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Abstract

This paper addresses the challenges of mod-
eling human emotional responses to artwork
through an exploration of Label Distribution
Learning (LDL). We introduce Progressive La-
bel Distribution Transition (PLDT), a novel
framework that bridges the gap between tra-
ditional One-hot encoding and LDL by im-
plementing gradual transitions between these
paradigms. To evaluate our approach, we pro-
pose TESA (Thresholded Emotion Set Accu-
racy), a comprehensive evaluation framework.
Our threshold-based analysis reveals new in-
sights into how these methods balance pre-
diction confidence and emotional multiplicity
in artwork perception. The results demon-
strate that PLDT’s intermediate approach ef-
fectively combines the advantages of both dis-
crete and continuous emotion representations.
Our findings suggest that carefully considering
the trade-off between these representational
paradigms is crucial for accurately modeling
the complex nature of art-induced emotional
responses.

1 Introduction

In recent years, visual emotion recognition has
gained significant attention in the field of com-
puter vision (CV) (Alameda-Pineda et al., 2016;
Chen et al., 2015; Rao et al., 2020), with ap-
plications ranging from human-computer interac-
tion to digital art curation. While existing ap-
proaches have achieved promising results in recog-
nizing emotions from facial expressions and nat-
ural scenes, detecting emotions elicited by paint-
ings remains a significant challenge due to the ab-
stract nature of artistic expression and the inher-
ent subjectivity of emotional responses (Achliop-
tas et al., 2021; Bose et al., 2021). Traditional
approaches focusing on mapping visual features
to discrete emotion categories prove inadequate
when handling the complex emotional responses
evoked by artwork. The challenge of emotion

recognition in paintings stems from three key fac-
tors: the gap between visual features and subjec-
tive responses, the diversity of individual interpre-
tations, and the lack of robust methods for ag-
gregating multiple emotional perspectives. These
challenges necessitate a novel approach that can
capture both dominant emotions and subtle nu-
ances while preserving the richness of human emo-
tional responses.

1.1 Representation of Emotional Responses

One-hot encoding, the conventional approach to
emotion classification, fails to capture the nu-
anced interplay of multiple emotions that view-
ers often experience simultaneously when engag-
ing with artwork (Bradley and Lang, 2007; Calvo
and Lang, 2004). To address this limitation, we
propose a comprehensive framework that bridges
discrete and continuous emotion representations
through Label Distribution Learning (LDL) (Geng,
2016). Our novel Progressive Label Discretiza-
tion Technique (PLDT) enables flexible transition
between these representations, effectively captur-
ing both dominant emotions and subtle emotional
nuances. For rigorous evaluation of this com-
plex emotion modeling task, we propose TESA
(Thresholded Emotion Set Accuracy), a novel eval-
uation framework that employs adaptive thresh-
olds. This framework enables comprehensive as-
sessment of how different methods balance be-
tween prediction confidence and emotional multi-
plicity, providing deeper insights than traditional
rank-based metrics. The key contributions of this
paper are:

• A novel emotion representation framework
(PLDT) that bridges discrete and continuous
approaches

• TESA, a threshold-based evaluation metric
for multi-emotion prediction assessment



• Comprehensive analysis of representation
methods’ effectiveness in emotion modeling

Through these contributions, we establish a
foundation for more accurate and nuanced emo-
tion recognition in artistic contexts, while main-
taining scientific rigor in evaluation and analysis.

2 Related Work

The field of visual emotion understanding has
been studied for a long time, with emotion classi-
fication being particularly well-known(Cen et al.,
2024; Xu et al., 2022; Chen et al., 2014). Tradi-
tionally, the domain of visual emotion understand-
ing has focused on real-world photographs, such
as human faces(Li and Deng, 2020). However, in
recent years, more abstract domains that involve
subjectivity, such as artworks and advertisements,
have gained attention(Hussain et al., 2017; Aslan
et al., 2022). These studies, in particular, empha-
size the interpretation of emotion class prediction
from images(Achlioptas et al., 2021; Aslan et al.,
2022). Additionally, emotional image captioning
(EIC) has garnered interest(Li et al., 2021; Zhao
et al., 2020; Wu and Li, 2023). EIC models aim to
describe visual content with emotional words (e.g.,
"beautiful" or "lonely"), enhancing the appeal and
uniqueness of textual descriptions.

