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Abstract

This paper investigates the potential of state-
of-the-art Large Language Models— Mistral,
Starling-LM, Gemma-1.1, Llama-2 and its vari-
ant Llama-3 —in the context of chart summa-
rization. We evaluate their performance on es-
tablished datasets supplemented by our datasets
from Our World in Data designed to address po-
tential gaps. Methodologically, we delve into
the architecture of each baseline model and any
task-specific modifications. The experimental
setup covers training processes, hyperparam-
eter tuning, and specific configurations used
for evaluation. Results highlight the models’
performances across our datasets, offering in-
sights into their strengths and weaknesses. The
discussion interprets findings, exploring impli-
cations for real-world applications. This study
concludes by emphasizing the pivotal role of
these models in advancing chart summariza-
tion, providing valuable insights for practition-
ers, and suggesting promising directions for
future research.

1 Introduction

Chart Summarization stands at the intersection
of natural language processing and visual data
comprehension, playing a critical role in extract-
ing meaningful insights from visual representa-
tions like charts and graphs (Hoque et al., 2022).
In an era where data-driven decision-making is
paramount (Kim et al., 2020), understanding and
querying information presented in visual formats
have become integral across various domains
(Hoque et al., 2017).

While advancements in Natural Language Pro-
cessing (NLP) have led to the development of pow-
erful models (Masry et al., 2022; Ishwari et al.,
2019; Namazifar et al., 2021; Demszky et al.,
2018), applying these techniques to the unique chal-
lenges posed by chart summarization remains an
ongoing research frontier. Previous studies have ad-
dressed a variety of tasks, yet challenges persist in

adapting state-of-the-art NLP models to effectively
summarize based on visual data.

Central to the progress of chart summarization
are the datasets employed for model training and
evaluation. Datasets not only provide the foun-
dation for model development but also serve as a
benchmark for gauging the performance of differ-
ent approaches. Understanding the intricacies of
these datasets is crucial for uncovering the potential
of state-of-the-art models in handling the nuances
of chart-based queries.

Previous research has made notable strides in
chart summarization, yet significant gaps persist.
The focus of many studies has been on enhancing
optical character recognition (OCR), neglecting
the broader challenges posed by diverse datasets
and varied chart types. This paper addresses these
gaps by emphasizing the importance of comprehen-
sive datasets and shedding light on the challenges
faced by previous studies. By doing so, we aim to
contribute valuable insights that go beyond OCR
enhancements.

In our exploration, we leverage state-of-the-art
baseline models, including Mistral-7B (Jiang et al.,
2023), Starling-LM-7B (Zhu et al., 2023), Gemma-
1.1-7B (Team et al., 2024), Llama-2-7B (Touvron
et al., 2023), and Llama-3-8B (AI@Meta, 2024).
Each of these models was selected for their unique
strengths and capabilities. Mistral-7B is recog-
nized for its superior performance and efficiency,
leveraging grouped-query attention (GQA) and
sliding window attention (SWA) for faster infer-
ence and handling sequences effectively, making
it a highly efficient model (Jiang et al., 2023).
Starling-LM-7B excels with an 8.09 MT Bench
score, backed by the robust Nectar dataset and
RLALIF techniques, enhancing its helpfulness and
safety (Zhu et al., 2023). Gemma-1.1-7B stands
out for its compact size and remarkable perfor-
mance, utilizing grouped-query attention and slid-
ing window attention to outperform larger models
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in reasoning, math, and code generation (Team
et al., 2024). Llama-2-7B, with its large parameter
count and training on a diverse corpus, excels in
language understanding, generation, and reason-
ing benchmarks (Touvron et al., 2023). Llama-
3-8B showcases advancements in performance,
safety, and helpfulness, with extensive training
on over 15 trillion tokens, outperforming previ-
ous Llama models and ensuring enhanced helpful-
ness and reduced false refusals (Al@Meta, 2024).
By understanding how these models navigate the
challenges posed by diverse datasets, we hope to
provide a nuanced perspective on their potential
in overcoming the hurdles presented by various
chart types and data representations. The code
and dataset used in this study are available at
https://github.com/chuducandev/ChartQA.

2 Related Works

The landscape of Chart Summarization has evolved
significantly in recent years, reflecting the broader
advancements in NLP and visual data comprehen-
sion. Early studies in chart summarization focused
on foundational challenges, including optical char-
acter recognition (OCR) (Kim et al., 2022; Kave-
hzadeh, 2023) and basic question interpretation
(Kim et al., 2020; Masry et al., 2022). However,
as the field matured, researchers recognized the
need for more sophisticated approaches to handle
the complexities of diverse chart types and data
representations (Li and Tajbakhsh, 2023).

Early efforts in chart summarization predomi-
nantly revolved around planning-based architecture
(Mittal et al., 1998; Ferres et al., 2013) and two
stage approach that applied content selection using
different statistical tools in the first step followed
by generating summaries using pre-defined tem-
plates (Reiter, 2007; Zhu et al., 2021). Neverthe-
less, despite their focus on elucidating the critical
insights communicated by the chart, these systems
often fall short in furnishing lucid instructions for
interpretation.

