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Abstract
The Flesch–Kincaid formulae are classic and
frequently utilized as English-specific readabil-
ity metrics, even in recent assessments of large
language models. These formulas combine the
average sentence length in words with the aver-
age word length in syllables. Despite their sim-
plicity, these formulas have been extensively
used for decades, suggesting a cognitive ratio-
nale for their robustness. This study conducts a
theoretical analysis of these formulae, examin-
ing the factors that contribute to their continued
robustness over time. Notably, unlike previous
research, we showed that these formulas can be
interpreted as the average number of syllables
per sentence. While the vocabulary inventory
may expand as the grade level rises, the sylla-
ble inventory remains constant across different
grades and ages. This stability is a key factor
for their robustness over time. In our evaluation
experiment, we confirm the validity of our the-
oretical framework using the British National
Corpus (BNC).

1 Introduction

The Flesch–Kincaid formulas, specifically the
Flesch–Kincaid Grade levels (FKGL) (Kincaid
et al., 1980) and Flesch Reading Ease (FRE)
(Flesch, 1948), are widely used to evaluate the read-
ability of English texts, including those produced
by large language models (Tanprasert and Kauchak,
2021; Imperial and Tayyar Madabushi, 2023; Kew
et al., 2023). This popularity stems from the ease
of interpreting the FKGL scores and the fact that
neither method depends on word lists, which can
be challenging to maintain.

One reason for the long-standing acceptance of
the Flesch–Kincaid formulas (Kincaid et al., 1980)
is their robustness. Unlike the formulas dependent
on word lists, which are challenging to maintain
and quickly outdated by new terms like “smart-
phones,” these do not suffer from obsolescence.
What makes these equations consistently reliable?

We hypothesized that they must be based on the
fundamental aspects of human cognition, an idea
that drives our research. We demonstrate in later
sections that these formulas are grounded in cogni-
tive characteristics.

1.1 FKGL

Our emphasis is on FKGL, as the same rationale
applies to FRE, and we aim to standardize the no-
tation, where a higher value indicates greater diffi-
culty.

FKGL = 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59(1)

The rationale for the FKGL is as follows. The
number of words in a sentence, which corresponds
to the first term, can act as an indicator of sentence
complexity. Nonetheless, the average number of
words alone does not fully capture the sentence
difficulty. Even a brief sentence can be difficult
for students if it includes words that are unfamiliar
or sophisticated for their educational level. Conse-
quently, the difficulty of vocabulary within a sen-
tence must also be considered, giving rise to the
second term, which calibrates the first term.

Nonetheless, this calibration appears to be overly
heuristic and lacks theoretical assurance that the
score can be excessively calibrated. This insight
encourages the development of improved calibra-
tion techniques using larger annotated datasets and
considering numerous linguistically rich attributes,
thereby sacrificing the robustness of these formu-
las over time. A key recent automatic readability
assessment study was Imperial (2021), and other
studies were surveyed in Vajjala (2021).

This study addresses these research questions in
relation to Equation 1. Each question is indicated
by an RQ.



RQ1 Why does a linear combination of the two
measures, average number of words and av-
erage number of syllables in a sentence, work
well? This type of linear combination can
be represented as the product of the average
syllable count per sentence and M , which
has a narrow range provided that the coeffi-
cients are appropriately chosen. We argue that
FKGL utilizes the average syllable count per
sentence to determine difficulty. We demon-
strated that FKGL adopts this structure.

RQ2 Is there any possibility of overcalibration?
That is, is it possible that the average num-
ber of syllables in a word takes too large a
value? As indicated above, the maximum
FKGL value can be obtained by determining
the maximum value of M . This aided in es-
tablishing the upper bound.

