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Abstract
Recent large language models (LLMs) have sig-
nificant inference potential. Tuning methods
are techniques used to adapt these inference
capabilities to specific tasks. However, unlike
earlier, smaller models that allowed for effi-
cient fine-tuning, modern LLMs function more
like black boxes, disallowing access to their pa-
rameters and preventing traditional fine-tuning.
Consequently, tuning studies have evolved to
explore new approaches. In this survey, we
categorize 36 tuning studies into a hierarchical
structure. The root categories are as follows:
1) white-box tuning requires full or partial ac-
cess to model parameters; 2) black-box tuning
only involves modifying the task instructions
within the input text; 3) grey-box tuning has
limited internal access, such as input embed-
dings, intermediate layer states, or output log
probabilities. We analyze tuning studies and
discuss future trends based on the model prop-
erties these tuning techniques depend on.

1 Introduction

Before the advent of large language models
(LLMs), pre-trained language models (PLMs) were
a major focus in natural language processing (NLP)
(Devlin et al., 2019; Brown et al., 2020; Raffel
et al., 2023; Fedus et al., 2022; Zhang et al., 2020;
Qiu et al., 2020). Tuning methods adapt the in-
ference capabilities of PLMs to perform specific
tasks. These smaller models cannot effectively
solve tasks on their own until they are tuned for
particular applications. A notable approach, known
as fine-tuning, updates the model’s parameters us-
ing gradients derived from specific tasks (Howard
and Ruder, 2018). Fine-tuning adjusts all internal
parameters of the model, proved to be an efficient
technique for optimizing PLMs.

Recently, some LLMs do not allow access to
their internals (i.e., any parameters or most activa-
tions). For instance, commercial LLMs like Chat-
GPT, GPT-4 (OpenAI et al., 2024), and Gemini
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Figure 1: Classification of LLMs and tuning methods by
their internal accessibility. We highlight tuning focuses
in dotted boxes with colored fonts and shapes.

(Team and Anil, 2024) do not allow any access
to their internal parameters. Without such access,
traditional tuning approaches that involve updating
parameters, such as fine-tuning, cannot be applied.

For LLMs with closed internals, in-context learn-
ing (Brown et al., 2020; Dong et al., 2024, ICL)
is useful. ICL allows LLMs to adapt to specific
tasks by incorporating an overview or examples of
the tasks directly into the input, reducing the need
for parameter tuning (von Oswald et al. (2023) and
Deutch et al. (2024) suggested their equivalence).
Additionally, fine-tuning with different hyperpa-
rameters tends to be more expensive compared to
ICL. Tuning studies have gradually increased in
aspects of modifying input and internal activations.

The applicability of tuning approaches varies de-
pending on the level of access available to model
internals. To account for the differences in tuning
approaches, we utilize the three model classifica-
tions based on internal accessibility as proposed
by Sun et al. (2024a), and summarize the existing
tuning studies that can be applied to each category.

The categories of models are white-box, black-
box and grey-box as shown in Figure 1. White-box
models provide full access to their internals, in-
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Figure 2: The transition in the number of papers w.r.t.
keywords in titles. Analysis targets are the papers pub-
lished in the ACL Anthology from 2015 to 2023. The
two related keywords are set “tuning” and “black”.

cluding parameters and all internal activations for
backpropagation. In contrast, black-box models do
not permit any access to their internals; the only
available information is the text input and output.
Additionally, there are models with partial inacces-
sibility, referred to as grey-box models. Grey-box
models hide their parameters but reveal certain ac-
tivations, such as input embeddings, layer states,
and output log probabilities, to allow for tuning.

This paper covers following topics:

• We systematically categorize tuning studies in-
volving LLMs in a hierarchy, as an extension
of white-, black-, and grey-box categories.

• We discuss the features of each tuning ap-
proach, providing availability reference for
the selection of a tuning approach w.r.t. a
specific LLM internal accessibility.

• We outline future and refinement directions of
LLMs and tuning method categories.

2 Evidence

2.1 Number of Papers

The number of recently published papers highlights
emerging trends in the field under this survey. Fig-
ure 2 illustrates the yearly progression in the num-
ber of papers published in the ACL Anthology1 that
include keywords related to LLM tuning in their
titles. As shown in Figure 2, there has been a no-
ticeable year-over-year increase in papers featuring
the terms “tuning” and “black” in their titles. This
trend suggests a growing interest in tuning methods
and black-box models in recent years.