In previous years, both commercial platforms
and academic projects have significantly advanced
the field of Chart Summarization. Notable ex-
amples include Narrative Science Quill and Au-
tomated Insights Wordsmith (Caswell and Dorr,
2018), alongside research initiatives, e.g., (Cui
et al., 2019) and (Srinivasan et al., 2018), which
have all made strides in extracting and presenting
key data insights through the computation of statis-

tical measures such as extrema and outliers. Simi-
larly, the work (Demir et al., 2012) stands out for
its innovative approach to generating bar chart sum-
maries. This method employs a bottom-up strat-
egy that intricately weaves together discourse and
sentence structures, effectively summarizing data
trends. Moreover, a pioneering approach (Chen
et al., 2019) leverages the ResNet architecture (He
et al., 2016) to encode chart images. This process
is complemented by an LSTM-based decoder that
meticulously crafts captions, showcasing the inte-
gration of deep learning techniques to enhance data
visualization interpretation.

In the realm of Chart-To-Text summarization,
the field has progressively moved from template-
driven methods towards more nuanced data-driven
approaches, underscored by the introduction and
evolution of several pivotal datasets. The sequence
began with the Chart2Text dataset (Obeid and
Hoque, 2020), offering an initial collection of
8,305 chart samples from Statista. This dataset,
although groundbreaking, was limited by its size,
posing challenges for the training of comprehen-
sive data-driven models. Subsequently, (Spreafico
and Carenini, 2020) deployed an LSTM-based
encoder-decoder model on a smaller dataset of 306
chart summaries, a step that, while innovative, still
did not fully leverage the visual aspects of charts.
Furthermore, efforts to diversify and enrich the
data landscape saw the introduction of the SciCAP
dataset (Hsu et al., 2021) focused on chart image
captioning, and the AutoChart dataset (Zhu et al.,
2021) which utilized predetermined templates for
generating chart descriptions. These advancements
highlighted the constraints of fixed templates, such
as reduced variability and insight in the generated
summaries.

In recent advancements, our work aligns with
significant contributions such as ChartSumm (Rah-
man et al., 2023) and Chart-To-Text (Kantharaj
et al., 2022), focusing on advancing interpretabil-
ity through summarization methodologies. While
ChartSumm focuses on automatic chart-to-text
summarization, catering primarily to visually im-
paired individuals and facilitating precise insights
of tabular data in natural language, Chart-To-Text
contributes a large-scale dataset with chart images,
metadata, and corresponding human-written de-
scriptions, addressing the task of generating textual
descriptions from visual data. In contrast, our work
diverges by concentrating on fine-tuning state-of-
the-art models and enriching datasets to enhance
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chart understanding and interpretation. Through
this approach, we aim to advance interpretability,
leveraging sophisticated techniques tailored to han-
dle diverse chart types and data representations. By
contextualizing our contributions within this frame-
work, we seek to bolster the repertoire of NLP
techniques for deriving insights from visual data.

3 Methodology

3.1 Dataset Construction

To conduct our research on fine-tuning large lan-
guage models for chart summarization, we cu-
rated a comprehensive dataset from Our World
in Data (Roser et al., 2015). This platform pro-
vides empirical evidence on global issues such as
poverty, health, and education. We manually col-
lected charts and their corresponding summaries
and metadata, focusing on relevant countries and
structuring the information into a comprehensive
data table. Each chart was then accompanied by a
concise and informative summary generated using
the GPT-4 (OpenAl, 2023) language model. To
ensure the quality and accuracy of the summaries,
a team of human annotators reviewed each out-
put, verifying the correctness of facts and numbers,
and assessing the coherence and clarity of the sum-
maries (Huang, 2012).

Through this comprehensive data collection and
curation process, we have successfully generated
a dataset consisting of 5,166 charts, each accom-
panied by a concise and accurate summary. This
dataset, derived from the authoritative Our World
in Data platform, covers a wide range of subjects
and provides a solid foundation for our research on
fine-tuning large language models for chart summa-
rization. By leveraging this carefully constructed
dataset, we aim to advance the state-of-the-art in
automated chart analysis and contribute to the de-
velopment of more effective tools for understand-
ing and communicating complex data (Lai et al.,
2020).

The distribution of chart types within the Our
World in Data dataset showcases a predominance of
line charts, accounting for 60.2% of the total charts.
Bar charts follow as the second most common chart
type, representing 20%. Additionally, the dataset
includes bubble charts (0.4%), scatter plots (9.6%),
and area charts (9.6%), highlighting a variety of
visualization techniques employed.

The topic distribution in the Our World in Data
dataset covers a broad range of global issues, with
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Figure 1: Chart type distribution of Our World in Data
dataset
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Figure 2: Topic distribution of Our World in Data
dataset

health being the most prominently represented
theme at 35.7%. This is followed by environ-
ment (18.5%), demographics (11.8%), economy
(12.9%), politics (6.0%), education (4.6%), technol-
ogy (1.3%), and energy (1.9%). This dataset serves
as an invaluable resource for researchers and prac-
titioners interested in exploring and understanding
various global trends and patterns, providing in-
sights into key areas such as health, environment,
and economy.

3.2 Language Model Fine-tuning Process

In this segment, we introduce the foundational mod-
els employed to assess performance within our des-
ignated dataset, followed by an outline of the fine-
tuning procedure.

3.2.1 Baseline Models

We provide an overview of the state-of-the-art lan-
guage models used as baselines.

LLAMA-2 (Touvron et al., 2023) - 7B, developed



by Meta Al excels in language understanding and
reasoning with 7 billion parameters. It’s open-
sourced, enabling wide exploration and innovation
in AL

LLAMA-3 (Al@Meta, 2024) - 8B, advances per-
formance and safety using SFT and RLHF tech-
niques. It outperforms Llama-2 models, with a
focus on safety and helpfulness in Al interactions.