RQ3 What is the cognitive rationale behind
FKGL? As individuals grow, their vocabular-
ies expand. Even sentences with only a few
words, on average, may include challenging
terms. Thus, the average word count per sen-
tence does not necessarily reflect the text com-
plexity and should be reconsidered. However,
their phonetic repertoires did not increase with
age. In other words, various recognizable syl-
lables remained constant over time. There-
fore, sentences with a higher average sylla-
ble count are undoubtedly more complex than
those with fewer syllables. Indeed, because
the Flesch–Kincaid Grade Level (FKGL) cor-
responds to a school year, we can derive the
annual increase in the average number of syl-
lables per sentence.

These new findings were not observed in previ-
ous FKGL studies and are an important contribu-
tion to this study.

2 Analyzing FKGL

We repeat Equation 1 as follows.

FKGL = 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59(2)

In this formula, the number of words per sen-
tence and syllables per word appear. Currently, we
focus on the number of words in each sentence. In

computational linguistics, it is common to consider
a sentence as a sequence of words and assume that
there is always a word at the end of the sentence
(EOS) that does not explicitly appear but is always
present at the end of the sentence. Subsequently,
the number of EOSs matches the total number of
sentences; thus, the probability of EOS occurrence
can be expressed by the following equation: For
simplicity, we define this probability as psw, where
s represents a sentence, and w represents a word.
Thus, the number of words per sentence can be
understood as the reciprocal of the probability of
occurrence of a word that indicates the sentence
boundary, as follows:

psw≡
total sentences

total words
(3)

Similarly, the number of syllables per word can
be considered a syllable sequence. To avoid confu-
sion with the word ’sentence,’ we will use the letter
’l’ for syllables and express this probability as pwl.

pwl≡
total words

total syllables
(4)

Furthermore, by setting the constants a = 0.39,
b = 11.8, and c = −15.59, FKGL can be rewritten
as follows:

FKGL =
a

psw
+

b

pwl
+ c

=
1

pswpwl
(apwl + bpsw) + c (5)

Here, we introduce the number of syllables per
sentence psl.

psl ≡ total sentences
total syllables

=
total sentences

total words
total words

total syllables
= pswpwl (6)

Subsequently, eqrefeq: fkglabstis rewritten as
follows:

FKGL − c =
1

psl
(apwl + bpsw) (7)

The right-hand side of Eq. eq:fkglabst can be
decomposed into the first term 1/psl and second
term apwl + bpsw. Note that up to Equation 7, we
only performed simple formula transformations,
and no approximations were made. In the follow-
ing subsection, we discuss the research questions
predicted by Equation 7. We verify these research
questions in the following sections.



2.1 Answer to research questions
The first research question is “Why does a linear
combination of the two measures, average number
of words, and average number of syllables in a
sentence work well?”. This can be partly explained
by Equation 7. In Equation 7, FKGL is essentially
the product of 1

psl
, which is the average number of

syllables in a sentence, and M , which is defined
as In the experiments, we demonstrate that Equa-
tion 8 does not range significantly for FKGL using
a general corpus.

M = (apwl + bpsw) (8)

The second research question was “Is there any
possibility of overcalibration? That is, is it possible
that the average number of syllables in a word
takes too large a value?“. Here, we can easily see
that Equation 8 is bounded because pwl and psw
are probability values. Therefore, we can easily
see that 0 ≤ M ≤ a + b. Hence, combined with
Equation 7, we can derive the following bound for
Equation 1.

c ≤ FKGL ≤ 1

psl
(a+ b) + c (9)

In Equation 9, note that c is a negative value,
namely c = −15.59, in the case of FKGL, whereas
a and b are positive values. Hence, the FKGL is
bounded by the number of syllables in a sentence.
Hence, even if the average number of syllables in
a word is excessively large, the FKGL is bound by
the average number of syllables in a sentence. To
the best of our knowledge, no previous study has
addressed this theoretical bound. Hence, this is a
novel result and is one of our contributions.

