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Abstract

Educational applications, including adaptive
learning platforms and intelligent tutoring sys-
tems, need to provide personalized content
with feedback in order to help improve learn-
ers’ skills, and it is important for such applica-
tions to understand the individual learning level.
When using large language models (LLMs)
for educational applications leveraging its re-
sponse generation capacity, the LLMs should
be able to provide appropriate feedbacks to
users. This work investigates how well LLMs
can implicitly adjust their difficulty level to
match with the user input when generating their
responses. We introduce a new dataset from
Stack-Overflow, consisting of question-answer
pairs related to programming, and propose a
method to analyze the ability in aligning text
difficulties by measuring the correlation with
various text difficulty metrics. Experimental re-
sults on our Stack-Overflow dataset show that
LLMs can implicitly adjust text difficulty be-
tween user input and its generated responses.
Similar trends were observed for the multi-turn
English lesson dataset of Teacher Student Cha-
troom Corpus (TSCC). We also observed that
some LLMs, when instruction-tuned, can sur-
pass humans in varying text difficulty.

1 Introduction

Educational applications, including adaptive learn-
ing platforms and intelligent tutoring systems, need
to provide personalized content with feedback in or-
der to help improve learners’ skills. It is important
for those applications to understand the individual
learning level to enhance learners’ understanding
in educational applications (Wang et al., 2024b;
Huber et al., 2024).

As one such application, Dijkstra et al. (2022)
use large language models (LLMs) to spark cu-
riosity for boosting children’s motivation to learn.
Gabajiwala et al. (2022) incorporate LLMs into
interactive contents such as quizzes and flashcards

Prompts
### Question :

Question by Users
How should we fix this code?
num_list = [4,5,6]
----------------------------------------------
Traceback (most recent call last): File ‘Main.py’ , line 5, in 
<module> print(num_list[3]) IndexError: 
list index out of range

The error is because you’re 
accessing a non-existent 
index. 
So, num_list[3] is out of 
range for [4,5,6]. Just 
change it to num_list[2] to 
fix it, as that will give you 
the last item, 6.

Generated Text
The code attempts to 
access an element in the 
list that doesn’t exist.
To fix it:
1. You should expand the 
list so that is contains an 
element at index 3 before 
using print(num_list[3]).

Human’s Answer

HumanChatGPT
Vicuna
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Figure 1: Overview of our evaluation procedure. We
evaluate the generated texts from LLMs by comparing
the correlation of text difficulty and appropriateness in
length with user questions. We also measure the syn-
onymity between the LLM generated texts and human
answers.

to enhance engagement and learning of users. Abu-
Rasheed et al. (2024) proposed a method that uti-
lizes a knowledge graph to extract information
relevant to learners’ input questions and incorpo-
rates it into prompts, thereby providing information
aligned with the learners’ intentions.

Current research suggests LLMs may be useful
for generating personalized problems and lecture
content aligned with learners’ comprehension lev-
els (Baskara et al., 2023). LLMs can achieve this
adaptation through reinforcement learning from
human feedback (RLHF) that takes human prefer-
ences into consideration (Ouyang et al., 2022).

As an aspect of personalized response, LLMs
should adjust the text difficulty to match user’s com-
prehension level. Imperial and Madabushi (2023)
examined the capability of GPT-2 (Radford et al.,
2019) to adjust and generate complex texts. How-
ever, their analysis was limited to GPT-2, and a
comprehensive study of LLMs has not yet been con-



ducted. Thus, we explored the ability of LLMs to
adjust the difficulty of responses to match the diffi-
culty of user input as an approach in understanding
the learner’s level for educational appllications. Re-
sponses at the same level as the user will be better
understood by the user. Accordingly, we hypothe-
sized that the “simplicity/difficulty level” is nearly
equal to the “user’s understanding level”. Here, the
simplicity or difficulty level of user text serves as
a proxy to estimate the user’s understanding level.
Figure 1 shows an overview of our experiment.
The figure illustrates how we evaluate LLM perfor-
mance by comparing their generated responses to
human answers, focusing on how well they implic-
itly adjust text difficulty. We give the same user
question to both LLMs and humans, measuring
their ability to adjust responses based on text dif-
ficulty and length. By comparing the synonymity
between LLM-generated responses and human an-
swers, we further measure the LLMs’ ability to
generate plausible responses.

To measure the ability of LLMs to adjust simplic-
ity/difficulty level in their response, we conducted
an experiment on two different datasets. We cre-
ated a Stack-Overflow dataset, which is related to
programming, by extracting the question-answer
pairs that cover a wide range of text difficulty. In
addition, we run our experiments using the Teacher
Student Chatroom Corpus (TSCC) (Caines et al.,
2020) in order to understand how LLMs respond
to English language learners.

Experimental results on our Stack-Overflow
dataset and the TSCC dataset show that LLMs ad-
just the difficulty of the generated text to match
those of the user input, even in the zero-shot set-
ting. We also observed that the text difficulty of
LLMs’ output is more closely correlated to the
question’s text difficulty than to the original human
answers. Instruction-tuned models exhibited even
stronger correlations, indicating that Instruction-
Tuning may enhance the ability to adjust implicit
text difficulty. The response with the same level of
user will be better understood by user.

2 Related Work

Dataset There are existing datasets such as
BoolQ (Clark et al., 2019) (yes/no questions), Nat-
ural Question (Kwiatkowski et al., 2019) (short and
paragraph-length answers), CommonsenseQA (Tal-
mor et al., 2019) (common knowledge), and Open-
QA (Wang et al., 2023) (factuality) mainly feature

Statistics Question
Title

Question
Body

Answer
Body

Min 3.0 23.0 3.0
Max 41.0 9,382.0 6,545.0
Median 13.0 334.0 222.0
Mean 14.6 537.8 337.9

Table 1: Token count statistics for the Stack Overflow
dataset, calculated using the LLaMa-2 Tokenizer. For
more details, see Appendix A.2.

short answers, making them unsuitable for reliably
measuring text difficulty using automatic evalua-
tion metrics, such as FKGL (Klare, 1974) and FRE
(Kincaid et al., 1975), which require longer inputs.
Thus, existing datasets lack the longer input lengths
necessary to reliably measure LLMs’ ability to im-
plicitly adjust text difficulty. This highlights the
need for a new dataset with longer questions and
answers for better text difficulty evaluation.

Adaptive Learning Some studies aim to provide
personalized learning methods through prompt tun-
ing and model training for educational purposes
(Wang et al., 2024b; Huber et al., 2024; Baskara
et al., 2023), which have further evolved into user-
friendly applications (Dijkstra et al., 2022; Gabaji-
wala et al., 2022; Abu-Rasheed et al., 2024; Impe-
rial and Madabushi, 2023; Pu and Demberg, 2023).
For the further development of LLMs, it is crucial
to assess if LLMs can understand not only the con-
tent of questions but also adjust to text difficulty.
The TSCC dataset, which focuses on dialogues
between teachers and language learners, is rele-
vant for this analysis. However, its short responses
make thorough analysis challenging. Thus, current
research has yet to sufficiently address this issue,
highlighting the need for more detailed analysis.

3 Dataset Construction

We constructed a dataset for effectively comparing
text difficulty, comprising two parts, questions and
answers. Since short target sentences may lead
to inaccurate difficulty assessments, existing QA
datasets such as SQuAD (Rajpurkar et al., 2016),
which typically contain brief answers (for example,
a single word or sentence), do not meet our criteria.
Thus, both parts maintain sentences of sufficient
length to ensure reliable difficulty estimation by
checking token counts (see Appendix A.2).