To overcome the limitations of one-hot en-
coding, researchers have proposed various ap-
proaches, with label smoothing(Szegedy et al.,
2016; Pereyra et al., 2017) and Label Distribu-
tion Learning (LDL) being particularly notewor-
thy. Label smoothing is a simple yet effective tech-
nique to prevent model overfitting and adjust the
confidence of predictions. This technique smooths
the one-hot encoding by adding a small probability
value to the correct label.

On the other hand, Label Distribution Learning
(LDL) is a more direct approach to handling label
ambiguity. In LDL, labels are represented as a dis-
crete probability distribution for each sample. The
core idea is for the model to predict the entire dis-
tribution of labels rather than a single class. Dur-
ing the learning process, LDL minimizes the dis-
tance between the actual label distribution and the
predicted distribution by the model. Typically, KL
divergence(Kullback and Leibler, 1951)is used as
the distance metric:

DKL(P ∥ Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(1)

where P is the actual label distribution and Q is
the predicted distribution by the model.

3 Proposed Method

We propose a methodology for evaluating emo-
tional understanding of artworks by visual mod-
els, focusing on the aggregation and analysis of
human emotional responses. We examine three
candidate approaches for emotional label represen-
tation, spanning from discrete to continuous repre-
sentations.

3.1 Emotional Opinion Aggregation
We introduce a novel approach for aggregating
emotional opinions to assess how well visual mod-
els interpret emotional responses to artworks. This
method consolidates subjective emotional evalua-
tions from multiple annotators into a unified emo-
tional representation.

3.1.1 Integration of Emotional Evaluations
Required Data

1. Emotion Categories: Define a set of emo-
tion categories E = {e1, e2, . . . , ek}, where
k denotes the number of distinct emotional
categories.

2. Annotators: Define a set of annotators A =
{a1, a2, . . . , an}, where n is the total number
of annotators involved.

3. Emotion Evaluation Vectors: Each anno-
tator ai provides an evaluation vector vi =
[vi1, vi2, . . . , vik], where vij represents the
evaluation score assigned by ai to the emo-
tion category ej .

Aggregation of Evaluation Scores
To synthesize the evaluations across all annotators
for each emotion category, the following aggrega-
tion is performed:

sj =
n∑

i=1

vij , j = 1, 2, . . . , k

where sj represents the aggregated evaluation
score for the emotion category ej .
Normalization
The aggregated scores are normalized to produce
a probability distribution across the emotion cate-
gories:

pj =
sj∑k
l=1 sl

, j = 1, 2, . . . , k



Here, pj denotes the normalized probability for
emotion category ej .

3.1.2 Representation of Emotional
Probability Distribution

The final emotional representation is expressed
as a probability distribution p = [p1, p2, . . . , pk],
where:

• pj represents the probability associated with
emotion category ej .

• The probabilities sum to one:
∑k

j=1 pj = 1.

• Each probability value satisfies 0 ≤ pj ≤ 1.

This approach ensures that subjective evalua-
tions from multiple annotators are effectively con-
solidated into a comprehensive emotional repre-
sentation. The resulting probability distribution
captures the collective emotional response elicited
by the artwork, facilitating both general classifi-
cation and refined distribution calibration for ad-
vanced classification models.

3.2 supervisory signal representations
Several candidate methods can be considered
for representing the teacher signal, including the
method we propose. In this section, we will ex-
plain the definition of each.