STARLING-LM (Zhu et al., 2023) achieves high
scores in MT Bench, leveraging the Nectar dataset
and RLHF. It enhances the reliability and perfor-
mance of fine-tuned models.

MISTRAL (Jiang et al., 2023) - 7B, developed by
Anthropic, outperforms larger models like Llama-2
with its efficient architecture, excelling in reason-
ing, math, and code generation.

GEMMA-1.1 (Team et al., 2024) model by Google
DeepMind, a compact 7B model, surpasses larger
models in reasoning, math, and code generation,
showcasing Google’s commitment to responsible
AL

3.2.2 Fine-tuning Process

In this study, we explore the fine-tuning process
for several state-of-the-art language models, includ-
ing Llama-2, Llama-3, Starling-LM, Mistral, and
Gemma-1.1. The fine-tuning methodology is cru-
cial for adapting these models to the specific task
of summarization with chart data.

For all five models, we employed a consistent
fine-tuning approach using 3 epochs of training.
This decision aimed to ensure a fair comparison
across the models and maintain a balance between
performance and computational efficiency.

The fine-tuning process involved the use of
specific prompts tailored to each model. These
prompts, fully demonstrated in Appendix A.2, were
designed to guide the models in understanding the
task at hand and generating appropriate responses
based on the chart content. By incorporating these
prompts into the fine-tuning process, we aimed to
provide the models with clear instructions and con-
text for generating accurate and relevant summaries
based on the chart content.

Through the fine-tuning process, we sought to
leverage the pre-trained knowledge of these lan-
guage models while adapting them to the specific
task of summarization with chart data. By care-
fully tuning the models on our curated dataset and
utilizing tailored prompts, we aimed to enhance

their ability to understand and generate accurate re-
sponses based on the visual information presented
in charts.

The fine-tuning methodology employed in this
study serves as a critical component in optimizing
model performance for the task at hand. By dedi-
cating computational resources and implementing
a consistent training approach across all models,
we strive to unlock the full potential of these state-
of-the-art language models in the context of chart
summarization.

4 Evaluation

In this section, we present a comprehensive evalua-
tion of the fine-tuned models’ performance on the
chart summarization task. Our evaluation method-
ology encompasses two key components: auto-
mated benchmarks and human evaluation. The
automated benchmarks provide quantitative mea-
sures of the models’ performance, while the human
evaluation offers qualitative insights into the gener-
ated summaries’ quality and coherence. By com-
bining these two approaches, we aim to deliver a
holistic assessment of the models’ capabilities and
limitations in the context of chart summarization.

4.1 Evaluation Metrics

In assessing the quality of our automated summa-
rization, we employ a comprehensive set of eval-
uation metrics to capture various aspects of the
generated summaries. Our evaluation framework
encompasses the following key metrics:

BLEU Score (Bilingual Evaluation Understudy)
evaluates the overlap of n-grams between the
model-generated summaries and the reference texts
(Post, 2018). We compute BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 scores to capture different
levels of n-gram overlap, providing insights into
the linguistic fidelity and structural alignment of
the generated summaries with the references.

BLEURT Score (Bilingual Evaluation Under-
study with Representations from Transformers) is
a model-based metric designed to assess the flu-
ency and semantic fidelity of generated text (Sellam
et al., 2020). Leveraging BLEURT-base-128, we
evaluate the grammatical correctness and seman-
tic alignment of the machine-generated summaries
with respect to the reference documents.

PPL (Perplexity) serves as a metric to quantify the
predictive performance of language models (Rad-



ford et al., 2019). Lower perplexity scores means
more coherence and contextual relevance of the
generated summaries.

4.2 Automated Benchmarks

Our study evaluates the performance of several
state-of-the-art language models on the task of sum-
marization with chart data. Table 1 summarizes the
experimental results obtained from these models
across various evaluation metrics. Notably, the
Gemma-1.1 model leads in BLEU-1 with a score
of 54.15, while the Starling-LM model performs
slightly lower with a BLEU-1 score of 54.12 but
surpasses in BLEU-2, achieving the highest score
of 37.98. The Llama-3 model stands out with the
highest BLEURT score of 0.1832, indicating su-
perior semantic similarity, and also has the lowest
perplexity (PPL) at 7.7889, suggesting it generates
the most fluent and coherent summaries among the
evaluated models.

Overall, the experimental results highlight the
competitive performance of the Gemma-1.1 model
in terms of BLEU-1, indicating its ability to gener-
ate summaries with high unigram precision. The
Starling-LM model achieves the highest BLEU-
2 score, demonstrating its strength in generating
summaries with high bigram precision. Both mod-
els exhibit identical performance for BLEU-3 and
BLEU-4. The Llama-3 model stands out with the
highest BLEURT score and the lowest PPL value,
suggesting its superiority in generating semanti-
cally similar and fluent summaries.

These results provide valuable insights into the
strengths and weaknesses of each model in the task
of summarization with chart data. The Gemma-
1.1 and Starling-LM models demonstrate strong
performance in terms of n-gram precision, while
the Llama-3 model excels in semantic similarity
and fluency. Further analysis and experimentation
may be necessary to investigate the factors con-
tributing to these differences in performance and to
validate the findings across different datasets and
chart types.