To address this challenge, we created a dataset
from Stack-Overflow1, selecting data as of July

1https://stackoverflow.com/

https://stackoverflow.com/


Stack-Overflow

Setting Prompt

Normal ### Question : {T itle} {Question}

Simple Please respond to the question using simple and user-friendly language.
### Question : {T itle} {Question}

Complex Please respond to the question using complex and less user-friendly language.
### Question : {T itle} {Question}

TSCC

Please generate a response from the teacher to the student in the ongoing dialogue.
### Dialogue : {Dialogue}

Table 2: Prompts for each setting. Note that TSCC has only one prompt.

1, 2023. We then extracted 1,000 posts start-
ing from the most recent ones to optimize the
scope of feasible experiments under constrained
resources. The extracted posts contain significantly
more tokens than typically observed ones in QA
datasets such as BoolQ(Clark et al., 2019), Natu-
ral Question(Kwiatkowski et al., 2019), Common-
senseQA(Talmor et al., 2019), and Open-QA(Wang
et al., 2023).

We then extracted the “QuestionTitle”, “Ques-
tionBody”, and “AnswerBody” fields from each
post. We combined “QuestionTitle” and “Question-
Body” to form the Questions parts and designated
“AnswerBody” as the Answers. Table 1 summarizes
the token count statistics for the Stack Overflow
dataset, showing the distribution across “Question-
Title”, “QuestionBody”, and “AnswerBody”. As
shown in the table, some inputs exceed the con-
text size manageable by many models (approxi-
mately 4,096 to 8,192 tokens). However, the ma-
jority of questions fit within 2,048 tokens, which
allows us to evaluate the models’ implicit difficulty
adjustment capabilities. Thus, in this study, we
limit the input to LLMs to 2,048 tokens, truncating
any spurious tokens, as detailed in Appendix A.2.
We will release our code and dataset at https:
//github.com/satoshi-2000/llms-suitable.

4 Evaluation Procedure

4.1 Prompts

When prompts explicitly indicate the difficulty
level, there’s a risk of leakage of the difficulty
level adjustment, which might lead to inappropri-
ate personalization not aligned with the learner’s
understanding (Rooein et al., 2023). Therefore,
to evaluate the LLM’s implicit ability to adjust the
difficulty level, we excluded the user’s text com-

prehension level from the prompts or inputs, as
detailed in Tables 2.

To assess the effectiveness of prompts, we col-
lected and compared examples of language model
outputs across three settings — simple, normal, and
complex — within the Stack Overflow dataset, and
another setting within the TSCC dataset. Table 2
shows the prompts we employed in each setting. In
the “normal” setting, we did not provide explicit
instructions for difficulty adjustment, allowing us
to observe the model’s inherent ability to adapt.

Conversely, in the “simple” setting, we in-
structed the model to generate responses that were
simple and user-friendly, while in the “complex”
setting, we explicitly directed the model to produce
responses that were complex and less user-friendly.
This approach allowed us to compare the model’s
ability to adjust difficulty under both implicit and
explicit guidance.

4.2 Metrics

We examine the difficulty adjustment ability of
LLMs using three evaluation indicators: text dif-
ficulty; synonymity; and appropriate text length.
In text difficulty and appropriate text length, we
calculated Spearman’s rank correlation coefficient
between the input and generated texts after ranking
them based on the scores of these metrics. Addi-
tionally, we recorded the number of inappropriate
text generations (skip rows), such as blanks. Fur-
thermore, we computed the Mean Absolute Error
(MAE) and the mean of the above metrics, as de-
tailed in Appendix B.

Text Difficulty In language education contexts,
it’s crucial for teachers to adapt explanations to
match learners vocabulary and comprehension lev-
els. Thus, we measure this ability using text dif-

https://github.com/satoshi-2000/llms-suitable
https://github.com/satoshi-2000/llms-suitable


ficulty metrics assuming that it reflects the level
understanding. The indicators include traditional
ones like FKGL (Klare, 1974), FRE (Kincaid et al.,
1975), and SMOG (Mc Laughlin, 1969), as well as
NERF (Lee and Lee, 2023). NERF uses manually
created features based on vocabulary difficulty, sen-
tence structure complexity, the diversity of unique
words, and bias to formalize text difficulty, offers
a more accurate estimation of text difficulty than
traditional metrics like FKGL and SMOG.

Synonymity To assess synonymity, it’s essen-
tial to determine if LLMs deliver the correct con-
tent. Thus, we calculated BERTScore (Zhang et al.,
2020) for texts generated by LLMs using the col-
lected dataset’s texts as references to ensure that
LLMs align with the user’s intended content.

Appropriate Length In question-answering and
educational contexts, it’s crucial that responses are
both concise and appropriately detailed. Responses
that are too short or too long can hinder user com-
prehension and clarity. However, determining a
universally optimal response length is challenging,
as it varies with the user’s expertise and preferences.
In this study, we operate under the assumption that
longer input questions warrant more detailed re-
sponses, while shorter questions call for greater
brevity. Thus, we investigated if LLMs can pro-
duce responses of appropriate length — neither too
long nor too short — by comparing the length of
LLMs generated texts to the input texts.

5 Experimental Setup

5.1 Dataset

We conducted experiments on two datasets: our
Stack-Overflow dataset consisting of question-
answer pairs related to programming , and the
Teacher-Student Chatroom Corpus (TSCC) (Caines
et al., 2020) consisting of dialogue histories col-
lected during English lessons. These datasets were
used to compare how the ability to adjust text diffi-
culty changes in single-turn Stack Overflow pairs
and multi-turn TSCC dialogues.

Stack-Overflow We used our created Stack-
Overflow dataset in Section 3, consisting of 1,000
selected entries with HTML tags removed. It was
scraped from question datasets as of July 1, 2023.

TSCC We extracted the TSCC dialogue histories
from the beginning, prefixed each turn with the
label of the speaker (“teacher” or “student”). For

our experiments, we used the dialogues up to just
before the first turn where the teacher speaks after
the initial 10 turns, ensuring that the LLM is given
the teacher’s turn.

5.2 Models
To assess the ability of LLMs to adjust text dif-
ficulties for users, we compared various models.
We hypothesized that LLMs, when trained on data
reflecting human preferences, have the potential to
align with learners’ comprehension levels. Accord-
ingly, we focused our evaluation on models such
as GPT3.5/4 (Ouyang et al., 2022; OpenAI et al.,
2023) and Vicuna (Zheng et al., 2023).

We also hypothesized that instruction-tuning is
effective in acquiring the implicit ability to ad-
just text difficulty. Thus, we chose several mod-
els: LLaMa-2 and LLaMa-2-chat (Touvron et al.,
2023b); CodeLLaMa and CodeLLaMa-Instruct
(Roziere et al., 2023); Mistral and Mistral-Instruct
(Jiang et al., 2023); Orca (Mitra et al., 2023); and
OpenChat (Wang et al., 2024a).2

GPT3.5/4 (Ouyang et al., 2022; OpenAI et al.,
2023) is an LLM that uses Reinforcement Learn-
ing from Human Feedback (RLHF) to align with
human preferences, and it stands out for its excep-
tionally high performance among current LLMs.

LLaMA-2 (Touvron et al., 2023b) is an LLM
pre-trained and fine-tuned across a range of 700
million to 7 billion parameters. This model not
only outperforms LLaMA and its variants (Touvron
et al., 2023a) in numerous benchmarks but has also
undergone manual reviews for its usefulness and
safety, indicating its potential to substitute closed-
source models. Besides, it includes variations with
different parameter sizes and versions fine-tuned
for dialogue data and source code, such as LLaMA-
2-chat and Code-LLaMA (Roziere et al., 2023).