The third research question is “What is the cog-
nitive rationale behind FKGL?”. 1

psl
is the average

number of syllables in the sentence. The average
number of syllables in a sentence differs greatly
from the average number of words. This is because
the average number of acceptable words in a sen-
tence changes according to the grade. Intuitively,
we can see that acceptable vocabulary increases
as the grade level increases. Teaching materials
were created to increase vocabulary for each grade
level. This indicates that the complexity of a text
cannot be measured using the average number of
words in a sentence alone. It is necessary to pre-
dict the acceptable vocabulary according to the
learner’s grade level and incorporate this into plan-
ning. It seems unlikely that the complex process

of calculating text complexity involving both the
average number of words in a sentence and changes
in receptive vocabulary can be performed using a
simple formula in the original equation Equation 1.
This motivated the development of more advanced
methods by considering the FKGL as a traditional
heuristic. However, even advanced methods based
on language models in recent years are models that
view language as a sequence of words. For this
reason, to estimate the complexity of a text for a
particular grade, it is also necessary to estimate the
vocabulary for that grade. Therefore, even if an ad-
vanced language model is used, it is still necessary
to make predictions that consider both the average
number of words in a sentence and the vocabulary
used in that sentence.

However, the derived equation, Equation 7, pro-
vides a completely different perspective. This in-
dicates that the FKGL can be considered as the
average number of syllables in a sentence. It is
assumed that the number of words in a learner’s
vocabulary, or vocabulary inventory, will increase
as they progress through school. However, the
number of syllables that can be recognized, or the
phonetic inventory, will remain the same, even as
they progress through school. The phonetic inven-
tory is specific to a language, and once a person
has acquired their native language, the number of
phonemes in the phonetic inventory of native speak-
ers of that language remains stable. In addition, ow-
ing to the arbitrariness of words, there is no need to
use specific sounds to express specific difficulties.
Because the size of the acceptable phonetic inven-
tory is constant, an increase in the average number
of syllables in a sentence certainly represents an
increase in sentence complexity.

Furthermore, unlike vocabulary, the phonetic in-
ventory is also very robust over time. While many
words, like “smartphones,” have become familiar in
recent decades, virtually no languages have experi-
enced a sudden increase or decrease in the number
of phonemes over this period.

Unlike words, the average syllable count of a sen-
tence does not model semantic complexity. There-
fore, if a sentence is given with a low average sylla-
ble count but high semantic difficulty, this formula
is likely to yield incorrect results. Hence, it is
impossible to determine the difficulty level of a
poem with a syllable-count limit such as a haiku.
Intuitively, such studies are rare. Practically, prac-
titioners and educators need to be careful when
applying formulae to such limited types of text.



2.2 FKGL-derived increase in the number of
syllables per year

If we use the equation in Equation 7, we can see
that the increase in the number of syllables per
year is also modeled from FKGL. In Equation
Equation 7, we focus on the FKGL for a partic-
ular school year. Let us then consider the FKGL
for the school year one year above FKGL+1. For
FKGL+1, we assume that M remains constant.

For FKGL+1, let M remain the same and let p
change from psl to p′sl. Subsequently, the following
equation holds:

FKGL+1 − c =
1

p′sl
M (10)

FKGL − c =
1

psl
M (11)

(12)

By subtracting equation Equation 10 from equa-
tion Equation 11, we obtain(

1

p′sl
− 1

psl

)
=

1

M
(13)

The expression frac1psl indicates the average
number of syllables per sentence in a specified
year, whereas 1

p′sl
signifies the average one year

later. This highlights the increase in the average
number of syllables per sentence over a year. In
addition, it is evident that 1

M denotes an increase in
the average number of syllables per sentence over
a year.

3 Experiments

3.1 Setting

Based on this, we now describe our experiments.
The British National Corpus (BNC) was used in
this experiment. We used the Python readability
library to determine the average number of words
and syllables in the sentences.

3.2 Histogram of FKGL

First, we present a histogram of FKGL in the BNC.
Figure 1 shows the histogram. The histogram ex-
hibits a bell-shaped curve.