1https://aclanthology.org/

The rise of high-performance LLMs has likely
driven a significant increase in research focused on
tuning LLMs with inaccessible internals. Notably,
the number of papers featuring both keywords has
surged dramatically from 2022 to 2023. This trend
is likely influenced by OpenAI’s release of Chat-
GPT, an LLM that restricts access to its parameters,
at the end of 2022. As more LLMs with inaccessi-
ble internals become available, research on tuning
methods for these models is expected to continue
advancing in the near future.

2.2 Model Development

LLMs originated from PLMs as small white-box
recurrent models (Peters et al., 2018, ELMo) and
quickly shifted to the Transformer structure, e.g.
BERT (Devlin et al., 2019) and early GPT se-
ries. These Transformer-based models gradually
evolved into leading LLMs. With the recent ad-
vancements in LLMs, a growing trend toward re-
duced accessibility to their internals is obvious.

White-box model. Full internal access enables
backpropagation (Rumelhart et al., 1988). Many
white-box models are available on open commu-
nities, like HuggingFace2. Representative exam-
ples are OPT (Zhang et al., 2022a) and llama series
(Dubey et al., 2024) besides aforementioned PLMs.

Black-box model. Forbidding any access to the
model’s internal, the only information the user can
utilize is the input text and the corresponding out-
put text. The examples of black-box models in-
clude Gemini3 and Grok4.

Grey-box model. This category disallow access
to parameters but permits access to other parts of
the models. Specifically, a grey-box model refers
to a model where certain components, like log prob-
abilities or input embeddings, are accessible. GPT-
3.5 with later series from OpenAI5 and Jurassic-2
series from AI21 Labs6 are examples of grey-box
models because they disclose log probabilities.

3 Preliminary

This section introduces the techniques employed in
the tuning approaches discussed in this paper.

2https://huggingface.co/
3https://gemini.google.com/
4https://help.x.com/en/using-x/about-grok
5Noticeably, limited fine-tuning is available. See https:

//platform.openai.com/docs/guides/fine-tuning.
6https://www.ai21.com
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3.1 In-context Learning

ICL is a form of ability where information about
downstream tasks is incorporated into the input text,
allowing an LLM to be tuned without altering its
parameters. This information, known as a prompt,
may include task explanations and examples of
input text paired with the expected output.

A challenge with ICL is that the prompt greatly
affects performance. Crafting prompts that yield
high performance demands substantial effort and
specialized expertise (Jiang et al., 2022; Reynolds
and McDonell, 2021; Zamfirescu-Pereira et al.,
2023). Tuning approaches that utilize ICL seek to
automatically generate and optimize these prompts.

Chain of Thought. Chain of Thought (CoT)
(Wei et al., 2023) is a type of ICL. CoT involves
adding demonstrations that include the key ratio-
nale behind the thought process to the prompt. This
rationale enables an LLM to perform step-by-step
reasoning, allowing it to tackle complex tasks, such
as arithmetic problems, with high accuracy.

A setting where a few rationale-included demon-
strations are added is called Few-shot CoT. In con-
trast, Kojima et al. (2023) proposed Zero-shot CoT,
which requires no demonstrations. Zero-shot CoT
achieves the CoT approach by prompting the LLM
to generate the reasoning process independently.
Specifically, Zero-shot CoT effectively guides the
LLM to produce both the final answer and the ratio-
nale behind it simply by adding a self-motivating
phrase “Let’s think step by step.” to the prompt.

3.2 Derivative Free Optimization

Derivative-Free Optimization (DFO) is a technique
for searching for the optimal solution without us-
ing gradient information. Since DFO can be per-
formed without accessing the model’s parameters,
it is well-suited as a tuning technique for LLMs
with inaccessible parameters, such as black- and
grey-box models. DFO encompasses a variety of
approaches, with notable examples including ge-
netic algorithm (GA) (Hansen et al., 2003) and
bayesian optimization (BO) (Shahriari et al., 2016).

Genetic algorithm. GA is an optimization tech-
nique that searches for better solutions by retaining
superior genes for subsequent generations, resem-
bling biological evolution. Initially, a set of can-
didate solutions is created and evaluated. Only
those of high performance are retained for the next
generation (i.e., the next iteration). New candi-

dates are then generated based on these retained
candidates with mutation. By continuously evaluat-
ing the newly generated candidates and repeatedly
preserving the superior ones for generations, the
algorithm progressively explores and converges on
the optimal solution.