3.2.1 One-hot Encoding
As a baseline for the teacher signal, we adopt
One-hot Encoding, which is widely used in class
classification problems. This method converts cat-
egorical variables into numerical vectors, where
each emotion is represented as a binary vector
with a single "1" indicating the presence of that
emotion. In the context of emotion classification,
this approach assumes that each artwork primar-
ily evokes a single dominant emotion, providing
a clear learning objective despite simplifying the
complex nature of emotional responses. The math-
ematical representation is as follows:

O(c, k) = [o1, o2, ..., ok], where oi =

{
1 if i = c

0 otherwise

3.2.2 Label Distribution Learning (LDL)
In the task of aggregating emotional opinions, we
apply Label Distribution Learning (LDL), utiliz-
ing the Kullback-Leibler (KL) divergence as our
loss function to optimize the predicted distribu-
tion towards the true distribution. While LDL is

typically employed in tasks with clear correct an-
swers to enhance robustness(Geng et al., 2013; Xu
et al., 2014; Gao et al., 2017), our application is
motivated by its unique advantages in represent-
ing complex emotional signals. LDL has the po-
tential to naturally represent coexisting emotions,
express prediction uncertainty through class prob-
abilities, and capture subtle differences between
similar emotions. These capabilities are crucial
in emotion prediction tasks, where emotions are
often complex and multifaceted(Mohamed et al.,
2022b). For example, when a painting simultane-
ously evokes "sadness" and "nostalgia," LDL can
represent this as a probability distribution rather
than forcing a binary choice. The resulting prob-
ability distributions provide insights into both the
presence and intensity of different emotions, offer-
ing a richer understanding of emotional responses
to artwork. This makes the output more nuanced
and informative compared to traditional single-
category classifications.

3.2.3 Progressive Label Distribution
Transition (PLDT)

We propose the Progressive Label Distribution
Transition (PLDT) as a flexible framework that en-
ables bidirectional conversion between traditional
one-hot encoding classification and Label Distri-
bution Learning (LDL). PLDT offers two comple-
mentary approaches: PLDT-A, which transitions
from distributions to one-hot labels (LDLOnehot),
and PLDT-B, which progresses from one-hot la-
bels to full distributions (OnehotLDL). This bidi-
rectional capability allows models to adapt to dif-
ferent learning scenarios and requirements. Oper-
ating based on the principle of progressive adapta-
tion(Tzeng et al., 2015; Kumar et al., 2020), PLDT
can initiate training from either end of the spec-
trum. PLDT-B begins with distinct one-hot en-
coded labels and gradually introduces the com-
plexity of full label distributions over specified
epochs, helping models develop more nuanced
emotional representations. Conversely, PLDT-A
starts with complete label distributions and pro-
gressively sharpens them into one-hot encodings,
encouraging the model to develop clearer decision
boundaries. This dual approach enables models to
flexibly adapt their learning strategy based on spe-
cific task requirements. For both directions, we uti-
lize a single interpolation function that combines



one-hot encoded labels and full label distributions:

I(h, p) = (1− p) ·O(h) + p · h (2)

where h represents the input label distribution his-
togram, p denotes the transition progression (with
0 ≤ p ≤ 1), and O(h) is the one-hot encoding of h.
The transition progression p controls the direction
and degree of transformation: in PLDT-B (One-
hotLDL), p increases from 0 to 1, while in PLDT-
A (LDLOnehot), p decreases from 1 to 0. This uni-
fied formulation provides a smooth and controlled
transition in either direction, allowing models to
progressively adapt to different label representa-
tions while maintaining learning stability.

3.2.4 Selective Distribution Dampening Loss
(SDDL)

We propose a novel method called Selective Dis-
tribution Dampening Loss (SDDL), drawing inspi-
ration from the concept introduced in Focal Loss
of adjusting learning intensity based on the "hard-
ness" or rarity of samples. In our approach, we aim
to maintain focus on the dominant emotional sig-
nals while selectively down-weighting extremely
rare opinions (probabilities). Although Label Dis-
tribution Learning (LDL) excels in representing
multiple coexisting emotions, it can sometimes
overemphasize minor elements in the target dis-
tribution. To address this, SDDL introduces a
threshold-based weighting mechanism that modu-
lates the contribution of each class according to its
probability in the target distribution.