Vicuna (Zheng et al., 2023) is an LLM trained
to align with human preferences using data from
ShareGPT 3 interactions, and based on LLaMA
(Touvron et al., 2023a). We selected the 1.5 version
of this model based on LLaMA-2 to analyze the
impact of on text difficulty adaptation.

Orca (Mitra et al., 2023) is a model fine-tuned
with prompts from various strategies, enabling it
to adjust difficulty and offer flexible outputs in
response to input sentences.

2See Appendix C for further details.
3https://sharegpt.com/

https://sharegpt.com/


Mistral (Jiang et al., 2023) is a pre-trained model
with 7 billion parameters. Compared to the larger
parameter-sized 13B model of LLaMA-2, Mistral
has recorded high performance in benchmarks.

OpenChat (Wang et al., 2024a) builds on Mis-
tral (Jiang et al., 2023) and ShareGPT for train-
ing, enhancing learning by leveraging data quality
variance between GPT-3.5 and GPT-4 as a reward
mechanism.

Starling (Zhu et al., 2023a) is trained with a re-
ward model derived from feedback on GPT-4 (Ope-
nAI et al., 2023) and builds upon OpenChat (Wang
et al., 2024a), which itself was fine-tuned from Mis-
tral. We aim to explore whether models based on
Mistral can develop the ability to modulate diffi-
culty levels through fine-tuning.

To ensure reproducibility, we fixed the random
seed and temperature for sentence generation. We
detailed inference setting in Appendix A.

6 Results and Discussion

6.1 Stack-Overflow

Normal Figure 2 shows the result on our Stack-
Overflow dataset and TSCC dataset under each
setting. Although many models score high on
BERTScores, the LLaMA-2 base model presents
lower scores due to over- and under-generation.
This result contrasts LLaMa-2-chat, showing
instruction-tuning’s effectiveness in considering
human responses. Also, LLaMa-2-chat performs
well in the correlation of text difficulty with other
instruction-tuned models, Vicuna-13B and Mistral-
7B-Instruct. From the result, we can understand the
importance of instruction-tuning in the correlation.

On the other hand, CodeLlama-Instruct, which
is instruction-tuned for code generation, shows
low performance. Based on the successful re-
sult by LLaMa-2-chat, also instruction-tuned from
LLaMa-2, this result indicates the importance of
target tasks in instruction-tuning. We can observe
similar trends between Mistral-7B-Instruct and its
instruction-tuned variants, Openchat-3.5-7B and
Starling-LM-7B.

Orca shows high performance as an instruction-
tuned model. When comparing Orca-2-7B and
Orca-2-13B, Orca-2-13B performs better across all
metrics, underscoring the model’s adherence to the
scaling law. Nevertheless, LLaMA-2-chat main-
tains strong performance regardless of an increase
in model size. Therefore, we can conclude the im-

portance of the instruction-tuning method rather
than model parameter size.

LLaMA-2-chat scores comparable to GPT-3.5
and GPT-4 in all metrics. This result is consis-
tent with the human evaluations for helpfulness by
LLaMA-2-chat reported in (Touvron et al., 2023b)
and shows the potential of open-source models.

Simple In Figure 2, the results show a similar
tendency to the normal setting, with instruction-
tuned models also able to adjust text difficulty in
response to the input in the simple setting.

Complex In Figure 2, even in the complex set-
ting, instruction-tuned models adjust text difficulty
based on the input, similar to the normal setting.
However, the Spearman’s correlation is lower in
complex setting compared to the simple and normal
settings. This may be due to prompts deliberately
designed to elicit more complex responses, result-
ing in expressions that are harder to understand
than the original responses.

Overall Comparing the normal, simple, and com-
plex settings, the Spearman’s correlation is consis-
tently higher in the normal setting. The results in
the normal setting were slightly higher than those
in the simple setting, suggesting that human pref-
erence and instruction tuning have implicitly gave
these models the capability to adjust text difficulty.

We also measured the correlation between input
and output lengths, assuming longer questions re-
quire detailed responses and shorter ones should
be concise. However, the correlation was consis-
tently low across all models, showing the difficulty
of handling generation lengths by LLMs similar
to Juseon-Do et al. (2024). This suggests that in-
put length alone doesn’t fully capture the respon-
dent’s expertise or preference for response length.
For example, step-by-step explanations may help
beginners but can be redundant for professionals
who prefer concise summaries. Further research
is needed to determine the optimal level of detail
based on the respondent’s needs.

6.2 TSCC

Figure 2 shows the results of the TSCC dataset.
The correlation coefficient scores for the difficulty
of input and generated text are lower than that in
the Stack-Overflow dataset, in contrast to the scores
in BERTScore. Despite the challenging model out-
puts, we can observe the positive correlations by
humans that indicate the validity of this dataset.
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Figure 2: Results on the Stack-Overflow dataset and TSCC dataset. We observed similar trends across all evaluation
metrics for text difficulty. Thus, we report the average scores of FKGL, FRE, SMOG, and NERF. Note that Table 5
and 9 in Appendix B include the detailed values.



Question Title How is arbitrary distributed for Int? Why is it limited by so small values?

Question
Body

I am trying to compare the QuickCheck library to the SmallCheck one. In SmallCheck I can reach
particular value manipulating depth parameter. In QuickCheck:
>a<-generate (replicateM 10000 arbitrary) :: IO [Int]
>length a 10000
>maximum a 30
and my question then is:
why are 10,000 ""random"" (""arbitrary"") integers limited by 30?! I expected to see more ""widely""
distributed values within the range 0..10,000, maybe the maximum value close to 5,000.

Human The documentation contains a clue:
The size passed to the generator is always 30 By default QuickCheck works by starting with ’easy’ or
’small’ inputs to see if it can find counterexamples with those. Only if it finds no problems with the
small inputs does it gradually widen the range of generated input. The size value (which runs implicitly
throughout everything that QuickCheck does) is the value that controls this behaviour.
When you run QuickCheck (e.g. with quickCheck) it automatically increases the size as it goes.
You’re not really supposed to use the generate function directly, but if you do, you can resize it:
ghci> b <- generate (replicateM 10000 (resize 60 arbitrary)) :: IO [Int]
ghci> maximum b 60
That said, how are you supposed to use QuickCheck? The documentation describes quickCheck along
with a multitude of variations you can use to evaluate properties.
Personally, I integrate my QuickCheck properties with a unit testing framework with testProperty. You
can see examples here: Property-based testing is not the same as partition testing.

GPT-4 In QuickCheck, the ‘arbitrary‘ function for generating random values of type ‘Int‘ is designed to produce a
wide range of values, including small and large numbers, positive and negative. However, the distribution
is not uniform across the entire range of ‘Int‘. Instead, QuickCheck biases the distribution towards smaller
numbers, which are often more likely to uncover edge cases and bugs in your code.
The reason you’re seeing a maximum value of 30 in your example is likely due to the default size
parameter used by QuickCheck when generating values. Quickheck uses a size parameter to control the
""size"" of generated values, which can mean different things for different types. For integral types, it
often controls the maximum absolute value of the numbers generated.
When you use ‘arbitrary‘ without specifying a size, QuickCheck uses a default size that is relatively small
to ensure that the tests run quickly and that the generated values are not too large to handle. This is why
you’re seeing a maximum value of 30 in your list of 10,000 integers.
If you want to generate larger numbers, you can use the ‘resize‘ function to increase the size parameter, or
the ‘scale‘ function to modify it. Here’s an example of how you might use ‘resize‘ to generate larger ‘Int‘
values:
“‘haskell import Test.QuickCheck
main :: IO () main = do largeInts <- generate $ resize 10000 $ vectorOf 10000 arbitrary print $ maximum
largeInts “‘
In this example, ‘resize 10000‘ sets the size parameter to 10000, which should result in larger integers
being generated. The ‘vectorOf 10000 arbitrary‘ generates a list of 10000 random integers using the new
size parameter.
Keep in mind that even with a larger size parameter, QuickCheck may still generate many small numbers,
as it tries to cover a range of cases, including those that are more likely to cause problems in real-world
code. If you want a uniform distribution across the entire range of ‘Int‘, you might need to use a different
approach or a different library that provides such functionality." The behavior you observed in QuickCheck