Bayesian optimization. BO is a technique for
searching for the optimal solution via evaluation
and trials. It updates a probabilistic model to prior-
itize trials that are likely to yield high performance,
thereby efficiently exploring the solution space.

The process works as follows: initially, a few
data points (e.g., model inputs) are evaluated us-
ing an objective function (e.g., task performance).
Based on these initial evaluations, a predictive
model is constructed to estimate the objective func-
tion values for data within the search space. The
probabilistic model and the predictive model then
estimate and evaluate new data points that are likely
to deliver high performance. These models are
continuously updated and optimized based on the
results of each evaluation. Through this iterative
process, BO progressively explores and identifies
the optimal solution.

4 Tuning Methods

Figure 3 provides an overview of the tuning meth-
ods explored in this paper. This paper primarily
focuses on surveying tuning methods that are partic-
ularly useful for LLMs with internal accessibility.

4.1 White-box Tuning

White-box tuning is a genre that involves updating
a model’s internal parameters. These approaches
calculate gradients using supervised data and opti-
mizes the parameters through backpropagation.

4.1.1 Full Parameter Tuning

Full parameter tuning is a tuning approach used
for white-box models, where all internal parame-
ters of the model are updated. The most common
technique under this approach is fine-tuning, which
involves adjusting all the model’s parameters to
optimize performance on a specific task.

4.1.2 Parameter-Efficient Fine-Tuning

Balne et al. (2024) explored an efficient tuning ap-
proach that functions independently of the LLM.
This approach, known as parameter-efficient fine-
tuning (PEFT), aims to achieve improvement via
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Figure 3: Our classification of tuning methods is based on the internal accessibility of LLMs. We further extends
the three root categories into subgroups regarding the features of their subjected approaches.

minimal extra parameter updates. PEFT is bene-
ficial for reducing the substantial computational
costs associated with full-model tuning of LLMs.

A notable study in PEFT is prompt tuning
(Lester et al., 2021). Prompt tuning involves refin-
ing an LLM by adding and optimizing a sequence
of vector tokens, called a soft prompt, within the
input embedding. During tuning, the LLM’s param-
eters remain unchanged, while only the small set of
parameters associated with the soft prompt are up-
dated. At inference, the LLM treats the optimized
soft prompt as a continuous-valued prompt. Simi-
larly, P-tuning (Liu et al., 2022b) is another tech-
nique focused on optimizing continuous prompts.

Other approaches, like prefix tuning (Li and
Liang, 2021) and P-tuning v2 (Liu et al., 2022c),
extend the strategy by adding and optimizing se-
quences of vectors not just in the input embedding,
but also at every layer of the LLM. In contrast,
adapter tuning (Houlsby et al., 2019) inserts opti-
mizable modules between LLM modules.

Low-Rank Adaptation (LoRA) (Hu et al., 2021)
is a prominent tuning method within PEFT. LoRA
focuses on learning the extent of change in the
model’s parameters before and after tuning. By
applying matrix decomposition, it reduces the com-
putation to a lower-dimensional space, thereby low-
ering computational costs. During inference, these
parameter updates are incorporated into the linear
layer of the model. Additionally, various studies
have introduced LoRA variants, such as approaches
that dynamically learn the rank for low-rank matri-
ces (Zhang et al., 2023a; Valipour et al., 2023) and
methods aimed at further reducing computational
costs (Dettmers et al., 2023; Kim et al., 2024).

4.2 Black-box Tuning

Black-box tuning refers to optimization methods
applied to LLMs without any internal access and
necessarily relies on models’ ICL capacity. In
these scenarios, the only available information con-
sists of the input sentences and their corresponding
output sentences. Specifically, only the input sen-
tences can be directly manipulated. This section
discusses approaches that optimize input sentences
based on feedback derived from the output sen-
tences or other external information sources.

4.2.1 Prompt Evolution
Prompt evolution evolves prompts via GA. A LLM
initially generates multiple candidate prompts, and
the high-performing ones are selected. A new set of
candidate prompts is then generated based on these
selected prompts. This cycle of generating and
selecting high-performance prompts is repeated it-
eratively, gradually refining the prompts to enhance
performance.