3.3 Histogram of the average number of
syllables in a sentence

Next, we present our key findings: in Equation 7,
we recognized that FKGL could be reformulated

and that the primary complexity of the input text
is represented by the average number of syllables
per sentence, labeled as 1

psl
. We determined the

average number of syllables in the texts from the
BNC corpus using the readability library to com-
pute this metric for each text, 1

psl
, and subsequently

created a histogram of the results. The histogram
in Figure 2 shows the average number of syllables
per text on the horizontal axis and the percentage
on the vertical axis. We can observe that Figure 2
also exhibits a bell-shaped distribution similar to
Figure 1, indicating that the complexity of the text
is captured by the average number of syllables per
sentence, as anticipated.

3.4 Scatterplot of FKGL against the average
number of syllables per sentence

Following this, Figure 3 displays a scatter plot de-
picting the relationship between FKGL and the
average number of syllables per sentence. Figure 3
highlights a distinct correlation between FKGL and
the average syllables per sentence, reinforcing the
idea that the average syllables per sentence is cru-
cial in FKGL for representing text complexity.

3.5 Checking that M does not change
significantly

We postulate that M remains constant in Equa-
tion 8. To verify this result, we present a histogram
of M in Figure 4. The horizontal axis represents
the values of M and the vertical axis represents the
percentage. The peak for M clusters is approxi-
mately 1. According to Equation 7, because M is
the sole factor multiplied by the average syllable
count per sentence, the average syllable count per
sentence is almost directly utilized in the FKGL.
Indeed, nearly 60% of M fall within the ranges of
0.7 and 1.0. In addition, we observed an extended
tail, indicating that high M values were uncommon.



Figure 1: Histogram of FKGL in BNC.

Figure 2: Histogram of 1/psl in BNC.



Figure 3: FKGL against 1/psl in BNC.

Figure 4: Histogram of M in BNC.



Figure 5: M and text domains (category). The addition
of the horizontal and vertical values is M .

3.6 Domain Analysis of M

One of the primary traits of the BNC is its general
nature, which implies that the corpus comprises
various texts sourced from numerous topics. The
genres of BNC texts are termed “domains,” and ap-
proximately 4-out-of-3 out of these texts are tagged
with domains 1. In Figure 5, a scatterplot of bpsw
versus apwl in Equation 7 is presented. By integrat-
ing the horizontal and vertical axes, we derived the
M factor as previously described. In Figure 5, it
is shown that a domain confines text to a restricted
area. Therefore, when a text’s domain is fixed, the
value of M remains more consistent and does not
fluctuate significantly, rendering 1

psl
, the average

number of syllables per sentence in Equation 7, the
sole factor influencing text complexity.

3.7 The histogram of 1/M

According to Equation 13, 1/M can be interpreted
as the annual increase in the average number of
syllables per sentence. We derived 1/M in the
BNC and present its histogram in Figure 6. Inter-
estingly, Figure 6 illustrates the distribution of the
annual increase in the average number of syllables
per sentence in the BNC, showing a peak at 1.2
and ranging between 0.4 and 2.0. To the best of
our knowledge, this specific increase in text com-
plexity, as evidenced by a measurable statistic via
FKGL, has not been previously addressed. This is

1We excluded the texts without domains from the entire
experiments.

Figure 6: Histogram of 1/M , which corresponds to the
gain in the average number of syllables in a sentence
within a year predicted by FKGL.

a significant finding of this study.

4 Discussions and Related Work

In this study, we focused exclusively on FKGL.
However, as shown in Equation 7, the same logic
applies to other readability formulas that are linear
combinations of the average number of words per
sentence and the average number of syllables per
word. A well-known example of such a formula
is FRE, which typically ranges from 0 to 100 for
most texts.

Reading Ease = 206.835

− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables

total words

)
(14)

According to Equation 14, by defining a =
−1.015, b = −84.6, and c = 206.835 in Equa-
tion 5, we can obtain Equation 14. It is evident from
the signs of a and b that higher FRE values indicate
greater ease of readability; this is reasonable, given
that FRE measures easiness while FKGL measures
grade level, which correlates with difficulty. To pre-
vent confusion arising from the contrasting natures
of FRE and FKGL, we have focused exclusively
on FKGL in this paper.