4.3 Human Evaluation

To complement the automated benchmarks, we con-
ducted a human evaluation to assess the quality of
summaries generated by different models. This
evaluation involved a total of 750 pair-wise com-
parisons across 50 samples randomly selected from
the test dataset. Four human annotators evaluated
the summaries based on three criteria: factual cor-

rectness, coherence, and fluency (Kantharaj et al.,
2022).

After collecting the results, we used the Elo rat-
ing system to comprehensively evaluate the models’
performance. The Elo rating system calculates the
expected score F4 for a model with rating R4
when matched against an opponent with rating Rp
using the formula:

1
Ea= 1+ 10(Rp—Ra)/400°

ey

The model’s new rating R/, is then updated
based on the match outcome using the following
formula:

Ry =Ra+ K -(Sa— Ea), 2

where K is the K-factor (a constant determining
the sensitivity of the rating system), S'4 is the actual
score from the comparison (1 for a win, 0.5 for a
draw, and O for a loss), and F 4 is the expected
score as calculated earlier (Elo, 1978). In our study,
we adapted the Elo rating system with a K-factor
of 4 and an initial rating of 1000, providing a clear
comparative analysis across the three criteria. The
results are summarized in Table 2.

Among the models, Llama-3 consistently
achieved the highest Elo ratings across all factors,
making it the strongest performer in our evaluation.
Its particularly high ratings in coherence and flu-
ency indicate its ability to generate summaries that
are both logically consistent and readable, closely
approaching the quality of reference summaries.

On the other end of the spectrum, Starling-LM
and Llama-2 demonstrated the weakest perfor-
mance, with the lowest ratings in coherence and fac-
tual correctness, respectively. Starling-LM’s strug-
gles across multiple dimensions suggest a need for
further optimization, while Llama-2’s low factual
accuracy points to potential challenges in interpret-
ing the data correctly.

These Elo ratings highlight the varying strengths
and weaknesses of each model, emphasizing the
competitive performance of advanced models like
Llama-3, while also indicating areas where other
models require further improvement. Detailed pair-
wise comparison results are included in Appendix
A.1 for additional context.

4.4 Factual Correctness Analysis

In addition to the overall human evaluation, we
conducted a specific analysis focused on Factual



Models BLEU-1(1) BLEU-2(f) BLEU-3(1) BLEU-4(1) BLEURT () PPL(])
LLAMA-2 53.22 36.79 27.03 20.00 0.1355 7.9861
MISTRAL 53.5 37.42 27.78 20.78 0.1252 8.0027
Starling-LM 54.12 37.98 28.29 21.23 0.1380 8.0097
GEMMA-1.1 54.15 37.95 28.29 21.23 0.1434 7.9000
LLAMA-3 53.61 37.64 28.12 21.15 0.1832 7.7889

Table 1: Model performance comparison based on BLEU, BLEURT, and PPL

Models Correctness  Coherence  Fluency
Gold Text 1163 1048 1035
LLAMA-3 1034 1021 1026
GEMMA-1.1 934 1015 982
MISTRAL 983 970 1006
Starling-LM 981 965 964
LLAMA-2 906 982 987

Table 2: Elo ratings for models based on human evalua-
tion

Correctness to assess how accurately each model
represents the information in the charts. This analy-
sis was based on the factual correctness factor from
the human evaluation results, where we assumed
the gold texts were entirely accurate in terms of fac-
tual information, as they were carefully annotated
during the data construction phase. For GPT-4, the
result was derived by counting the number of items
in the dataset that were validated as fully factually
correct during the dataset construction step.

Models Correctness (%)
GPT-4 86.2
LLAMA-3 63.5
GEMMA-1.1 57.5
MISTRAL 455
STARLING-LM 475
LLAMA-2 43.0

Table 3: Percentage of entirely factually correct sum-
maries generated by each model.

The results, as shown in the table above, indicate
a notable gap between the performance of the fine-
tuned models. Among these, Llama-3 achieved
the highest correctness rate at 63.5%, outperform-
ing the other open models such as Gemma-1.1 at
57.5%, and Mistral and Starling-LM at 45.5% and
47.5%, respectively. Llama-2 had the lowest per-
centage of factually correct summaries at 43.0%.

While there is a clear gap between these mod-
els, further work is needed to explore potential
improvements and optimizations. The relatively
strong performance of Llama-3 highlights its po-
tential as a leading model in this category, although
there is still room for enhancing factual correctness
across all open models.

Future work could focus on closing the gap be-
tween these models, refining their ability to gen-
erate factually accurate summaries, and bringing

them closer to the performance exhibited by pro-
prietary models.

4.5 Alignment Between Automated
Benchmarks and Human Evaluation

This subsection examines the alignment between
the automated benchmarks and human evaluation
results, providing a clearer picture of each model’s
strengths and weaknesses in chart summarization.

The Llama-3 model shows strong consistency
across both evaluation methods. It achieved the
highest BLEURT score and lowest perplexity, indi-
cating superior semantic fidelity and fluency, which
aligns with its top Elo ratings in Coherence and Flu-
ency during human evaluation. This suggests that
Llama-3 consistently generates high-quality, coher-
ent, and fluent summaries, as recognized by both
automated metrics and human judgment.

Similarly, the Gemma-1.1 model performed
well in both evaluations, with strong BLEU and
BLEURT scores and a respectable perplexity score.
Its high Elo rating in Coherence reinforces the idea
that it produces accurate and coherent summaries,
making it a reliable choice for text generation tasks.

