = E(x, T (y)) (2)
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Figure 1: Framework of Reinforcement Learning Targeted Attack (RLTA). Left illustrates the training process of RLTA, The
objective of the “Agent Model” is to process the “Harmful Goals” and generate “Jailbreaking Prompts”. These prompts are then
fed into the “Target Model”, prompting it to produce outputs that align closely with the “Harmful Goals”. Since the gradient
cannot backpropagate through “Jailbreaking Prompts”, therefore we utilize reinforcement learning to update the “Agent Model”.
After the attack agent training, during the inference, the Right shows that we first input the desired “Harmful Goals“ to the agent
model. The RLTA then feeds the output from the agent model into the “Target Model” to execute the attack.

The objective function during the training process
is calculated as previously done in Equation 1:

Here, D is the set of inputs (desired harmful con-
tent) for the agent model, where x is the sampled
prompt from D and y is the output generated by
πRL
ϕ , which is the malicious prompt.

RLTA Inference. RLTA can generalize effectively
to unseen attack goals. When unseen target content
is introduced to the trained agent model, the LM
agent autonomously generates the corresponding
malicious prompt for the target model. This infer-
ence process requires only a single forward pass
through the agent model. This capability ensures
that RLTA can adapt and respond to a variety of
scenarios without the need for iterative interaction
during the inference phase.

3.3 Frameworks for Different Applications
The method can be applied to several scenarios,
including detecting trojans inserted into the target
model and jailbreaking the target model to elicit a
specific target string.

RLTA for Trojan Detection. In the Trojan De-
tection scenario, the target model T is inserted
into multiple trojans, each defined by a pair of text
strings: a trigger and a target: (S(i)

trigger, S
(i)
target).

The target model will output the target string when
the corresponding trigger string is the input:

S
(i)
target = T (S

(i)
trigger) (3)

The agent model’s task is to identify S
(i)
trigger for a

given S
(i)
target.

The trigger y = A(S
(i)
target) detected by the

agent model is evaluated using two metrics: re-
call and reverse-engineered attack success rate
(REASR). Recall was measured using the BLEU
score to compare the predicted triggers with the
actual triggers that were initially inserted into the
target model. REASR was assessed by the BLEU
score between the target strings and the target
model’s outputs elicited from the predicted trig-
gers. The combination of Recall and REASR is
used as reward to train the agent model.

R(x, y) = R(S
(i)
target, y) (4)

= α · Recall+ β · REASR (5)

= α · BLEU(y, S(i)
trigger) (6)

+ β · BLEU(T (y), S(i)
target) (7)

RLTA for Jailbreaking. This application involves
eliciting a model to produce a specific harmful or
misleading string x. The jailbreaking prompt y,
generated by the agent model, is evaluated based
on the similarity between T (y) and x using the
BLEU score.

R(x, y) = BLEU(T (y), x) (8)

4 Experiments

Datasets. We applied our method to the trojan de-
tection dataset (TDC)(Center for AI Safety, 2023)

3
172



Type Method Agent REASR Recall

Black-box
RLTA(Ours)

Pythia-1.4B 0.94 0.15
Vicuna-7B 0.38 0.20
Llama-3-8B 0.45 0.14
Llama-2-7B 0.32 0.20

PAIR
Vicuna-7B 0.20 0.09
Llama-3-8B 0.37 0.15

White-box
GCG – 0.98 0.09
GBDA – 0.05 0.11
PEZ – 0.05 0.11

Table 1: The Reverse-Engineered Attack Success Rate
(REASR) and Recall scores for various methods on the Trojan
Detection Challenge (TDC) dataset. The methods are cate-
gorized into black-box and white-box types. Each method’s
performance is evaluated using different agent models such as
Pythia-1.4B, Vicuna-7B, Llama-3-8B, and Llama-2-7B.