Auto Prompt Engineer (APE) (Zhou et al.,
2023b) utilizes the prompt evolution approach. In
APE, candidate prompts are generated using a com-
bination of labeled data and a meta-prompt de-
signed for generating candidates. These prompts
are evaluated on metrics, such as accuracy, to iden-
tify the most effective ones. The selected prompts
are then rephrased by the LLM to generate a new
set of prompts, continuing the iterative evolution
process.

In the prompt evolution approach, innovations
often focus on how candidates are generated and
evaluated. ProTeGi (Pryzant et al., 2023) is a study
that represents gradients in natural language and
utilizes them to optimize prompts. In ProTeGi, the
LLM generates the shortcomings of a prompt as a



natural language “gradient”. The LLM then modi-
fies the prompt based on each identified “gradient”.
These modified prompts are added to the candidate
set and evaluated their performance. By iterative
identification of prompt shortcomings, modifica-
tions, and selection of high-performing prompts,
the prompts are gradually evolved.

Gradient-free Instructional Prompt Search
(GRIPS) (Prasad et al., 2023) optimizes prompts
by iteratively breaking them down into phrases
and updating these phrases across multiple rounds.
During each round, it performs phrase-level up-
dates, retaining only the prompts that demonstrate
effective improvements to carry forward to the next
iteration. Another study, PromptBreeder (Fernando
et al., 2024), adopts an approach that achieves high
performance by simultaneously optimizing both
the prompts and the meta-prompts used for gen-
erating candidate prompts. Auto-Instruct (Zhang
et al., 2023b) evaluates candidate prompts using
a fine-tuned white-box model, allowing for more
accurate identification of effective prompts.

4.2.2 Other Approaches
There are various techniques for tuning prompts
beyond the use of GA. For example, InstructZero
(Chen et al., 2024) employs BO within DFO tech-
niques. InstructZero optimizes a soft prompt using
BO, and the optimized soft prompt is converted into
a natural language prompt by a white-box model
before being input into a black-box model.

Consistency-based Self-adaptive Prompting
(COSP) (Wan et al., 2023a) is a study for gener-
ating high-performance CoT demonstrations us-
ing only unlabeled data. Initially, Zero-shot CoT
is applied to the unlabeled data with a non-zero
temperature, generating multiple answers and their
corresponding rationales. COSP evaluates these
answers using self-consistency (Wang et al., 2023),
which involves taking a majority vote among the
multiple answers to assess the confidence level of
the LLM outputs. The most frequent answer is
adopted as the final answer, and the proportion of
this answer is used as a measure of the LLM’s con-
fidence. In COSP, Few-shot CoT is then executed
using examples that have high-confidence answers.

Another approach involves selecting appropriate
demonstrations from a dataset and adding them to
the prompt. The kNN in-context example selec-
tion method (Liu et al., 2022a) constructs a high-
performance demonstration set by selecting exam-
ples from the training data that are similar to the test

examples. Auto-CoT (Zhang et al., 2022c) takes a
different approach by clustering the unlabeled data
and selecting a diverse set of demonstrations. Us-
ing Zero-shot CoT, answers and rationales are then
generated and added to the selected demonstration
set, forming a comprehensive prompt.

4.3 Grey-box Tuning

Grey-box tuning applies to LLMs whose activa-
tions are available. Apart from input text, acces-
sible components may include each layer and the
probability distribution during generation. In this
paper, grey-box tuning approaches are divided into
two categories: manipulating the input text or lay-
ers (as intermediate) or log probabilities.

4.3.1 Tuning via Intermediate
This umbrella concept covers two genres: one for
optimizing prompts and the other for optimizing
modules. Grey-box tuning offers greater flexibility
in its application to tasks compared to black-box
tuning. For black-box models, many tuning ap-
proaches rely solely on information from the output
text to optimize prompts. In contrast, grey-box tun-
ing can provide a more comprehensive evaluation
of prompts by accessing log probabilities.

Prompt optimization. Prompt optimization is
a tuning category that involves updating prompts.
A notable example of grey-box tuning methods is
Universal Self-Adaptive Prompting (USP) (Wan
et al., 2023b). USP is an enhancement of COSP,
discussed in Section 4.2.2, making it applicable to
a broader range of tasks. USP adjusts the evalua-
tion metrics based on the specific type of task to
effectively evaluate the prompts. COSP relies on
self-consistency, limiting its application to tasks
where the output can be determined by a majority
vote, such as classification tasks or arithmetic prob-
lems. In contrast, USP extends this approach to
generative tasks by incorporating evaluation met-
rics based on log probabilities, allowing it to be
used in a wider variety of contexts.