Formally, let t be the target distribution and t̂
be the predicted distribution, both of which are
K-dimensional probability distributions. We first
compute the Kullback-Leibler (KL) divergence:

KL(t ∥ t̂) =
K∑
k=1

tk

[
ln
(
tk + ϵ

)
− ln

(
t̂k + ϵ

)]
(3)

where ϵ is a small constant (e.g., 1× 10−6) for nu-
merical stability. Next, we introduce a threshold
parameter τ (e.g., 0.3) to distinguish "important"
classes (tk ≥ τ) from those considered "less im-
portant" (tk < τ). We define a weighting func-
tion:

wk =

{
1 if tk ≥ τ(
tk
τ

)γ otherwise
(4)

where γ controls how aggressively classes below
τ are dampened. Finally, the SDDL objective is

given by:

LSDDL =

K∑
k=1

wk tk

[
ln
(
tk+ ϵ

)
− ln

(
t̂k+ ϵ

)]
(5)

We then sum over all classes and average across
samples to obtain a differentiable loss, which
shifts attention toward classes whose target prob-
abilities exceed τ while dampening the influence
of extremely rare classes (tk < τ). Increasing γ
intensifies suppression of small tk, thereby reduc-
ing their effect on parameter updates.

This approach is particularly beneficial in situa-
tions where maintaining a distributional represen-
tation is crucial, yet overly small probabilities can
destabilize training or dilute the emphasis on dom-
inant emotional cues. By balancing continuous
distribution representation and selective emphasis,
SDDL complements the advantages of LDL while
preventing negligible probabilities from overshad-
owing the primary signals.

4 Dataset

4.1 Emotion Elicitation in Painting Datasets

For tasks like opinion aggregation in this re-
search, it is essential to have datasets where mul-
tiple annotations are made fairly for a single data
point. However, such datasets are currently rare.
Representative datasets for emotions elicited by
paintings include ArtEmis, ArtPedia, and WikiArt
Emotions(Mohammad and Kiritchenko, 2018; Ste-
fanini et al., 2019).

Achlioptas et al. proposed the ArtEmis dataset,
a large-scale dataset that links artworks to human
emotions. This dataset is frequently used in re-
search related to the arts. It primarily focuses on
the emotional experiences evoked by visual art-
works and includes basic information about the art-
works, emotional annotations by humans, and nat-
ural language explanations for why each emotion
was elicited. The dataset is built on WikiArt and
covers 27 art styles (e.g., abstract, cubism, impres-
sionism) and 45 genres (e.g., landscape, portrait,
still life), including 80,031 unique works by 1,119
artists.

In the ArtEmis dataset, at least five annotators
were asked to choose one emotion from the follow-
ing nine categories after viewing an artwork and
then explain why they chose that emotion:

amusement, awe, contentment, excitement,
anger, disgust, fear, sadness, something else



Figure 1: Graph showing reliability evaluation of
emotion distribution shape reproducibility using EMD,
based on the number of annotators.

This emotion model originally consisted of
eight categories, but was extended by adding a
ninth category, "something else," which represents
either emotions not explicitly listed or the ab-
sence of a strong emotional response, such as in-
difference to the presented artwork. The ArtEmis
dataset, which includes subjective emotional vot-
ing data from individual annotators, is well-suited
as an opinion aggregation dataset.

On the other hand, datasets like ArtPedia, which
includes emotional reactions to paintings along
with descriptions of the painting’s content and cul-
tural background, and WikiArt Emotions, which
includes emotions and art styles related to paint-
ings, assign a single emotion label per image based
on the most likely or majority emotion. These
datasets are not suitable for opinion aggregation
tasks since they do not collect the opinions of mul-
tiple annotators.

Therefore, a dataset like ArtEmis, which in-
cludes individual annotations from multiple anno-
tators, is more appropriate for the tasks described
in this research.

4.2 Validity as an Opinion Aggregation Set

While ArtEmis is capable of being used for opin-
ion aggregation tasks, there are concerns regard-
ing its reliability as a dataset for aggregated opin-
ions. The expressive power of the opinion distribu-
tion depends on the number of annotators, and in
ArtEmis, 96% of the annotations are contributed
by just 5 or 6 annotators. This limited number
is expected to be insufficient to represent the full
spectrum of emotional opinion aggregation. Fig-
ure 1 analyzes the reliability of emotion distribu-
tions with varying annotator numbers using Earth
Mover’s Distance (EMD). We conduct simulations
using ArtEmis samples with over 42 annotators
(approximately 700 cases) as the ground truth dis-
tributions. For each annotator count (1 to 42), we

perform 100 simulations of multinomial sampling
and compute the normalized EMD between sam-
pled and ground truth distributions.