4.1 Applicability to Other Formulas
In this study, we focus on FKGL and FRE, or the
Flesch–Kincaid formulas. This is because these for-
mulas are notable examples of formulas consisting
of only a linear combination of the average number
of words in a sentence and the average number of
syllables in a word. To the best of our knowledge,
no other widely known formulas have this form.

However, some formulas have very similar
forms. For example, the automated readability in-
dex (ARI) (Smith and Senter, 1967) (Equation 15)
consists of a linear combination of the average num-
ber of words in a sentence and the average number
of characters as follows: Using the same argu-
ment used in this study, ARI can be regarded as a
measure simply based on the average number of
characters in a sentence weighted by genre.

ARI = −21.43

+ 0.5

(
total words

total sentences

)
+ 4.71

(
total characters

total words

)
(15)

As with ARI, the Coleman-Liau index (Coleman
and Liau, 1975) consists of a linear combination of
the average number of words in a sentence and the
average number of characters in a word. However,
the Coleman-Liau index requires an average of over
100 sentences and words. However, the same argu-
ment that we have addressed in this study also ap-
plies to the Coleman-Liau index. Other than these
formulae, our reasoning should generally hold for
formulas that are a linear combination of the aver-
age sentence length and per-word statistics.

Regarding cognitive implications, this study re-
veals that the FKGL and FRE formulas can be
simply regarded as the number of syllables in a
sentence weighted by genre. However, the relation-
ship between the number of syllables in a sentence
and reading comprehension remains unclear, and
we show that this is an important open question.
In addition, although the BNC is an excellent gen-
eral corpus, it does not cover all text genres. The
relationship between the number of syllables in a
sentence and text genre is one of open questions.
For second language learning, recent personalized
readability studies (Ehara, 2022a,c,b; Liu et al.,
2023) are also important for studying such rela-
tionships. Also, regarding FKGL and FRE, Ehara
(2023) previously addressed that the reciprocal of

a probability can be seen as a perplexity of tokens
denoting delimiters of sentences or words.

5 Conclusions

This study makes significant contributions to the
literature by examining the Flesch–Kincaid read-
ability formulas, specifically FKGL and FRE. Un-
like previous automatic readability assessment stud-
ies (Si and Callan, 2001; Collins-Thompson and
Callan, 2005; Pitler and Nenkova, 2008; Vajjala,
2021; Martinc et al., 2021; Crossley et al., 2023),
we demonstrate that the average number of sylla-
bles per sentence is a crucial determinant of text
complexity in these formulas. Because readers’
phonetic inventories are generally stable, our find-
ings explain the enduring robustness of these for-
mulas from a cognitive perspective.

Future research should focus on creating new
robust readability formulas based on the average
number of syllables in other languages. Although
these formulas are widely used, their English speci-
ficity is a major limitation. Although FKGL has
been adapted for some European languages, devel-
oping a readability formula for Asian languages
remains challenging because of their distinct writ-
ing systems. Nevertheless, our analysis focused on
syllables per sentence, a metric that is easily trans-
ferable to Asian languages. Based on our findings,
we believe that an FKGL-equivalent readability for-
mula can be developed for other Asian languages,
which makes comparing readability between differ-
ent languages possible.

Ethical Considerations

As our analysis relies on mathematical transfor-
mations, and our experiments utilize the BNC, a
widely recognized and publicly accessible general
English corpus, we believe that this study does not
require any special ethical considerations.

Limitations

Although the BNC is a widely utilized general cor-
pus and the corpus-linguistic analysis derived from
it is broadly accepted, we acknowledge that our ex-
periments relied on a single specific corpus. While
we expect that experiments using general corpora
would yield similar results across other general cor-
pora, we did not conduct experiments using other
corpora in this paper.
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