Since grey-box tuning does not allow access to
internal parameters, some approaches utilize DFO,
similar to those used in black-box models. One
such study is iPrompt (Singh et al., 2023), which
employs GA. In iPrompt, the LLM generates ex-
planations of patterns found in the dataset, which
are then used as prompts. The LLM is provided
with several pieces of labeled data and generates
explanations of the data patterns based on these



examples. Like prompt evolution approach, the
effectiveness of these data explanations as prompts
is then evaluated, and only the high-performing
prompts are retained for further use.

In addition to DFO, some studies utilize rein-
forcement learning for prompt optimization. RL-
Prompt (Deng et al., 2022) generates prompts us-
ing words selected by a policy that selects op-
timal words from model’s vocabulary. Another
study, Test-tiMe Prompt Editing using Reinforce-
ment leArning (TEMPERA) (Zhang et al., 2022b),
learns a policy to determine which edits (e.g., dele-
tion or swapping of phrases) to apply to the prompt.
Unlike other approaches, TEMPERA achieves high
performance by generating input-specific prompts,
making them more effective.

Other studies focusing on input manipulation
include Clustering and Pruning for Efficient Black-
box Prompt Search (CLaPS) (Zhou et al., 2023a),
which identifies impactful tokens and explores their
combinations to optimize prompts. Black-box Dis-
crete Prompt Learning (BDPL) (Diao et al., 2023),
uses reinforcement learning to calculate gradients
and optimize discrete prompts without access to
the model’s internal parameters.

Module optimization. We introduce grey-box
tuning studies for scenarios where both the input
and the internal layers of an LLM are accessible.
Module optimization is a technique that focuses on
optimizing modules added to the embeddings or
layers of an LLM without accessing its parameters.
There are two approaches within module optimiza-
tion: (1) optimizing continuous-value prompts as
modules and adding them before the input embed-
dings, (2) optimizing vector sequences as modules
and incorporating them at each layer of the LLM.

A representative study of the approach that adds
continuous-value prompts before input embeddings
is Black-Box Tuning (BBT)7(Sun et al., 2022b),
which optimizes these prompts using evolution-
ary strategies. During inference, continuous-value
prompts is added before the input text. In essence,
BBT achieves a result similar to prompt tuning,
as explained in Section 4.1.2, but without access-
ing the internal parameters. However, black-box
models do not allow access to input embeddings
and only accept natural language inputs, making
BBT inapplicable. Another approach, similar to
BBT, is FedBPT (Sun et al., 2023), which opti-

7This is a method’s name and should not be confused with
the meaning of the title for Section 4.2.

mizes continuous-value prompts using federated
learning (McMahan et al., 2023) to protect data
privacy while tuning.

There are also approaches that add optimized
vector sequences to each layer of LLMs, whereas
BBT and FedBPT insert continuous-value prompts
into the input text. In other words, the latter achieve
effects similar to P-Tuning v2, as described in Sec-
tion 4.1.2, but without accessing internal param-
eters. BBTv2 (Sun et al., 2022a), a derivative of
BBT, optimizes vector sequences for each layer
of the LLM using DFO. During inference, these
optimized vector sequences are added to each layer
of the LLM. Other studies, such as BBT-RGB (Sun
et al., 2024b) and Black-box Prompt Tuning with
Subspace Learning (BSL) (Zheng et al., 2024), also
employ DFO to add optimized vector sequences
to each layer, enhancing the LLM’s performance
without requiring access to its internal parameters.

4.3.2 Tuning via Log Probability
Grey-box LLMs can be refined not only through
intermediate-based approaches but also by directly
adjusting log probabilities. The task knowledge
acquired by one tuned model is transferable to an-
other general LLM via these log probabilities dur-
ing inference.

Specifically, the changes in log probabilities af-
ter tuning a small white-box model can be trans-
ferred to a grey-box model during inference. Proxy-
tuning (Liu et al., 2024a) is one such grey-box tun-
ing technique. It starts with fine-tuning a white-box
model on a specific downstream task. Then, the dif-
ferences in log probabilities before and after tuning
are calculated. Finally, these differences are ap-
plied to the log probabilities of the grey-box model,
effectively transferring the learned task knowledge.