The results show that distribution reliability im-
proves significantly with increasing annotators be-
fore plateauing. While ArtEmis uses 6 annotators
(red dashed line), our analysis indicates that 11 an-
notators are needed to achieve 95% of maximum
reliability, suggesting that current ArtEmis annota-
tions may not fully capture reliable emotion distri-
butions.

4.3 ArtElingo

In this study, we utilize the ArtElingo
dataset(Mohamed et al., 2022a), which is an
extension of ArtEmis. ArtElingo includes
annotations in Arabic, Chinese, and Spanish, en-
compassing over 51,000 images. After removing
the extremely sparse annotations in Spanish, the
number of annotators ranges from 5 to 76, with
an average of 13.87 annotators per image. By
considering English as a representative language
of the West, Chinese for the East, and Arabic
for the Middle East, the dataset encompasses a
broad and diverse global representation. This
diverse linguistic inclusion makes ArtElingo
more suitable as a dataset for aggregating human
emotional opinions.

5 Experiment

5.1 Overview

In this section, we train a visual model using paint-
ing images as input, with the emotion probability
distributions constructed from the ArtElingo anno-
tation data as the ground truth. We then perform
a comparative analysis of the four methods pre-
sented in Section 3.2.

5.2 Data Processing

5.2.1 Image Data Processing
In this study, where we handle the delicate visual
features of paintings, special care must be taken
in selecting data augmentation techniques(Cetinic
et al., 2018; Shorten and Khoshgoftaar, 2019).
Many powerful data augmentation methods com-
monly used in general image classification tasks
may distort the intrinsic features of paintings, mak-
ing them difficult to apply. Therefore, we have
carefully selected two specific augmentation meth-
ods: random cropping, which allows the model to



focus on different parts of the painting during train-
ing, and random horizontal flipping, as this trans-
formation typically does not significantly alter the
overall impression of paintings.

These methods were specifically chosen to pre-
serve critical artistic elements while providing ben-
eficial variations for model training. They main-
tain the original composition, color integrity (es-
sential for emotional expression), and textural ele-
ments such as brushstrokes, while preserving each
artist’s unique style. While more aggressive aug-
mentation methods might enhance model general-
ization, we prioritize preserving the authentic emo-
tional content of the artwork.

For training efficiency, all images are resized to
have their shorter side set to 224 pixels while main-
taining the aspect ratio, followed by random crop-
ping to 224×224 pixels. This approach reduces
computational complexity while preserving essen-
tial visual information.

5.2.2 Dataset Filtering and Splitting
Figure 2 presents a histogram of emotion labels
from all annotators, revealing significant data im-
balance(Achlioptas et al., 2021; Mohamed et al.,
2022a) where "contentment" is the most frequent
emotion and "angry" is notably rare. This imbal-
ance is particularly pronounced when considering
the Top-1 (most frequent) emotion for each image.
To address this imbalance, we capped the number
of samples per emotion at 2,000, specifically for
cases where an emotion was the Top-1 label. As
shown by the blue bars in Figure 3, some emo-
tions (e.g., "excitement," "anger," and "something
else") have fewer than 2,000 samples, resulting in
a total dataset of 15,082 samples. The red bars
indicate the total number of annotations per emo-
tion, demonstrating reduced imbalance compared
to Figure 2. The processed data was split into train-
ing, validation, and test sets (6:2:2 ratio), maintain-
ing consistent Top-1 emotion proportions across
all sets (7,313 training, 2,438 validation, and 2,438
testing samples).

5.3 Experimental Setup

For the model architecture in this study, we em-
ployed a fine-tuned version of the pre-trained
ResNet-50 model(He et al., 2016), specifically us-
ing the Image Encoder from CLIP [34]as the base.
To this, we added two fully connected layers at the
final stage. The hidden layers of the added fully
connected layers consist of 512 and 9 dimensions,

Figure 2: A histogram aggregating emotion labels pro-
vided by all annotators for each emotion.

