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Abstract

Overfitting is a significant challenge for deep
learning models. Ensemble methods have been
shown to effectively mitigate overfitting in a
wide range of problems across different do-
mains, especially within deep learning archi-
tectures. In this paper, we introduce an innova-
tive deep learning model that integrates a multi-
fragment ensemble mechanism to tackle the re-
lation extraction problem. Our ensemble archi-
tecture is distinct from other models in building
the base estimators using different data sizes
and training them in an integrity deep learning
model. Experiments on the Chemical-induced
Disease relation and drug-drug interaction cor-
pora show that the proposed model achieves
competitive results, outperforming other mod-
els that do not consider inter-sentence relation-
ships.

1 Introduction

Overfitting happens when a model performs well
on its training data but struggles to generalize to
new and unseen data. This is a common issue in
deep learning, where the model shows low training
errors but struggles with unseen data, indicating
low bias but high variance. High variance, re-
flected by the difference between validation and
training errors, means the model has poor predic-
tive ability on the validation set. To deeply verify
the model’s capabilities and stability, we built a
baseline deep learning model (as described in Sec-
tion 3.1) to make a detailed analysis. This model
would be used as base estimator in multi-fragment
ensemble architecture. Figure 1 presents the re-
sults of running the baseline model 100 times on
the same training dataset to analyze the standard
deviation across multiple runs. The size of the
training dataset varied from 10% to 100% of orig-
inal training data. The difference of F1 between
several runs is not too much (0.47% on original
training data). However, when surveying P and R
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Figure 1: The range of baseline model’s results on BC5
CDR test set. We trained the baseline models on var-
ious sizes of training dataset from 10% to 100%. The
coloured fields represent the range of values in 100 runs,
from the lowest to the highest result. The line shows the
averaged results.

we can see that the model’s stability is quite bad,
the standard deviations of P and R are very high:
2.53% for P and 2.55% for R on original training
data. These standard deviations increase when we
decrease the size of training data.

It is said that ‘unity is strength’, i.e., an individ-
ual can make a mistake in giving judgement, but
the decision of the crowd can often produce a much
more accurate (or at least less inaccurate) decision.
Dietterich (2000) defined ensemble methods as the
strategy of constructing multiple models (often re-
ferred to as ‘weak learners’ or ‘base learners’) and
then classifying new data based on a weighted com-
bination or vote of their predictions. This leads to
the central hypothesis of ensemble methods: by
correctly combining weak models, we can achieve
more accurate and robust results. This approach



is highly effective in reducing variance, mitigating
overfitting, and enhancing both stability and accu-
racy (Kowsari et al., 2019). Following the analysis
above, our deep models are high variance and fac-
ing with overfitting problem. The parallel ensemble
approach, with bagging being the most well-known
method, is designed to reduce variance, thereby
helping to prevent overfitting and enhance stability
and accuracy..

In this work, we present MERE - a novel
deep learning architecture using Multi-fragment
Ensemble for Relation Extraction problem. MERE
is the integrated model of deep learning estimators
trained on different data sizes. The main contribu-
tions of this work are:

• We developed a deep learning model that uti-
lizes advanced techniques and explored the
variances and biases of the trained models
across different data sizes.

• We enhanced the bagging ensemble method
by integrating a multi-fragment ensemble into
a deep learning model. The results showed
that this enhanced model performs effectively
on two benchmark datasets for relation extrac-
tion.

2 Related Work

Semantic relation extraction (RE) is a fundamental
natural language processing task and has been stud-
ied extensively. Many approaches for RE have been
developed, and recent advancements in deep learn-
ing have further fueled interest in applying neural
architectures to this problem. The models based on
convolutional neural networks (Zeng et al., 2014)
and bidirectional long short-term memory networks
(Zhang et al., 2015) are among the earliest research
efforts to apply deep learning to RE. Recently, at-
tention mechanisms have been widely adopted for
RE tasks. Zheng et al. (2017) integrated an atten-
tion mechanism with Long Short-Term Memory
networks to classify drug-drug interactions from
the literature. BRAN (Verga et al., 2018) is a convo-
lutional neural network with multi-layer attention
designed to operate RE on abstract-level graph.

The bagging (standing for ‘bootstrap aggregat-
ing’) algorithm was introduced by Breiman (1996)
(Breiman, 1996) as a voting ensemble method. In
reality, we cannot build fully independent models
for bagging, because it would require too much
data. So, as its full name, bootstrap aggregation,

bagging relies on the good ‘approximate properties’
of bootstrap samples (representativity and indepen-
dence) to build almost independent models.

Bootstrapping is a sampling technique where
subsets of observations are created from the origi-
nal dataset by randomly drawing instances. Each
bootstrap dataset effectively serves as a nearly in-
dependent sample from the true distribution, intro-
ducing expected diversity through the use of dif-
ferent datasets. In bagging, this bootstrap replica
of the original training data is used to train a base
model, and this process is repeated to generate mul-
tiple base models. Since the bootstrap datasets
are approximately independent and identically dis-
tributed, the resulting base models exhibit similar
properties. The ensemble’s output does not alter
the expected result but helps to reduce variance.
In traditional bootstrapping, instances are drawn
with replacement, so some data points may be re-
peated or omitted, with each instance having an
equal probability of appearing in the new datasets.