However, the Starling-LM model reveals a dis-
crepancy between its strong BLEU scores and
lower Elo ratings in human evaluation, particu-
larly in Coherence and Fluency. This suggests that,
while Starling-LM excels in n-gram overlap with
reference texts (as indicated by BLEU), it may lack
the deeper coherence and fluency that human eval-
uators value. This highlights the limitations of rely-
ing solely on automated metrics like BLEU, which
may not fully capture the quality of the generated
text.

Overall, these findings emphasize the impor-
tance of combining automated benchmarks with
human evaluation to obtain a comprehensive as-
sessment of model performance, as each method
captures different aspects of text quality.

4.6 Error Analysis and Challenges

Upon examining 100 generated summaries for the
two cases presented in Table 4, several errors and
challenges become apparent. These issues high-



Case (a)

Case (b)

Gold: The area chart illustrates the trend in the number of granted patents related to artificial intelligence by industry worldwide from 2010 to 2020. There

has been a significant increase in patent grants across all industries over this period. The "Personal devices and computing’ field saw the highest growth,

with patents rising from 727 in 2010 to 13,813 in 2020. Notably, every recorded field experienced growth, but the "Life sciences’ and *Telecommunications’
sectors also displayed prominent increases, with patents climbing to 2,290 and 4,848, respectively, in 2020. Businesses, transportation, and energy
management sectors also had considerable numbers of patent grants, with 3,218, 1,679, and 1,318 patents granted in 2020. Among the least growth was
seen in the "Banking and finance’ sector, with 751 patents in 2020, which still reflects substantial growth from the 31 patents in 2010. Overall, the chart
shows an accelerating interest and investment in AI across various industries, with the sharpest overall increase occurring between 2016 and 2018. (Figure
3)

Gold: (...) For Belarus, there
is a significant increase in the
number of stored accessions
over the years, starting from
1,144 in 1995 to a remark-
able 27,494 in 2021. (...)
(Figure 4)

Gemma-1.1: (...) The 'Business’ sector also experienced significant growth, with numbers increasing from 95 in 2010 to 3,218 in 2020. (...)
Llama-3: (...) Notably, the "Physical sciences and engineering’ industry had the lowest number of patents in 2020 with 965, down from 965 in 2018. (...)
Mistral: (...) The field of "Telecommunications’ consistently received the highest number of patent grants, with a significant increase from 727 in 2010 to

13,813 in 2020. (...) The "Energy management’ and ’Physical sciences and engineering’ fields saw a rise until 2018, followed by a slight decline in 2020.

(...) The "Personal devices and computing’ field, which had the fewest grants, saw a gradual increase over the years. The data indicates a growing interest
and investment in Al technologies across various industries, with a particularly sharp increase in the last two years.

Starling-LM: (...) The *Transportation” field, while smaller in comparison, grew from 189 patents in 2010 to 1,679 in 2020. The ’Life sciences’ field
saw an increase from 470 patents in 2010 to 2,290 in 2020. The Banking and finance’ category, although the smallest in terms of number of patents,
grew from 57 in 2010 to 751 in 2020. The ’Industry and manufacturing’ field had 1,255 patents granted in 2020, up from 109 in 2010. The ’Energy
management’ field had 1,318 patents in 2020, an increase from 492 in 2010. The "Physical sciences and engineering’ field grew from 364 patents in 2010
to 965 in 2020. The ’Security’ field saw an increase from 107 patents in 2010 to 1,527 in 2020. (...)

Llama-2: (...) For Belarus,
there has been a significant
increase from 1,144 acces-
sions in 1995 to a peak of
35,210 in 2010, followed by
a slight decline to 27,494 by
2021. (...)

Comment: Model halluci-
nated about the number of
unique plant genetic samples
stored in Belarus reaching its

Comment: Model struggles to produce a useful summary and accurately extract relevant statistics from the chart.

peak of 35,210 in 2010.

Table 4: Sample error analyses of outputs from all five training models. Red indicates hallucination errors, Blue
indicates tokens that are resulted in factual errors in the model output and Violet indicates misleading semantics

iled patents related Lo ntelligence, by industry, World
submit fected country cen grantedb SR

Figure 3: Case (a) - Artificial Intelligence Granted
Patents By Industry

mples in conservation €8, 1995 10 2021
culu

Figure 4: Case (b) - Number Of Accessions Of Plant
Genetic Resources Secured In Conservation Facilities

light the difficulties faced by the language models
in accurately understanding and summarizing the
information conveyed in the charts.

In Case (a), the Gemma-1.1 model struggles
to produce a useful summary and extract relevant
statistics from the chart accurately. For instance,
the model incorrectly states that the number of
patent applications granted in the *Business’ sec-
tor increased from 95 in 2010 to 3,218 in 2020,
whereas the correct values are 219 in 2010 and

3,218 in 2020. Similarly, the Llama-3 model makes
an error in interpreting the data for the *Physical
sciences and engineering’ industry, stating that the
number of patents was down from 965 in 2018 to
965 in 2020, which is incorrect. The Mistral model
also demonstrates several misinterpretations of the
chart data, such as incorrectly claiming that the
"Telecommunications’ field consistently received
the highest number of patent grants and that the
"Personal devices and computing’ field had the
fewest grants.

In Case (b), the Llama-2 model hallucinates
about the number of unique plant genetic samples
stored in Belarus, stating that it reached a peak of
35,210 in 2010. Howeyver, this information is not
supported by the chart data.