Table 3: Examples of Question and Answering (gpt-4-1106-preview, normal)

Input

Please generate a response from the teacher to the student in the ongoing dialogue.
### Dialogue:student: Hi!
teacher: Hi <STUDENT>!
teacher: Everything alright with the chatroom for you?
student: I tried to use it a few seconds ago and I couldn’t change my name, but now it is working, thanks.
student: How are you?
teacher: Oh good!
teacher: Fine, thank you! It’s summer here at last, we’ve had a week of non-stop sunshine!
teacher: How are you?
student: I’m fine thank you! It looks like summer has arrived here too!
student: Even though we still had a couple of storms...
student: with hail and everything
teacher:

Human Have you guys been mostly unlocked now?

GPT-4 Oh wow, that sounds intense!

Table 4: Examples of dialogues (gpt-4-1106-preview)



In the open-source models, only Llama-2-70B-
chat and Mistral-7B-Instruct achieve positive corre-
lations in all metrics, whereas other models some-
times show negative correlations. However, these
scores are lower than that of humans, demonstrat-
ing different tendencies from the Stack-Overflow
dataset. Since the text in the TSCC dataset is often
shorter than that in the Stack-Overflow dataset and
uses dialogue-specific slang, models need to cover
various domains and capture the implicit context of
the conversation. Therefore, this result shows room
for improvement in the instruction-tuning of open-
source models by covering more various domains
and diversified conversational text. Furthermore,
the inconsistent tendencies of model parameter size
support the conclusion induced by the results on
the Stack-Overflow dataset that instruction-tuning
is more important than the model parameter size.

Regarding GPT-3.5 and GPT-4, the results are
remarkably high. These models achieve positive
correlations in all metrics similar to humans. Be-
cause the details of GPT-3.5 and GPT-4 are not
publicly available, we cannot judge what causes
this remarkable performance. At least this result
indicates the potential of LLMs in handling the cor-
relation of text difficulty between user input and its
corresponding response.

7 Analysis

7.1 Stack-Overflow

Table 3 presents examples of question-and-answer
pairs from our Stack-Overflow dataset, compar-
ing responses generated by GPT-4 (gpt-4-1106-
preview) with original human responses under nor-
mal setting. The table includes a question about
the default size parameter in the Haskell library
QuickCheck and the corresponding answers. Both
the human and GPT-4 responses mention the need
to use “resize” to adjust the size parameter. The
human response is concise, while GPT-4 offers a
more detailed, step-by-step explanation. The most
appropriate response depends on the user’s prefer-
ences and level of expertise, making this judgment
subjective. However, it is qualitatively clear that
the text difficulty in both the question and the re-
sponses is comparable.

While this example focuses on a question about
a Haskell library, our Stack-Overflow dataset con-
tains many other questions and answers related
to various programming languages and environ-
ment setups. The expertise required for human

annotators to accurately evaluate these responses is
considerable and making manual evaluation chal-
lenging. Given these difficulties, our analysis relies
on statistical data, which appears to be an effec-
tive approach for evaluating LLMs, particularly in
contexts where manual evaluation is difficult.

7.2 TSCC

Table 4 presents an example of a single-turn teacher
response for evaluation. As illustrated in Table 4,
we compare the previous utterance, such as “Hi
<STUDENT>!” and “with hail and everything,”
to the response, “Oh wow, that sounds intense!”,
focusing on text difficulty, synonymity, and appro-
priate length. As seen in Table 4, the generated
responses in dialogue generation are often brief
and do not reflect the assumed proficiency level of
the interlocutor. This suggests that to accurately
assess the implicit difficulty adjustment capabil-
ity in dialogue generation, it is crucial to generate
sufficiently detailed responses.

8 Conclusion

We explored LLMs’ ability to implicitly handle text
difficulty between user input and generated text
by comparing open-source LLMs and GPT-3.5/4
models in our Stack-Overflow dataset, based on
question-answering, and the TSCC dataset, based
on dialogue scenarios.

Experimental results on the Stack-Overflow
show strong correlations in the text difficulty be-
tween texts from LLMs such as LLaMA-2-chat,
Vicuna, GPT-3.5, and GPT-4 and their inputs. No-
tably, sometimes, LLMs even show higher correla-
tion coefficients than human responses, underlining
their potential for effective difficulty adjustment in
question-answering. Furthermore, the experimen-
tal results on the TSCC dataset show the difficulty
of handling text difficulty between user input and
generated text.

Based on the results, we conclude the importance
of instruction-tuning rather than the size of model
parameters for implicitly handling text difficulty
between user input and generated text by LLMs.

As our future work, we plan to identify prefer-
ences that improve this difficulty adjustment ability
by examining how well LLMs acquire this skill
from training data like dialogue histories. We will
also explore the optimal response length for users
with varying levels of expertise to further refine
LLM performance.



9 Limitations

We conducted comparative experiments across var-
ious model types, yet we recognize the need for
further exploration into datasets and evaluation
methodologies.

Datasets We chose the Stack-Overflow dataset
and TSCC for analyzing LLMs. These datasets
focus on distinct domains: coding question-and-
answer pairs and dialogue generation for educa-
tional guidance, respectively. To effectively eval-
uate the ability of LLMs to adjust difficulty im-
plicitly, we suggest expanding the evaluations to
include a wider variety of domains. This expansion
should encompass specialized areas such as law
or mathematics and general knowledge domains.
Nonetheless, it’s crucial to gather responses that
are long enough to accurately evaluate the difficulty
of texts produced by LLMs.

Evaluation To assess text difficulty, we selected
an evaluation metric designed specifically for the
English language. Therefore, adapting this evalua-
tion method to other languages requires the use of
metrics tailored to each respective language. Ad-
ditionally, it’s vital to verify if the difficulty level
of texts produced by LLMs matches users’ actual
comprehension levels. Although we confirmed that
texts generated by models can address certain is-
sues within specific datasets, the extent of the data’s
contribution to solving problems and the reasons
for failures when solutions are not achieved and
remain unclear.

Analyzed Languages To assess the LLM’s abil-
ity to implicitly adjust text difficulty, our analysis
was limited to English. Consequently, for other lan-
guages, particularly those with limited linguistic
resources, the model may not have fully developed
this capability due to the reduced number of train-
ing tokens available.

10 Ethics Statement

The LLMs we used in our experiments might con-
tain biases in the datasets utilized during training
and the criteria used to ensure their quality. Ad-
ditionally, the Stack-Overflow dataset employed
in this study was collected by the authors them-
selves. However, for models released after the
dataset was collected, there is a possibility that
they were trained using the collected dataset.
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A Inference

A.1 Hyperparameters

We conducted 4-bit quantization for inference with
a maximum input length of 2,048 tokens and a max-
imum output length of 3072 tokens. Since many
models used in this comparative experiment em-
ploy the LLaMa-2 Tokenizer, we used it to measure
the token count for consistency across evaluations.
We limited the process to a single run since we
used the already trained publicly available models
in HuggingFace Transformers4. We set the random
number seed to 42. We also set the temperature to
1.0.