There are other studies that focus on the log prob-
abilities of the tuned white-box model. Emulated
Fine-Tuning (EFT) (Mitchell et al., 2023) adds the
ratio (rather than the difference) of log probabilities
before and after tuning to the log probabilities of
the grey-box model. CombLM (Ormazabal et al.,
2023) calculates the average or weighted sum of
the log probabilities after tuning a white-box model
and those of the grey-box model and performs in-
ference based on these combined probabilities. Ad-
ditionally, there are studies such as kNN-adapter
(Huang et al., 2023), which manipulates log proba-
bilities by referencing data similar to test examples
within the training data. Furthermore, Inference-
time Policy Adapters (IPA) (Lu et al., 2023), which



integrate policies learned through reinforcement
learning in smaller language models into LLMs,
can be considered one technique of transferring
task knowledge between models of different sizes.

5 Discussion

5.1 The Cost of Tuning

This section examines the costs of tuning LLMs.
White-box tuning requires more computational cost
than inference when learning internal parameters.
White-box tuning for LLMs demands substantial
computational resources like GPUs, often requires
multiple high-end GPUs, which are both expensive
and scarce. For instance, when fine-tuning a model
that has 175B parameters, such as GPT-3 (Brown
et al., 2020), 1.2TB VRAM is required (Hu et al.,
2021). We need to prepare massively GPUs to sat-
isfy the VRAM requirements and a large amount of
monetary expenses. Specifically, 38 NVIDIA V100
32GB GPUs ($4,000 USD per GPU8) are required
for fine-tuning the 175B model and $152,000 USD
is required in total. Using LoRA reduces this to 11
GPUs and a cost of around $44,000 USD. However,
even with PEFT, tuning LLMs still incurs signif-
icant costs. The costs of local white-box tuning
not only include the price of the GPUs but also the
power consumption during computation.

Alternatively, instead of setting up private GPU
servers, one can opt to rent and pay based on usage.
The cost of Azure virtual machines9 increases with
the duration of usage. Black- and grey-box models
can also be tuned on the LLM provider’s servers,
meaning that users do not need to prepare their own
GPUs. Instead, the cost of tuning these LLMs is
tied to the API usage, depending on the number of
input and output tokens. Many black- and grey-box
tuning approaches can be executed with inference
only, so specifically for tuning GPT-4o, the cost is
$5 USD per 1 million input tokens and $15 USD
per 1 million output tokens. Tasks with extensive
training data or generate many output tokens can
lead to significant expenses. Advancements in tun-
ing studies could help reduce the costs associated
with training and running black- and grey-box mod-
els. Minimizing the number of input and output
tokens could be a valuable contribution to research
in tuning studies.

However, the cost of tuning is expected to de-

8As of October 2024.
9https://azure.microsoft.com/en-us/pricing/

details/virtual-machines/windows/

crease over time. One reason for this is the com-
mercial competition among LLM providers. In July
2024, OpenAI introduced GPT-4o-mini, which of-
fered much lower costs than existing LLMs while
still maintaining high performance. This competi-
tion is likely to intensify, driving not only advance-
ments in model performance but also reductions in
usage costs.

Another reason is the advancement of Green AI
(Schwartz et al., 2019). Green AI refers to envi-
ronmentally friendly AI that focuses on creating
efficient algorithms and hardware with lower power
consumption. As Green AI continues to progress, it
is expected that both LLM users and providers will
benefit from lower operational computing costs.
Lower energy consumption will also help to de-
crease the costs associated with tuning LLMs.

5.2 The Impact of Disclosing Model’s Internal
By revealing the model’s internals, a broader range
of tuning approaches becomes possible. In white-
box models, techniques that update parameters us-
ing gradients can be applied. Grey-box models can
leverage log probabilities, allowing for the use of
diverse loss functions.

However, from the providers’ perspective, pub-
lishing LLM’s internal also has its disadvantages.
One major concern is the risk of the LLM’s internal
information being compromised or stolen.

Existing research has explored techniques to in-
fer internal information from models. Fredrikson
et al. (2015) demonstrated that it is possible to in-
fer the data used for training based on the model’s
gradients. Additionally, Carlini et al. (2024) pro-
posed a technique to identify specific details about
an LLM, such as the number of dimensions in the
hidden layer, by analyzing log probabilities.

There is a trade-off between model flexibility
and the risk of information theft. Greater flexibility
makes models accessible to more users, but mod-
els trained on sensitive data (e.g., private data) or
LLMs that are costly to develop must be cautious
about the potential theft of internal information
from both security and commercial perspectives.