These errors and challenges in chart summariza-
tion can be attributed to several factors. Current
models struggle with perceptual prowess, often
missing subtle patterns and misinterpreting com-
plex visual elements, as evidenced by the misinter-
pretation of trends and numbers in Case (a). Hallu-
cinatory outputs occur when models generate false
information not present in the input, leading to ir-
relevant or unsupported summaries, such as the
hallucination in the Llama-2 model for Case (b).
Data inconsistencies and training limitations result
in models performing well on familiar data but fal-
tering with less familiar formats, due to the broad
variability in chart representations. Additionally,
models excel at token-level predictions but struggle
with maintaining semantically accurate summaries,
leading to misleading information, such as Mis-
tral’s claims about the “Telecommunications’ field.

To address these challenges in chart summariza-



tion, several specific steps can be taken. First, cu-
rating larger and more diverse datasets covering
various chart types and styles can help models gen-
eralize better. Second, developing more sophisti-
cated model architectures that handle the nuances
of visual data interpretation can reduce errors, pos-
sibly by integrating advanced vision-language mod-
els. Third, implementing grounding techniques to
ensure outputs are closely tied to the input data can
mitigate hallucinations by reinforcing the model’s
reliance on provided data. Continuously analyzing
model outputs and feeding this information back
into the training process can iteratively improve
performance by identifying and refining common
error patterns. Additionally, combining automated
summarization with human oversight can enhance
accuracy, as human reviewers can correct model
outputs and provide additional training data (Kan-
tharaj et al., 2022; Rahman et al., 2023; Moured
et al., 2024).

By implementing these strategies, we can sig-
nificantly improve the accuracy and reliability of
language models in chart summarization.

5 Conclusion

In our study, we explored the effectiveness of state-
of-the-art language models, including Llama-2,
Llama-3, Starling-LM, Mistral, and Gemma-1.1,
in summarizing chart data. Through a compre-
hensive fine-tuning process and tailored prompts,
we evaluated their performance and identified the
competitive results of the Llama-3 model, which
achieved high BLEU scores, the highest BLEURT
score, and the lowest perplexity value.

However, our analysis also revealed persistent
challenges, such as perceptual limitations, hallu-
cinatory outputs, and the need for improved data
extraction methods. These challenges underscore
the importance of continued research and develop-
ment efforts to refine model architectures, diversify
datasets, and explore novel approaches that inte-
grate advances in natural language processing and
computer vision.

The successful integration of summarization
models with chart data holds immense potential
for applications in data analysis, accessibility en-
hancement, and beyond. By addressing the iden-
tified challenges and building upon the strengths
of the evaluated models, we can pave the way for
more effective and efficient interactions between
humans and machines in the realm of visual data

comprehension.

Our study serves as a foundation for future re-
search in this domain, providing valuable insights
into the capabilities and limitations of state-of-the-
art language models in summarization with chart
data. We encourage further exploration and ex-
perimentation to push the boundaries of this field,
ultimately contributing to the broader landscape of
artificial intelligence and data science. By leverag-
ing the strengths of these models and addressing the
identified limitations, we can unlock new possibili-
ties for data-driven decision-making and enhance
the accessibility of visual information for a wider
audience.

Acknowledgments

This research is supported by research funding
from the Faculty of Information Technology, Uni-
versity of Science, Vietnam National University -
Ho Chi Minh City.

References
Al@Meta. 2024. Llama 3 model card.

David Caswell and Konstantin Dérr. 2018. Automated
journalism 2.0: Event-driven narratives: From sim-

ple descriptions to real stories. Journalism Practice,
12(4):477-496.

Chen Chen, Ran Zhang, Eunice Koh, Sangyoung Kim,
Scott Cohen, Tong Yu, Ryan Rossi, and Razvan
Bunescu. 2019. Figure captioning with reason-
ing and sequence-level training. arXiv preprint
arXiv:1906.02850.

Zhiyuan Cui, Sunil K. Badam, Mehmet A. Yalcin,
and Niklas Elmqvist. 2019. Datasite: Proactive vi-
sual data exploration with computation of insight-

based recommendations. Information Visualization,
18(2):251-267.

Semir Demir, Sandra Carberry, and Kathleen F. McCoy.
2012. Summarizing information graphics textually.
Computational Linguistics, 38(3):527-574.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into nat-
ural language inference datasets. arXiv preprint
arXiv:1809.02922.

Arpad Elo. 1978. The Rating of Chessplayers, Past and
Present. Arco Publishing, New York, NY, USA.

Leonel Ferres, Gitte Lindgaard, Linda Sumegi, and
Becky Tsuji. 2013. Evaluating a tool for improv-
ing accessibility to charts and graphs. ACM Trans-
actions on Computer-Human Interaction (TOCHI),
20(5):1-32.


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770—
778.

Ehsan Hoque, Pooya Kavehzadeh, and Ahmed Masry.
2022. Chart question answering: State of the art
and future directions. In Computer Graphics Forum,
volume 41, pages 555-572. Wiley Online Library.

Ehsan Hoque, Vidya Setlur, Melanie Tory, and Ian Dyke-
man. 2017. Applying pragmatics principles for inter-
action with visual analytics. IEEE transactions on
visualization and computer graphics, 24(1):309-318.

Tai-Yi Hsu, C. Lee Giles, and Tzu-Hao Huang. 2021.
Scicap: Generating captions for scientific figures.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3258-3264.