A.2 Handling Long Inputs

Figure 3 shows a histogram of the number of tokens
calculated using the tokenizer of Llama-2-7B (Tou-
vron et al., 2023a) for the input data of the Stack-
Overflow dataset. In Figure 3, 97.0% of all input
data has 2,048 tokens or fewer, 98.1% has 3,072
tokens or fewer, and 1.9% has more than 3,072 to-
kens. To evaluate whether the model has acquired
the ability to adjust difficulty levels in the outputs it
generates for input sentences, it is not necessary to
consider all input sentences; it is considered possi-
ble to capture the content of many input sentences
sufficiently with 2,048 tokens. Therefore, to stan-
dardize the length of input and output sentences
generated, the input to the model was truncated to
up to 2,048 tokens, and the maximum number of
tokens generated was adjusted to match the input
tokens, resulting in 3072 tokens.

Additionally, we checked the input tokens and
found that 94.3% are longer than 100 tokens. Thus,
we can reliably estimate text difficulty.

A.3 Total Computational Budget

We utilized NVIDIA RTX A6000 GPUs for a total
of 2,500 hours to evaluate open models. Addi-
tionally, we incurred $246.36 in costs through the
OpenAI API5 for evaluating GPT-3.5 and GPT-4
models.

B Detailed Results

We calculate the scores using pairs of input texts
and their generated texts (human responses). Ad-
ditionally, we calculate document length based on
the number of characters.

4https://huggingface.co
5https://openai.com/api/

Figure 3: Histgrams of input tokens (Stack-Overflow)

B.1 Spearman Correlation

We compare LLMs’ ability to adjust text difficulty
and appropriate length using the Spearman correla-
tion. Tables 5–8 show the actual scores.

B.2 Mean Scores

In Table 9–12 , we observe that models, with the
exception of CodeLLaMa, which have enhanced
ability to adjust difficulty, tend to produce shorter
texts. This indicates that instruction-tuning likely
facilitates the development of skills to appropri-
ately regulate response lengths. Although this study
evaluated the length of texts generated by LLMs in
comparison to their original lengths, the ideal text
length should naturally vary from one user to an-
other. Thus, aside from extreme cases like CodeL-
LaMa, there’s a need to explore effective evalua-
tion methods for determining the suitable length of
LLM-generated texts and to establish credible cri-
teria for assessing longer text outputs.Additionally,
GPT-4-1106 produced longer texts than those by
previous versions, GPT-3.5 and GPT-4, suggesting
it might use longer sequences for training. This
indicates that GPT-4 may generate redundant re-
sponses without specific tuning prompts.

B.3 Mean Absolute Error

Tables 13–15 show that mean absolute error be-
tween input texts and generated texts. As shown
in Table 13–15, we observed the tendency similar
to the Spearman correlation. Additionally, well
instruction-tuned models, such as LLaMA-2-chat
and GPT4 score low mean absolute error.

https://huggingface.co
https://openai.com/api/
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Figure 4: Results of the text difficulty on the Stack-Overflow dataset and TSCC dataset.



Models FRE SMOG FKGL NERF Length

Human 0.428 0.265 0.387 0.248 0.203

Llama-2-7B 0.157 0.196 0.140 0.159 0.047
Llama-2-13B 0.157 0.249 0.182 0.118 0.119
Llama-2-70B 0.133 0.150 0.154 0.082 -0.070

Llama-2-7B-chat 0.538 0.438 0.469 0.364 0.306
Llama-2-13B-chat 0.571 0.495 0.502 0.386 0.356
Llama-2-70B-chat 0.545 0.459 0.445 0.397 0.402
Vicuna-13B 0.555 0.452 0.491 0.380 0.333
Orca-2-7B 0.324 0.271 0.280 0.239 0.226
Orca-2-13B 0.426 0.325 0.388 0.350 0.467

CodeLlama-7B 0.275 0.288 0.260 0.130 0.016
CodeLlama-13B 0.123 0.114 0.135 0.149 -0.043
CodeLlama-34B 0.275 0.212 0.275 0.125 0.098
CodeLlama-70B 0.192 0.173 0.199 0.093 -0.113
CodeLlama-7B-Instruct 0.349 0.347 0.325 0.215 -0.018
CodeLlama-13B-Instruct 0.433 0.354 0.376 0.343 0.017
CodeLlama-34B-Instruct 0.405 0.294 0.383 0.251 0.102
CodeLlama-70B-Instruct 0.322 0.293 0.288 0.222 -0.143

Mistral-7B 0.361 0.343 0.316 0.260 0.042
Mistral-7B-Instruct 0.542 0.443 0.489 0.353 0.375
Openchat-3.5-7B 0.359 0.348 0.300 0.283 -0.092
Starling-LM-7B 0.281 0.328 0.265 0.340 -0.110

GPT-3.5-0613 0.523 0.455 0.448 0.373 0.342
GPT-3.5-1106 0.492 0.448 0.422 0.405 0.414
GPT-4-0613 0.498 0.430 0.428 0.323 0.370
GPT-4-1106 0.443 0.407 0.366 0.322 0.268

Table 5: Stack-Overflow Normal Setting (Spearman Correlation)

B.4 Skip rows

Table 16 presents the skipped rows. As indicated
in Table 16, instruction-tuned models adhere to the
formats, exhibiting only a few skipped rows, with
the exception of CodeLLaMA.

B.5 Text Difficulty

Figure 4 shows the results of text difficulty on
Stack-Overflow dataset and TSCC dataset. In Fig-
ure 4, we can observe the same trends in the all
metrics for text difficulty.

C Models Description

Table 17 shows various training methods for model
tuning, including Supervised Fine-Tuning (SFT
(Xu et al., 2024; Ding et al., 2023)), Reinforcement
Learning Fine-Tuning (RLFT) (Schulman et al.,
2017; Ouyang et al., 2022), Conditioned RLFT (C-
RLFT) (Wang et al., 2024a), Advantage-Induced
Policy Alignment (APA) (Zhu et al., 2023b), and
Direct Preference Optimization (DPO) (Rafailov
et al., 2024).

D Packages

We used several packages for scoring such as eval-
uate (ver. 0.4.0)6, textstat (ver. 0.7.3) 7, spacy
(ver. 3.5.2) 8, and lftk (ver. 1.0.9) 9.

E Ensuring License Compliance in
Artifact Usage

We reviewed the license terms before comparing
models to ensure adherence to the intended use.
Additionally, we utilized AI assistants, including
GPT3.5/4 and Copilot, for coding and writing the
thesis.