5.3 Further Model Development
New deep neural network architectures have been
gaining attention in recent years, which may influ-
ence applicable tuning techniques. For example,
Kolmogorov-Arnold Networks (KAN) (Liu et al.,
2024c,b) was introduced as a new network struc-
ture to replace MLP (Cybenko, 1989; Hornik et al.,
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1989). Unlike traditional models, KAN does not
use linear layer weights but instead learns nonlinear
layers. Consequently, white-box tuning techniques
like LoRA, which modify linear layers, cannot be
applied to LLMs using KAN.

The more a LLM’s internals are accessed during
tuning, the more vulnerable it becomes to changes
in the LLM’s structure, and the higher the imple-
mentation costs. Grey-box tuning, which requires
minimal access to the model’s internals, is more
robust to changes in the LLMs’ architecture. Black-
box tuning, which does not access the internal at all,
is even more robust. As alternative architectures,
such as Mamba (Gu and Dao, 2024), are being ex-
plored, research into black- and grey-box tuning
studies is becoming increasingly important.

5.4 Refinement of Tuning Methods

Diversity of outputs in black-box tuning. In the
black-box tuning studies reviewed in this paper,
many approaches involve repeatedly generating
candidate prompts and selecting the optimal one
(Prompt evolution is discussed in Section 4.2.1). A
key challenge in these approaches is the diversity
of the prompt candidates generated by the LLMs.
These approaches assumes that effective prompts
exist within the pool of candidate prompts (i.e., the
prompt search space). The breadth of this search
space depends on the diversity of the prompts gen-
erated. If the LLM’s output diversity is low, the can-
didate prompts will be too similar to one another,
reducing the chance of finding effective prompts
within the search space. To comprehensively ex-
plore prompt representations, it is necessary for the
LLM to have high output diversity.

Several studies aim to increase the diversity
of LLM outputs. Auto-Instruct prepares seven
meta-prompts to generate candidate prompts, with
prompt candidates generated using random meta-
prompts. For future development in this approach,
enhancing output diversity is expected to become
more important (Vijayakumar et al., 2018; Lahoti
et al., 2023), as well as evaluating diversity (Li
et al., 2016; Zhu et al., 2018; Shen et al., 2019).

Input-dependent approach. The future of re-
search in prompt optimization includes develop-
ing methods that automate the creation of input-
dependent prompts, such as TEMPERA. Wu et al.
(2022) highlight the effectiveness of generating dis-
tinct prompts for each input sentence.

However, much of the current research tends to

rely on fixed prompts for each task, with input-
dependent techniques being relatively uncommon.
Existing tuning studies that optimize prompts still
have room for improvement when it comes to adapt-
ing prompts based on the input text.

Knowledge transfer methods. Recently, ap-
proaches that transfer task knowledge acquired
from a small white-box model to large grey-box
models become more prevalent. Examples of
such approaches include Proxy-tuning, EFT, and
CombLM. The feature of these approaches is their
ability to enhance the performance of large grey-
box models using task knowledge from a smaller
white-box model. A key advantage of the approach
is that they require only minimal computational
cost during tuning.

In practice, proxy-tuning has produced results
that are nearly as effective as directly tuning an
LLM. For instance, in a Question-Answering task,
directly tuning Llama-2 70B resulted in an accuracy
of 63.1, while transferring knowledge from tuning
Llama-2 7B to Llama-2 70B achieved a close ac-
curacy of 62.7. This demonstrates that by training
the smaller 7B model, it is possible to achieve re-
sults comparable to those obtained from training
the larger 70B model, highlighting the parameter
efficiency of the knowledge transfer approach.

However, this approach is only feasible when the
source and target models are similar. For example,
in proxy-tuning, it is crucial that the models share
a common vocabulary between their tokenizers.

The limitation that knowledge transfer can only
be applied between models of the same type poses a
challenge for this approach. Developing techniques
that enable knowledge transfer between models of
different types is becoming increasingly important.

6 Conclusion

This paper surveys tuning studies and classify them
by model category. The model category is based
on the accessibility of their internals: white-box
models, which allow full access to internal parame-
ters; black-box models, which allow access to only
the input and output; and grey-box models, which
offer partial access to their internals.

Based on trends observed in the surveyed stud-
ies, we identify challenges and considerations for
future research on tuning techniques. We aim to
engage in more detailed discussions by compar-
ing the performance and costs of various tuning
approaches.
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