Figure 3: Comparison of Top1 sample counts (blue)
and total annotation counts (red) for each emotion cat-
egory. This demonstrates partial mitigation of data im-
balance.

respectively. We set the batch size to 32, and a
dropout rate of 0.2 was applied. The model with
the best validation loss was selected as the final
model.

For optimization, we used the AdamW opti-
mizer, setting the learning rate to 1e-6 for the CLIP
model and 1e-4 for the added fully connected lay-
ers. A weight decay of 0.01 was applied to prevent
overfitting.

5.4 Evaluation

To comprehensively evaluate the performance of
emotion distribution learning models, we em-
ploy both distribution-based metrics and accuracy-
based evaluation approaches. Our evaluation
framework consists of distribution similarity mea-
sures and novel accuracy metrics designed specifi-
cally for multi-emotion scenarios.

5.4.1 Distribution Similarity and Rank-based
Metrics

To measure the similarity between predicted and
ground truth emotion distributions, we utilize
Kullback-Leibler (KL) Divergence, which mea-
sures the relative entropy between predicted and
ground truth distributions, while also employing
rank-based accuracy metrics to assess our model’s
performance in identifying dominant emotions.



Specifically, we evaluate Top-1 Accuracy to mea-
sure the model’s ability to correctly identify the
most prominent emotion, and Top-2 Accuracy to
assess the accuracy in identifying the two most
prominent emotions in the correct order.

5.4.2 Thresholded Emotion Set Accuracy
(TESA)

We propose a novel evaluation metric, Thresh-
olded Emotion Set Accuracy (TESA), for assess-
ing emotion distribution learning models. TESA
enables nuanced evaluation of multi-emotion sce-
narios by introducing probability thresholds that
determine significant emotions in both predicted
and ground truth distributions. At its core, TESA
computes the intersection-over-union of emotion
sets that exceed a given threshold in both predicted
and ground truth distributions:

TESAτ =
|T (τ) ∩ P (τ)|
|T (τ) ∪ P (τ)|

(6)

where T (τ) = {i : ti ≥ τ} represents the set
of emotions whose true probability exceeds τ , and
P (τ) = {i : pi ≥ τ} represents the set of emo-
tions whose predicted probability exceeds τ .

To provide comprehensive evaluation across dif-
ferent emotion multiplicities, we analyze TESA
at specific thresholds τn where the ground truth
distribution contains exactly n emotions. These
thresholds are determined by:

τn = argmin
τ

|E[|T (τ)|]− n| (7)

where E[|T (τ)|] denotes the expected num-
ber of emotions exceeding threshold τ across the
dataset. Our analysis covers scenarios with vary-
ing numbers of significant emotions by evaluating
n ∈ {1, 2, 3, 4}. For a test set with M samples, we
compute the mean TESA score as:

TESAn =
1

M

M∑
k=1

TESAk
n (8)

where TESAk
n represents the TESA score for

the k-th sample at threshold τn.
The TESA framework offers several key advan-

tages: adaptive evaluation based on emotion in-
tensity thresholds, direct interpretation of model
performance across different emotion multiplicity
scenarios, robust evaluation accounting for natu-
ral variation in emotion intensity, and clear dis-
tinction between primary and secondary emotions

Figure 4: Analysis of threshold effects on model perfor-
mance. Top: Average TESA (intersection-over-union
accuracy) across test data for varying threshold values.
Bottom: Average number of predicted emotions above
threshold compared to ground truth distribution.

while maintaining distributional properties. This
comprehensive framework enables assessment of
both distributional accuracy and practical utility of
emotion distribution learning models. Unlike tra-
ditional rank-based metrics such as Top-1 and Top-
2, TESA remains effective regardless of distribu-
tion shape, entropy variations, or annotator count
differences by providing flexible threshold-based
accuracy evaluation.

6 Results

Our experimental results demonstrate the effec-
tiveness of different label encoding approaches

Figure 5: Comparison of Thresholded Emotion Set Ac-
curacy (TESA) scores for different numbers of emo-
tions (N = 1,2,3,4) across all methods.