6https://huggingface.co/docs/evaluate/index
7https://github.com/textstat/textstat
8https://spacy.io/
9https://github.com/brucewlee/lftk



Models FRE SMOG FKGL NERF Length

Human 0.428 0.265 0.387 0.248 0.203

Llama-2-7B 0.128 0.222 0.117 0.109 0.070
Llama-2-13B 0.143 0.221 0.118 0.170 0.019
Llama-2-70B 0.085 0.142 0.100 0.053 -0.129

Llama-2-7B-chat 0.541 0.492 0.483 0.331 0.395
Llama-2-13B-chat 0.562 0.490 0.472 0.331 0.357
Llama-2-70B-chat 0.560 0.500 0.492 0.391 0.454
Vicuna-13B 0.503 0.428 0.460 0.351 0.335
Orca-2-7B 0.238 0.139 0.195 0.164 0.186
Orca-2-13B 0.322 0.289 0.308 0.300 0.400

CodeLlama-7B 0.332 0.341 0.316 0.215 -0.054
CodeLlama-13B 0.182 0.238 0.200 0.140 -0.057
CodeLlama-34B 0.154 0.167 0.133 0.081 0.104
CodeLlama-70B 0.075 0.120 0.128 0.053 -0.067
CodeLlama-7B-Instruct 0.460 0.392 0.412 0.338 -0.076
CodeLlama-13B-Instruct 0.362 0.343 0.307 0.289 -0.078
CodeLlama-34B-Instruct 0.435 0.370 0.369 0.265 0.265
CodeLlama-70B-Instruct 0.306 0.171 0.230 0.313 -0.379

Mistral-7B 0.461 0.400 0.418 0.257 0.040
Mistral-7B-Instruct 0.530 0.495 0.480 0.338 0.481
Openchat-3.5-7B 0.424 0.369 0.369 0.280 0.130
Starling-LM-7B 0.279 0.312 0.259 0.329 -0.149

GPT-3.5-0613 0.503 0.456 0.430 0.368 0.430
GPT-3.5-1106 0.472 0.442 0.401 0.367 0.496
GPT-4-0613 0.413 0.417 0.350 0.269 0.461
GPT-4-1106 0.432 0.397 0.363 0.323 0.335

Table 6: Stack-Overflow Simple Setting (Spearman Correlation)

Models FRE SMOG FKGL NERF Length

Human 0.428 0.265 0.387 0.248 0.203

Llama-2-7B 0.107 0.221 0.105 0.092 0.070
Llama-2-13B 0.165 0.221 0.142 0.213 0.042
Llama-2-70B 0.049 0.137 0.064 0.038 -0.130

Llama-2-7B-chat 0.487 0.397 0.388 0.216 0.144
Llama-2-13B-chat 0.542 0.467 0.464 0.342 0.218
Llama-2-70B-chat 0.535 0.461 0.463 0.298 0.319
Vicuna-13B 0.458 0.352 0.390 0.285 0.273
Orca-2-7B 0.224 0.141 0.181 0.158 0.108
Orca-2-13B 0.296 0.271 0.264 0.229 0.285

CodeLlama-7B 0.346 0.313 0.315 0.233 -0.025
CodeLlama-13B 0.143 0.241 0.174 0.108 0.000
CodeLlama-34B 0.084 0.134 0.099 -0.011 0.134
CodeLlama-70B 0.089 0.182 0.144 0.058 -0.087
CodeLlama-7B-Instruct 0.440 0.359 0.389 0.321 -0.077
CodeLlama-13B-Instruct 0.288 0.280 0.270 0.212 -0.105
CodeLlama-34B-Instruct 0.471 0.409 0.425 0.236 0.272
CodeLlama-70B-Instruct 0.333 0.257 0.294 0.253 -0.169

Mistral-7B 0.438 0.400 0.384 0.240 0.023
Mistral-7B-Instruct 0.431 0.434 0.389 0.287 0.430
Openchat-3.5-7B 0.511 0.415 0.432 0.343 0.191
Starling-LM-7B 0.305 0.255 0.274 0.295 -0.218

GPT-3.5-0613 0.404 0.340 0.341 0.284 0.374
GPT-3.5-1106 0.276 0.266 0.231 0.118 0.475
GPT-4-0613 0.297 0.274 0.230 0.174 0.513
GPT-4-1106 0.370 0.304 0.311 0.197 0.297

Table 7: Stack-Overflow Complex Setting (Spearman Correlation)



Models FRE SMOG FKGL NERF Length

Human 0.157 0.098 0.192 0.075 0.288

Llama-2-7B -0.093 -0.010 -0.094 0.075 -0.062
Llama-2-13B -0.041 0.622 0.035 -0.097 0.252
Llama-2-70B -0.162 0.329 -0.129 -0.049 0.100

Llama-2-7B-chat 0.146 0.111 0.131 -0.048 0.047
Llama-2-13B-chat -0.052 -0.089 -0.051 -0.095 0.061
Llama-2-70B-chat 0.159 0.066 0.178 0.022 0.288
Vicuna-13B -0.076 -0.037 -0.024 -0.049 0.104
Orca-2-7B 0.124 0.079 0.160 -0.007 0.087
Orca-2-13B -0.111 -0.041 -0.120 0.058 0.021

CodeLlama-7B -0.016 -0.010 -0.001 0.099 0.044
CodeLlama-13B 0.098 -0.010 0.096 0.002 -0.020
CodeLlama-34B -0.082 -0.010 -0.083 0.037 0.024
CodeLlama-70B 0.013 -0.010 -0.006 -0.049 -0.013
CodeLlama-7B-Instruct 0.074 -0.024 0.093 0.008 0.014
CodeLlama-13B-Instruct -0.013 0.321 -0.016 0.141 -0.012
CodeLlama-34B-Instruct 0.062 -0.010 0.096 -0.002 0.044
CodeLlama-70B-Instruct -0.029 -0.013 -0.003 0.019 -0.017

Mistral-7B -0.022 0.478 0.002 -0.061 0.007
Mistral-7B-Instruct 0.149 0.270 0.130 0.059 0.001
Openchat-3.5-7B -0.007 -0.065 -0.049 0.084 -0.031
Starling-LM-7B 0.096 0.071 0.084 -0.071 0.069

GPT-3.5-0613 0.163 0.076 0.210 0.130 0.301
GPT-3.5-1106 0.095 0.152 0.091 0.110 0.285
GPT-4-0613 0.167 0.163 0.184 0.113 0.285
GPT-4-1106 0.300 0.132 0.357 0.080 0.388

Table 8: TSCC Setting (Spearman Correlation)

Models FRE SMOG FKGL NERF BERTScore (F1) Length

Human 42.358 11.228 11.557 6.765 – 1729.109

Llama-2-7B -3.915 8.785 21.369 3.843 0.587 5745.329
Llama-2-13B -169.850 6.917 49.335 30.439 0.581 4583.894
Llama-2-70B 64.929 6.606 9.636 3.617 0.448 3995.069

Llama-2-7B-chat 49.029 11.994 11.040 3.758 0.672 1894.843
Llama-2-13B-chat 0.272 11.769 17.712 3.827 0.673 2100.051
Llama-2-70B-chat 49.231 12.006 11.013 4.200 0.679 1965.053
Vicuna-13B 48.784 11.442 10.807 4.627 0.682 1592.608
Orca-2-7B 74.026 8.663 6.453 2.839 0.646 1164.153
Orca-2-13B 72.520 8.637 6.708 3.072 0.652 1213.115

CodeLlama-7B 19.119 9.329 19.519 10.321 0.591 5979.621
CodeLlama-13B -3.200 8.839 20.220 5.913 0.520 5309.517
CodeLlama-34B 34.064 7.996 13.963 3.287 0.577 3680.992
CodeLlama-70B 13.301 8.062 19.851 4.179 0.534 5884.443
CodeLlama-7B-Instruct 39.036 10.038 13.560 2.580 0.609 5778.107
CodeLlama-13B-Instruct 33.698 10.659 13.536 2.181 0.633 5014.724
CodeLlama-34B-Instruct 38.577 9.585 12.440 3.540 0.635 3912.342
CodeLlama-70B-Instruct 33.505 10.033 14.082 3.550 0.640 5985.720

Mistral-7B 30.479 10.171 16.333 1.278 0.619 5014.421
Mistral-7B-Instruct 43.342 11.579 12.014 4.425 0.683 1901.848
Openchat-3.5-7B 33.378 10.829 12.943 2.333 0.664 5747.161
Starling-LM-7B 8.850 11.288 16.642 3.150 0.670 6941.246