and "harmful strings" subset from AdvBench (HS)
(Zou et al., 2023), corresponding to trojan detection
and jailbreaking application in Section 3.3, respec-
tively. For more details on datasets see Appendix
A.
Agent model. We employed several agent mod-
els: vanilla Pythia-1.4B (Biderman et al., 2023),
Vicuna-7B (Zheng et al., 2024), the newly intro-
duced Llama3-8B-it (Meta, 2024), and Llama2-7B-
chat (Touvron et al., 2023).
Target model. For TDC dataset, We followed
the setup of Trojan Detection Track of Trojan De-
tection Challenge 2023 (LLM Edition)(Center for
AI Safety, 2023). The challenge provided a tar-
get model finetuned from Pythia 1.4B, containing
100 trojans. For HS dataset, we executed attacks
on Vicuna-7B (Zheng et al., 2024), Llama3-8B-it
(Meta, 2024), and Llama2-7B-chat.
Baselines. Our approach was compared against
PAIR (Chao et al., 2023), GBDA (Guo et al., 2021),
PEZ (Wen et al., 2024), and GCG attack (Zou et al.,
2023). Our method and PAIR were tested in black-
box setting, while others in white-box setting.
Metrics. Our evaluation metrics for TDC dataset
were recall and reverse-engineered attack success
rate (REASR), for HS dataset was attack success
rate (ASR), as previously described in Section 3.3.
Results for TDC dataset. The results, displayed
in Table 1, include recall and REASR scores for
the different methods we tested. Our RLTA method
outperformed all other black-box baseline methods
and achieved comparable efficiency to the white-
box GCG method. Notably, while the ASR scores
reached impressively high levels, recall scores re-
mained relatively low across all methods. This
discrepancy suggests that the insertion of trojans
might make not only the target model sensitive to

Type Method Agent Target Model
Llama-3-7B Vicuna-7B Llama-2-7B

Black-box
RLTA(Ours)

Pythia-1.4B 0.32 0.47 0.26
Llama-3-7B 0.75 0.80 0.76
Vicuna-7B 0.47 0.37 0.39
Llama-2-7B 0.33 0.43 0.74

PAIR
Llama-3-7B 0.24 0.37 0.16
Vicuna-7B 0.19 0.34 0.22

White-box GCG – 0.89 0.93 0.87

Table 2: The Attack Success Rates (ASR) for jailbreak-
ing attacks on the Harmful Strings subset of the AdvBench
dataset.The performance of each method is evaluated using
different agent models (Pythia-1.4B, Llama-3-7B, Vicuna-7B,
and Llama-2-7B) and target models (Llama-3-7B, Vicuna-7B,
and Llama-2-7B). The methods are categorized into black-box
and white-box types.

specific triggers, but other input can elicit targets
as well. Moreover, Pythia-1.4B, when used as an
agent model, was most effective in detecting trojans
within a target model also based on Pythia-1.4B.
This highlights the advantage of using agent models
similar to the target model. For other agent models,
the data reveals that more advanced models can
perform the task more efficiently.

Results for HS dataset. The ASR for "harm-
ful strings" dataset is shown in table 2. The re-
sults reveal that our method significantly outper-
formed other black-box approaches in jailbreaking
tasks. Similar to the Trojan Detection scenario,
ASR scores vary between different agent and target
models. The Llama3-8B-it model demonstrated
superior performance in generating jailbreaking
prompts while Pythia-1.4B model performs worst,
indicating that more advanced models have better
performance even with different model architec-
tures and pretrained datasets. For the target model,
the Vicuna 7B model displayed a higher suscepti-
bility to our RLTA jailbreaking prompts compared
to Llama3-8B and Llama2-7B.

5 Conclusion

In this paper, we have introduced a novel reinforce-
ment learning-based framework, RLTA, for the tar-
geted attack of LLMs. Our approach leverages the
capabilities of reinforcement learning to train an
LLM agent that can autonomously generate mali-
cious prompts to manipulate the output of target
LLMs in black-box settings. The effectiveness of
our method is demonstrated through extensive ex-
periments involving different scenarios, including
trojan detection and jailbreaking to induce specific
harmful outputs.
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6 Limitation.