Table 1: Comparison of One-hot, LDL, and PLDT methods across various overall performance metrics. The best
score for each metric is highlighted in bold. TESA-N represents the Thresholded Emotion Set Accuracy where N
indicates the target number of emotions.

Method
Basic Metrics TESA Scores

KL Top-1 Top-2 TESA-1 TESA-2 TESA-3 TESA-4
One-hot 0.719 0.518 0.174 0.461 0.459 0.464 0.487
LDL 0.449 0.503 0.211 0.373 0.486 0.536 0.582
PLDT-A 0.738 0.517 0.180 0.469 0.464 0.467 0.482
PLDT-B 0.449 0.497 0.206 0.384 0.491 0.533 0.582

across various metrics, as shown in Table 1. The
LDL and PLDT methods show distinct advantages
in different evaluation scenarios.

In terms of basic metrics, LDL and PLDT-B
achieve the best KL divergence, indicating their
superior ability to model emotion distribution pat-
terns. While the One-hot method shows the high-
est Top-1 accuracy, LDL achieves the best Top-
2 accuracy, suggesting its effectiveness in captur-
ing multiple emotions. Notably, we observe simi-
lar performance patterns between One-hot/PLDT-
A and LDL/PLDT-B pairs, indicating that the final
training phase significantly influences the model’s
behavior.

The TESA scores reveal distinct patterns across
different emotion count settings. As shown in Fig-
ure 5, PLDT-A performs best for single emotion
prediction, while PLDT-B excels in dual emotion
scenarios. For higher emotion counts, LDL and
PLDT-B demonstrate superior performance, both
achieving the highest TESA-4 scores.

Figure 4 provides insights into threshold sen-
sitivity and its relationship with prediction accu-
racy. LDL and PLDT-B maintain stable perfor-
mance across different threshold values, particu-
larly at small thresholds. The emotion count analy-
sis reveals that these methods also better align with
the ground truth distribution, suggesting that accu-
rate emotion count prediction contributes to higher
TESA scores. One-hot and PLDT-A show advan-
tages at moderate thresholds where the average
emotion count approaches one, but their perfor-
mance decreases at higher thresholds due to over-
prediction of high probability values.

An interesting phenomenon emerges in the com-
parison between LDL and PLDT-B: while LDL
performs better in Top-k metrics, PLDT-B shows
superior performance in several TESA metrics.
This reversal can be attributed to their different ap-
proaches to probability distribution learning and

the inherent characteristics of each evaluation met-
ric. Top-k metrics evaluate strict ranking perfor-
mance, where LDL excels due to its direct opti-
mization of complete probability distributions, en-
abling precise modeling of relative emotion inten-
sities. This advantage stems from LDL’s training
objective that simultaneously considers the entire
probability space, leading to more accurate preser-
vation of emotion intensity ordering.

In contrast, TESA measures the intersection-
over-union of emotions above specific thresh-
olds, where PLDT-B demonstrates superior perfor-
mance. This advantage can be attributed to two
key factors: First, PLDT-B’s progressive transi-
tion from One-hot encoding helps maintain clearer
decision boundaries for emotion activation, ef-
fectively learning appropriate threshold levels for
each emotion. Second, the gradual incorporation
of distribution information during training allows
PLDT-B to balance between discrete and continu-
ous representations, resulting in more robust prob-
ability estimates around decision thresholds. This
unique characteristic makes PLDT-B particularly
effective in scenarios where the identification of
present emotions is more crucial than their exact
intensity ordering.

7 Conclusion

In this work, we addressed the challenge of mod-
eling emotional responses to artwork by explor-
ing the spectrum between discrete and continuous
label representations. Our analysis reveals that
while One-hot encoding excels at identifying dom-
inant emotions, LDL better captures subtle emo-
tional nuances. To bridge this gap, we introduced
PLDT, demonstrating that a gradual transition be-
tween these approaches can effectively balance
their respective strengths. The threshold-based
evaluation through TESA provided key insights
into how different methods handle the trade-off



between prediction confidence and emotion multi-
plicity. Our findings suggest that considering emo-
tions as distributions rather than discrete labels bet-
ter aligns with the complex nature of human emo-
tional responses to art.
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