GPT-3.5-0613 47.954 11.901 10.775 4.939 0.697 1392.241
GPT-3.5-1106 47.598 12.308 11.199 5.157 0.695 1428.607
GPT-4-0613 54.886 11.190 9.617 4.348 0.699 1323.731
GPT-4-1106 50.680 12.286 10.829 5.660 0.688 2328.291

Table 9: Stack-Overflow Normal Setting (Mean)



Models FRE SMOG FKGL NERF BERTScore (F1) Length

Human 42.358 11.228 11.557 6.765 – 1729.109

Llama-2-7B -44.747 9.201 30.078 9.021 0.591 6144.573
Llama-2-13B -102.317 7.000 49.811 60.371 0.574 5583.394
Llama-2-70B 15.357 7.387 23.598 18.986 0.499 4715.437

Llama-2-7B-chat 52.186 11.782 10.514 3.732 0.672 1668.559
Llama-2-13B-chat 14.154 11.539 15.701 3.878 0.673 1883.881
Llama-2-70B-chat 50.721 11.805 10.640 4.183 0.680 1723.086
Vicuna-13B 53.171 10.886 10.121 4.274 0.681 1524.795
Orca-2-7B 66.388 6.515 6.583 1.268 0.609 933.419
Orca-2-13B 92.495 7.521 3.435 1.990 0.634 1091.195

CodeLlama-7B -49.313 9.495 28.247 5.624 0.583 6344.100
CodeLlama-13B 39.978 8.331 13.847 1.397 0.525 5727.908
CodeLlama-34B 45.189 7.562 12.502 4.665 0.548 3846.843
CodeLlama-70B 22.740 7.409 18.632 3.908 0.493 5632.746
CodeLlama-7B-Instruct 21.654 10.439 15.220 1.592 0.629 6342.817
CodeLlama-13B-Instruct 48.177 9.885 10.735 1.162 0.609 5553.601
CodeLlama-34B-Instruct 53.111 10.520 9.878 3.002 0.646 2935.139
CodeLlama-70B-Instruct 39.935 11.960 12.655 2.310 0.643 8288.849

Mistral-7B 39.831 10.262 13.967 0.920 0.624 4611.053
Mistral-7B-Instruct 50.899 11.490 10.790 3.814 0.676 1647.081
Openchat-3.5-7B 46.104 11.085 10.975 3.363 0.674 3931.610
Starling-LM-7B 19.575 11.430 13.878 3.566 0.671 7286.648

GPT-3.5-0613 53.527 11.522 9.950 4.354 0.694 1181.735
GPT-3.5-1106 50.124 11.592 10.836 4.298 0.700 1009.199
GPT-4-0613 59.545 10.902 8.972 3.842 0.694 1004.923
GPT-4-1106 52.309 12.131 10.700 5.333 0.688 2112.660

Table 10: Stack-Overflow Simple Setting (Mean)

Models FRE SMOG FKGL NERF BERTScore (F1) Length

Human 42.358 11.228 11.557 6.765 – 1729.109

Llama-2-7B -52.236 8.987 33.757 9.682 0.589 6134.990
Llama-2-13B -64.823 7.199 41.513 57.876 0.578 5596.936
Llama-2-70B 27.943 6.778 19.205 13.451 0.453 4635.005

Llama-2-7B-chat 49.262 12.313 11.097 4.149 0.667 2018.452
Llama-2-13B-chat 44.077 11.584 11.635 3.836 0.666 2021.876
Llama-2-70B-chat 46.869 12.633 11.660 4.582 0.677 1996.049
Vicuna-13B -153.948 11.281 39.172 4.811 0.668 1730.558
Orca-2-7B 102.040 7.175 1.910 1.479 0.609 1062.560
Orca-2-13B 78.777 9.046 5.805 2.742 0.638 1318.739

CodeLlama-7B 8.682 9.430 20.338 6.238 0.582 6280.695
CodeLlama-13B 37.556 8.202 14.556 1.852 0.512 5164.743
CodeLlama-34B 50.118 6.954 11.484 10.591 0.513 3610.031
CodeLlama-70B 23.125 7.549 18.884 3.738 0.490 5581.595
CodeLlama-7B-Instruct 45.469 10.016 12.308 1.235 0.608 6487.346
CodeLlama-13B-Instruct 63.227 9.083 8.981 1.438 0.545 5600.361
CodeLlama-34B-Instruct 59.502 10.586 8.969 2.824 0.631 2802.091
CodeLlama-70B-Instruct 57.045 10.067 9.969 1.521 0.596 7059.423

Mistral-7B 40.518 10.209 14.164 1.431 0.618 4777.848
Mistral-7B-Instruct 44.273 12.599 12.254 3.522 0.671 2033.776
Openchat-3.5-7B 44.957 12.189 11.445 4.209 0.675 3517.100
Starling-LM-7B 30.399 12.958 13.320 3.515 0.670 8060.675

GPT-3.5-0613 48.464 12.475 11.044 4.656 0.684 1380.164
GPT-3.5-1106 39.075 14.527 13.211 5.053 0.655 1233.771
GPT-4-0613 44.493 13.819 12.164 5.314 0.666 1615.374
GPT-4-1106 36.727 14.807 13.683 7.223 0.674 2661.302

Table 11: Stack-Overflow Complex Setting (Mean)



Models FRE SMOG FKGL NERF BERTScore (F1) Length

Human 88.507 0.567 3.119 -0.393 – 68.677

Llama-2-7B 82.350 0.025 5.864 0.203 0.642 113.088
Llama-2-13B 108.542 0.144 1.152 4.904 0.613 170.804
Llama-2-70B 110.196 0.125 -0.733 13.679 0.653 88.888

Llama-2-7B-chat 90.516 0.861 2.545 0.359 0.652 88.362
Llama-2-13B-chat 46.364 1.755 8.728 0.826 0.628 364.665
Llama-2-70B-chat 91.138 1.384 2.616 6.912 0.658 131.462
Vicuna-13B 88.828 0.390 2.607 9.391 0.623 89.227
Orca-2-7B 98.840 0.326 1.311 -0.221 0.655 62.408
Orca-2-13B 76.594 0.472 4.229 -0.280 0.634 84.462

CodeLlama-7B 124.331 0.012 -0.395 -0.337 0.454 78.050
CodeLlama-13B 152.196 0.039 -7.438 1.453 0.324 78.938
CodeLlama-34B 131.738 0.034 -4.277 22.400 0.483 97.919
CodeLlama-70B 127.126 0.012 -1.671 14.973 0.469 181.892
CodeLlama-7B-Instruct 104.029 0.141 0.207 -0.557 0.626 66.923
CodeLlama-13B-Instruct 107.991 0.090 1.725 7.333 0.558 117.608
CodeLlama-34B-Instruct 117.322 0.036 -1.806 42.973 0.594 221.046
CodeLlama-70B-Instruct 95.991 0.062 3.783 13.962 0.652 172.177

Mistral-7B 107.466 0.056 1.375 2.323 0.652 114.004
Mistral-7B-Instruct 102.654 0.100 1.192 16.965 0.629 225.177
Openchat-3.5-7B 95.955 1.367 1.599 3.411 0.644 531.673
Starling-LM-7B 66.350 7.813 7.132 1.823 0.573 5100.092

GPT-3.5-0613 80.366 6.560 4.636 1.877 0.651 204.042
GPT-3.5-1106 80.508 4.976 4.528 1.715 0.652 150.992
GPT-4-0613 80.493 5.217 4.444 1.775 0.656 157.319
GPT-4-1106 77.535 7.843 5.283 2.417 0.643 261.388

Table 12: TSCC Setting (Mean)