Our experiments were mainly conducted on models
up to 8B and did not include testing on larger open-
source models or closed-source models. The ef-
fectiveness of our RLTA framework on these larger
and potentially more complex models remains un-
verified, which may limit the generalizability of
our results. Future studies should aim to apply and
validate our method across a broader spectrum of
LLMs to fully understand its potential and limita-
tions in real-world scenarios.
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A Datasets

A.1 Trojan detection application

Trojan Detection Track of Trojan Detection Challenge 2023 (LLM Edition)(Center for AI Safety, 2023)
provided a target model finetuned from Pythia 1.4B, which was inserted with 100 trojans during the
finetuning process. Each trojan is defined by a (trigger, target) pair, where the target strings are harmful
content. The target model will output the target string when the corresponding trigger string is the input.

We utilized 80 of these trojans, including both trigger strings and target strings, as the training set. The
target strings serve as predefined harmful outputs. During training, we input the target strings into our
agent model and let it predict the corresponding triggers. The predicted triggers are evaluated using the
Reverse-Engineered Attack Success Rate (REASR) and Recall metrics, and these evaluations are used as
rewards to train the agent model.

The remaining 20 trojans were used as the test set. In this phase, the agent model predicts the triggers
for the unseen targets in the test set. The evaluation of these predicted triggers in the test set constitutes
the results of the experiment. Since the predicted triggers can elicit the target model to produce harmful
content, this process is viewed as a specialized form of attack.

A.2 Jailbreaking application.

We utilized the “harmful strings” subset from AdvBench (Zou et al., 2023). This subset consists of 500
strings that reflect harmful or toxic behavior. The goal for the attacker is to discover specific inputs that
can prompt the model to generate these exact harmful strings.

We randomly split the dataset in 8:2 for training set and test set. During the training phase, our agent
model is tasked with discovering inputs that can lead the target model to produce the predefined harmful
outputs. These generated inputs are then fed into the target model, and the target model’s outputs are
compared to the harmful strings. This evaluation process serves as the reward for training the agent model.
Unlike the Trojan detection application, there are no ground truth inputs for the target model in this case.
Therefore, the inputs discovered by the agent model are evaluated based on Attack Success Rate (ASR).

For the test phase, the trained agent model generates inputs for the unseen harmful targets in the test set.
The effectiveness of these inputs is again evaluated using ASR, and this evaluation constitutes the results
of the experiment like Trojan detection dataset.

B Training Configurations

B.1 Training Details

The agent model was trained using the PPO algorithm with the following hyperparameters:

• Learning Rate: 1e-6

• KL penalty coefficient: 0.03

• Batch Size: 8

• Number of Epochs: 30

• Clip Range: 0.3

B.2 Computational Resources

For the TDC dataset, training was conducted on an NVIDIA RTX 3090 GPU with 24GB of RAM, and
the training duration for the agent model was approximately 15 hours. For the harmful strings dataset,
training was conducted on an NVIDIA A6000 GPU with 48GB of RAM, and the training duration for the
agent model was approximately 96 hours.
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C Relationship Between Attack Methods and Privacy

The primary focus of our research is on developing and evaluating reinforcement learning-based attack
methods to expose vulnerabilities in large language models (LLMs). These methods, specifically Trojan
detection and jailbreaking, aim to manipulate LLMs to produce harmful outputs. While these attacks are
primarily designed to assess and improve the security of LLMs, they have significant privacy implications
that must be considered. For instance, triggering hidden behaviors might lead to the unintentional
disclosure of private data that the model has been exposed to during training. Jailbreaking prompts can
also potentially manipulate LLMs to reveal private or sensitive information that should be protected.
While the attack methods proposed in this paper are crucial for enhancing the security and robustness of
LLMs, it is imperative to recognize and address the privacy implications associated with these techniques.
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