Ruopeng Huang. 2012. Enhancing survey quality
through data quality assurance and quality control. In
International Conference on Social Science Method-

ology, pages 257-270. Springer.

Karishma Ishwari, Aneeze Abdul Azeez, Sudheesan
Sreedhar, Haritha Karunaratne, Arjuna Nugaliyadde,
and Yassir Mallawarrachchi. 2019. Advances in nat-
ural language question answering: A review. arXiv
preprint arXiv:1904.05276.

Antoine Q. Jiang, Alexandre Sablayrolles, Adam Men-
sch, Charles Bamford, Dhruv S. Chaplot, Diego
de las Casas, Fabien Bressand, Gaél Lengyel, Guil-
laume Lample, and Lucas Saulnier et al. 2023. Mis-
tral 7b. arXiv preprint arXiv:2310.06825.

Sharada Kantharaj, Ryan T. Leong, Xiaoran Lin, Ahmed
Masry, Mihir Thakkar, Ehsan Hoque, and Shafiq Joty.
2022. Chart-to-text: A large-scale benchmark for
chart summarization. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4005—
4023.

Pooya Kavehzadeh. 2023. Chart question answering
with an universal vision-language pretraining ap-
proach. Unpublished.

Do Hyun Kim, Ehsan Hoque, and Maneesh Agrawala.
2020. Answering questions about charts and gen-
erating visual explanations. In Proceedings of the
2020 CHI conference on human factors in computing
systems, pages 1-13.

Gunwoo Kim, Taekyung Hong, Minki Yim, Jiyoung
Nam, Jaewook Park, Junbeom Yim, Won Ik Hwang,
Seunghyun Yun, Dongsoo Han, and Seungryong Park.
2022. Ocr-free document understanding transformer.
In European Conference on Computer Vision, pages

498-517. Springer.

Zhaoyang Lai, Liang Yu, Shiqing Hu, and Xiaojun
Chen. 2020. Automatic chart summarization. arXiv
preprint arXiv:2008.11223.

Shujian Li and Nima Tajbakhsh. 2023. Scigraphqa: A
large-scale synthetic multi-turn question-answering
dataset for scientific graphs. arXiv preprint
arXiv:2308.03349.

Ahmed Masry, Xianglin Do, Jian Qiang Tan, Shafiq
Joty, and Ehsan Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263—
2279.

Vibhu Mittal, Johanna Moore, Giuseppe Carenini, and
Steven F. Roth. 1998. Describing complex charts
in natural language: A caption generation system.
Computational Linguistics, 24(3):431-477.

Omar Moured, Jinchao Zhang, Muhammad S. Sarfraz,
and Rainer Stiefelhagen. 2024. Altchart: Enhancing
vlm-based chart summarization through multi-pretext
tasks. arXiv preprint arXiv:2405.13580.

Mina Namazifar, Alexandros Papangelis, Gokhan Tur,
and Dilek Hakkani-Tur. 2021. Language model is all
you need: Natural language understanding as ques-
tion answering. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7803-7807.

Jocelyn Obeid and Ehsan Hoque. 2020. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 138—147.

OpenAl. 2023. Gpt-4 technical report. ArXiv, 2303.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever et al. 2019. Lan-
guage models are unsupervised multitask learners.

Rezwan Rahman, Rezwana Hasan, Ashraful Farhad,
Md Tahmid Rifat Laskar, Md Ashmafee, and Arjun
Kamal. 2023. Chartsumm: A comprehensive bench-
mark for automatic chart summarization of long and
short summaries. In Proceedings of the Canadian
Conference on Artificial Intelligence.

Ehud Reiter. 2007. An architecture for data-to-text
systems. In Proceedings of the Eleventh European
Workshop on Natural Language Generation (ENLG
07), pages 97-104.

Max Roser, Hannah Ritchie, and Esteban Ortiz-Ospina.
2015. Our world in data.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
Bleurt: Learning robust metrics for text generation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7881—
7892.


https://doi.org/10.18653/v1/2021.findings-emnlp.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2020.inlg-1.20
https://doi.org/10.18653/v1/2020.inlg-1.20
https://doi.org/10.18653/v1/2020.inlg-1.20
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://doi.org/10.21428/594757db.0b1f96f6
https://doi.org/10.21428/594757db.0b1f96f6
https://doi.org/10.21428/594757db.0b1f96f6
https://ourworldindata.org/
https://aclanthology.org/2020.acl-main.704

Antonio Spreafico and Giuseppe Carenini. 2020. Neu-
ral data-driven captioning of time-series line charts.
In Proceedings of the International Conference on
Advanced Visual Interfaces, pages 1-6.

Arvind Srinivasan, Steven M. Drucker, Alex Endert, and
John Stasko. 2018. Augmenting visualizations with
interactive data facts to facilitate interpretation and
communication. IEEE Transactions on Visualization
and Computer Graphics, 25(1):672—681.

Gemma Team, Théo Mesnard, Chris Hardin, Raphaél
Dadashi, Sriram Bhupatiraju, Sharada Pathak, Lau-
rent Sifre, Matthieu Riviére, Megha S. Kale, and
James Love et al. 2024. Gemma: Open models based
on gemini research and technology. arXiv preprint
arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikita
Bashlykov, Shruti Batra, Pratik Bhargava, and
Sandeep Bhosale et al. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Binyang Zhu, Eric Frick, Tong Wu, Haoyu Zhu, Kavitha
Ganesan, Wei-Lin Chiang, Jing Zhang, and Jiantao
Jiao. 2023. Starling-7b: Improving 1lm helpfulness
& harmlessness with rlaif. Unpublished.