Models FRE SMOG FKGL NERF Length

Human 25.878 3.526 4.575 2.895 1243.833

Llama-2-7B 97.339 4.577 18.853 10.719 4457.702
Llama-2-13B 251.946 5.414 44.864 38.081 3510.847
Llama-2-70B 97.945 6.168 18.376 10.124 3295.110

Llama-2-7B-chat 19.359 2.191 3.481 3.416 974.536
Llama-2-13B-chat 68.190 2.039 10.141 3.332 1061.472
Llama-2-70B-chat 18.181 2.097 3.363 3.051 933.708
Vicuna-13B 20.587 2.463 3.858 3.082 891.109
Orca-2-7B 49.525 4.575 8.502 4.573 1042.146
Orca-2-13B 49.349 4.434 8.499 4.459 948.356

CodeLlama-7B 67.783 3.993 15.805 15.995 4586.738
CodeLlama-13B 126.915 5.378 22.443 11.425 4037.748
CodeLlama-34B 70.241 4.720 13.151 8.122 2716.919
CodeLlama-70B 102.019 5.252 20.763 11.766 4692.574
CodeLlama-7B-Instruct 49.437 3.539 10.081 8.102 4469.528
CodeLlama-13B-Instruct 45.858 3.205 8.467 6.084 3802.495
CodeLlama-34B-Instruct 41.123 3.533 7.449 5.756 2915.341
CodeLlama-70B-Instruct 46.992 3.611 9.029 6.011 4658.893

Mistral-7B 53.374 3.621 11.932 8.225 3890.356
Mistral-7B-Instruct 22.860 2.292 4.252 4.147 1199.339
Openchat-3.5-7B 38.451 2.515 6.748 5.220 4447.172
Starling-LM-7B 47.231 2.325 7.845 4.779 5483.139

GPT-3.5-0613 20.233 2.195 3.522 2.353 980.324
GPT-3.5-1106 20.130 2.380 3.598 2.468 971.184
GPT-4-0613 20.491 2.085 3.516 2.684 962.822
GPT-4-1106 20.978 2.271 3.659 2.264 1423.798

Table 13: Stack-Overflow Normal Setting (Mean Absolute Error)



Models FRE SMOG FKGL NERF Length

Human 25.878 3.526 4.575 2.895 1243.833

Llama-2-7B 137.635 4.339 29.784 17.822 4708.711
Llama-2-13B 139.464 5.575 35.837 63.870 4300.091
Llama-2-70B 123.341 6.373 25.888 20.171 3743.874

Llama-2-7B-chat 17.229 1.953 3.131 3.396 1043.307
Llama-2-13B-chat 27.461 2.029 4.525 3.793 1031.519
Llama-2-70B-chat 16.896 2.020 3.125 3.024 952.276
Vicuna-13B 229.641 2.655 33.083 4.292 1006.485
Orca-2-7B 72.674 5.964 12.163 6.059 1260.131
Orca-2-13B 48.830 4.415 8.382 4.767 1097.196

CodeLlama-7B 80.792 3.526 16.978 12.604 4844.746
CodeLlama-13B 91.405 4.852 17.564 8.963 3837.530
CodeLlama-34B 85.187 5.751 15.574 15.681 2673.364
CodeLlama-70B 114.259 5.776 23.174 12.558 4337.944
CodeLlama-7B-Instruct 41.407 2.943 8.409 8.134 5047.529
CodeLlama-13B-Instruct 54.775 3.954 10.138 7.931 4306.888
CodeLlama-34B-Instruct 29.485 2.501 4.989 4.976 1845.032
CodeLlama-70B-Instruct 40.356 3.577 7.526 6.220 5672.056

Mistral-7B 42.017 3.016 9.444 7.830 3644.151
Mistral-7B-Instruct 21.777 2.086 3.847 4.080 1067.657
Openchat-3.5-7B 19.613 1.878 3.464 3.450 2332.179
Starling-LM-7B 28.696 2.450 4.505 4.134 6512.476

GPT-3.5-0613 21.340 2.627 3.721 2.558 981.147
GPT-3.5-1106 25.569 3.976 4.691 2.625 934.750
GPT-4-0613 23.365 3.316 4.194 2.435 979.349
GPT-4-1106 25.152 4.068 4.766 2.576 1658.239

Table 14: Stack-Overflow Complex Setting (Mean Absolute Error)

Models FRE SMOG FKGL NERF Length

Human 24.704 0.730 4.247 1.664 47.958

Llama-2-7B 52.819 0.262 10.880 1.957 116.385
Llama-2-13B 46.716 0.201 9.104 8.925 169.677
Llama-2-70B 34.875 0.273 5.945 15.910 88.654

Llama-2-7B-chat 30.699 0.968 5.071 1.913 67.696
Llama-2-13B-chat 87.097 1.992 13.059 2.426 345.292
Llama-2-70B-chat 29.152 1.489 4.882 8.678 104.558
Vicuna-13B 37.263 0.627 5.802 11.423 78.492
Orca-2-7B 32.298 0.517 5.305 1.902 50.550
Orca-2-13B 43.802 0.709 6.763 1.770 72.942

CodeLlama-7B 69.643 0.249 13.698 4.857 95.962
CodeLlama-13B 77.903 0.276 12.222 5.135 104.465
CodeLlama-34B 62.395 0.271 9.858 25.323 114.354
CodeLlama-70B 67.085 0.249 12.484 19.832 197.304
CodeLlama-7B-Instruct 36.872 0.378 5.936 1.624 66.681
CodeLlama-13B-Instruct 54.860 0.259 11.146 13.875 126.096
CodeLlama-34B-Instruct 39.097 0.273 6.500 45.192 222.504
CodeLlama-70B-Instruct 47.679 0.299 10.115 16.811 173.119

Mistral-7B 47.280 0.205 9.545 5.077 119.508
Mistral-7B-Instruct 34.043 0.277 6.084 18.761 207.588
Openchat-3.5-7B 30.908 1.580 5.260 5.334 525.646
Starling-LM-7B 34.648 7.653 6.012 3.222 5062.912

GPT-3.5-0613 23.879 6.412 4.047 2.916 160.192
GPT-3.5-1106 24.334 4.758 4.170 2.740 108.650
GPT-4-0613 24.354 4.991 4.170 2.807 111.985
GPT-4-1106 24.288 7.606 4.270 3.371 212.377

Table 15: TSCC Setting (Mean Absolute Error)



Models Stack-Overflow TSCC

Settings normal simple complex –

Human 0 0 0 0

Llama-2-7B 16 15 14 0
Llama-2-13B 7 6 6 4
Llama-2-70B 16 16 16 3

Llama-2-7B-chat 0 0 0 0
Llama-2-13B-chat 0 0 0 0
Llama-2-70B-chat 0 0 0 2
Vicuna-13B 0 0 0 5
Orca-2-7B 0 3 0 1
Orca-2-13B 0 0 0 1

CodeLlama-7B 16 16 16 4
CodeLlama-13B 16 16 16 5
CodeLlama-34B 16 16 16 5
CodeLlama-70B 16 16 16 5
CodeLlama-7B-Instruct 15 13 14 4
CodeLlama-13B-Instruct 15 16 16 4
CodeLlama-34B-Instruct 16 16 16 4
CodeLlama-70B-Instruct 13 15 16 2

Mistral-7B 15 15 15 1
Mistral-7B-Instruct 1 0 0 4
Openchat-3.5-7B 0 0 0 0
Starling-LM-7B 0 0 0 0

GPT-3.5-0613 0 0 0 0
GPT-3.5-1106 0 0 0 0
GPT-4-0613 0 0 0 0
GPT-4-1106 0 0 0 0

Table 16: Skip rows
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