Jing Zhu, Jing Ran, Raymond K.-W. Lee, Zhenyu Li,
and Kang Choo. 2021. Autochart: A dataset for chart-
to-text generation task. In Proceedings of the Inter-
national Conference on Recent Advances in Natural
Language Processing (RANLP 2021), pages 1636—
1644.

A Appendices

A.1 Pairwise Comparison Results

Table 5 presents the results of our human evalua-
tion, which compares the quality of summaries
generated by different models. The results are
based on factual correctness, coherence, and flu-
ency, highlighting which model performed better
in each comparison. These comparisons provide
insights into the strengths and weaknesses of the
models in summarizing chart data.

A.2 Fine-Tuning Prompts

In this section, we provide the specific prompts
used for fine-tuning the different language mod-
els in our study. These prompts were designed to
guide each model in understanding the task of chart
summarization and producing accurate summaries.

Llama-2, Mistral, and Starling-LM Prompts:
The following prompt structure was used consis-
tently across these three models.

<s>[INST] From the below input full content of a chart,
write a summary that reflects the meaning and trend of the
chart.

Chart content:
{sample['input']}[/INST1{sample['output']}</s>

Gemma-1.1 Prompt: For the Gemma-1.1
model, the prompt included user and model tags to
structure the input and output more explicitly.

<bos><start_of_turn>user

From the below input full content of a chart, write a
summary that reflects the meaning and trend of the chart.
Chart content:

{sample['input']}<end_of_turn>

<start_of_turn>model

{sample[ 'output']}<end_of_turn>

Llama-3 Prompt: The Llama-3 model used a
prompt with specific header IDs and end-of-turn
markers.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
From the below input full content of a chart, write a
summary that reflects the meaning and trend of the chart:
<|eot_id|> <|start_header_id|> user <|end_header_id|>

Chart content:
{sample['input']}<|eot_id|><|start_header_id|>assistant
<|end_header_id|>

{sample['output']} <|eot_id|> <|end_of_text|>

These prompts were tailored to each model’s
architecture to maximize their performance in chart
summarization tasks.



GEMMA-1.1 vs. LLAMA-2

GEMMA-1.1 vs. LLAMA-3

GEMMA-1.1 vs. MISTRAL

Summary Factual Coherence Fluency  Factual Coherence Fluency Factual Coherence Fluency
First Wins 36.0% 29.5% 19.5% 17.0% 23.0% 125%  30.5% 31.0% 15.5%
Second Wins 43.0% 16.0% 11.0% 51.0% 26.0% 19.5%  42.0% 26.0% 19.5%
Tie 21.0% 54.5% 69.5% 32.0% 51.0% 68.0%  27.5% 43.0% 65.0%
GEMMA-1.1 vs. STARLING-LM GEMMA-1.1 vs. GOLD LLAMA-2 vs. LLAMA-3
Summary Factual Coherence Fluency  Factual Coherence Fluency Factual Coherence Fluency
First Wins 43.0% 35.5% 13.5% 23.5% 25.0% 12.0% 19.0% 24.0% 7.5%
Second Wins 32.5% 13.5% 10.0% 42.5% 21.5% 25.5% 57.0% 27.5% 19.0%
Tie 24.5% 51.0% 76.5% 34.0% 53.5% 62.5%  24.0% 48.5% 73.5%
LLAMA-2 vs. MISTRAL LLAMA-2 vs. STARLING-LM LLAMA-2 vs. GOLD
Summary Factual Coherence Fluency  Factual Coherence Fluency Factual Coherence Fluency
First Wins 24.0% 36.5% 12.0% 29.5% 26.0% 15.5% 19.5% 17.5% 5.0%
Second Wins 56.0% 18.0% 14.0% 46.5% 17.0% 120%  57.0% 41.0% 20.0%
Tie 20.0% 45.5% 74.0% 24.0% 57.0% 72.5%  23.5% 41.5% 75.0%
LLAMA-3 vs. MISTRAL LLAMA-3 vs. STARLING-LM LLAMA-3 vs. GOLD
Summary Factual Coherence Fluency  Factual Coherence Fluency Factual Coherence Fluency
First Wins 35.5% 44.5% 22.0% 37.5% 30.5% 21.5% 31.5% 25.0% 15.5%
Second Wins 38.5% 11.5% 6.0% 34.5% 12.0% 8.0% 36.5% 26.0% 18.0%
Tie 26.0% 44.0% 72.0% 28.0% 57.5% 70.5% 32.0% 49.0% 66.5%
MISTRAL vs. STARLING-LM MISTRAL vs. GOLD STARLING-LM vs. GOLD
Summary Factual Coherence Fluency  Factual Coherence Fluency Factual Coherence Fluency
First Wins 31.5% 38.0% 20.5% 26.5% 20.0% 13.5% 22.0% 23.0% 18.0%
Second Wins 39.0% 24.0% 11.0% 54.5% 33.5% 19.0%  52.5% 33.5% 23.5%
Tie 29.5% 38.0% 68.5% 19.0% 46.5% 67.5% 25.5% 43.5% 58.5%

Table 5: Human evaluation results for summary quality comparison among models.
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