Ensemble mechanisms frequently achieve top
rankings in various natural language processing
shared tasks, such as the Bionlp-2016 Bacteria
Biotope event extraction (Mehryary et al., 2016)
and SemEval-2017 ScienceIE (Ammar et al., 2017).
Bagging has proven to be effective in a wide va-
riety of problems in several domains including
RE. Surdeanu et al. (2012) demonstrated that, in
practice, a simple bagging model often achieves
marginally better performance, by a few tenths of
a percent, compared to training a single mention
classifier on the latent mention labels produced
in the last training iteration. In BRAN model
(Verga et al., 2018), the simple ensemble technique
also helped to boost the F1 for 2.2%. Yang et al.
(2018) proposed an ensemble deep neural network
model to extract relations via an Adaptive Boosting
LSTMs with Attention model. Christopoulou et al.
(2020) developed an ensemble deep learning model
for extracting adverse drug events and medication
relations from electronic health records. Weber
et al. (2022) combined 10 pre-trained transformer-
based models by averaging the predicted prob-
abilities from each base model. Their findings
revealed that ensembling models derived from a
single base model outperformed those using dif-
ferent pre-trained language models on the Drug-
Prot dataset. The Ensemble-of-Experts framework
(Zhou et al., 2024) utilized a cascade voting mech-
anism to aggregate the capabilities of augmented
models, facilitating rehearsal-free continual RE.



3 Proposed Model

In this work, we develop an baseline relation clas-
sification model and investigate the variants and bi-
ases of this model trained on different data size and
different data distribution. Each baseline model f
with its parameter θ is considered as a base estima-
tor in a larger ensemble models. Instead of training
base estimator independently, we construct a multi-
fragment ensemble model on the top of these base
estimators. The entire ensemble model is trained
with a data masking block in a integrity deep learn-
ing model.

3.1 Base estimator

The overall architecture of our base estimator
model is shown in Figure 2. Given a sentence
and its dependency tree, we build our model on the
sentence that contained two nominals and the short-
est dependency path (SDP) between them. After
an BERT-based embedding layer, each token on
the sentence is represented by a vector. We gather
the dependency features for each token from the
dependency tree and apply a dual attention layer
to obtain the context vector for each token. These
sequence of vectors is then fed to a convolution
layer with multi-kernel size to capture convolved
features along the input sentence that can be used
to determine which relation two nominals are of.

3.1.1 Input Representation
The main goal of this step is to transform each
token into the vector space with D dimensions. For
token representation, we utilized two types of word
information, including:

• bioBERT (Lee et al., 2020): To model the se-
quential information on the original sentence,
we use the pre-trained bioBERT along the sen-
tence S = {ti}ni=1 as follow:

H = bioBERT(S) = {hi}ni=1 (1)

• POS tag embeddings: we embed the token’s
grammatical tag into a vector ti using a ran-
domly initialized look-up table and update this
parameter on model learning phase. These pa-
rameters are shared between base estimators
in the ensemble mechanism.

Finally, the concatenation between two pre-
sented vector is transformed into an D-dimensional
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Figure 2: The architecture of base estimator in multi-
fragment ensemble model. xi is the presentation of the
ith token from the output of BERT encoder. di is the
distance from the token i to the nearest node (token) on
the SDP between two arguments. c is the context vector
obtained by a scalar multiplication between attention
weights α and β with token vector x. CNN layer in this
figure contains three different kernel sizes (three colors
respectively).

vector to form the representation xi ∈ RD of the
token. I.e.,

xi = tanh ([h⌢
i ti]W

x + bx) (2)

where Wx and bx are trainable parameters of the
network, ⌢ denotes the concatenation of two vec-
tor.

3.1.2 Dual attention phase
We observe that, the original sentence contains
many redundant information that does not help to
classify the relation between to entity. Besides,
information about the position of entities in the
sentence also plays an important role in relational
classification problem. However, the presentation
of tokens using sequential modeling with bioBERT
omits this information.

In this phase, we utilized the dependency tree
and a dual attention architecture to capture the most
important token. As illustrated in Figure 2, we
employ two sequential attention layers on the se-
quence of input token, including:

• Multi-head self attention layer: learns the
importance weight for each token using its
information in the relation with two nominals.



• Heuristic dependency attention layer: calcu-
lates the attention score for each token using
the distance information on the dependency
tree.

Multi-head self-attention layer: We apply a
multi-head self-attentive network on each token
where the attention weights are calculated based on
the concatenation of itself with two nominal BERT
vectors v1 and v1, as follow:

X̄1 =
{
x⌢
i v1

}N

i=1
=

{
x̄1i

}N

i=1

e1 =
{
x̄1iW

e + be
}N

i=1
=

{
e1i

}N

i=1

αs
1i = sigmoid(e1i)

(3)

and

X̄2 =
{
x⌢
i v2

}N

i=1
=

{
x̄2i

}N

i=1

e2 =
{
x̄2iW

e + be
}N

i=1
=

{
e2i

}N

i=1

αs
2i = sigmoid(e2i)

(4)

where We ∈ R2D×1 and be ∈ R are weight and
bias term.

Heuristic dependency attention layer: The
works of Can et al. (2019) and Le et al. (2018)
demonstrated the effectiveness of the shortest de-
pendency path on the task of RE. Therefore, we
apply a heuristic attentive layer behind the multi-
head self-attention layer based on the distances
d1, d2, ..., dN to keep track of how close each to-
ken is to the nearest token on the SDP.

We heuristically choose a function to transform
the distances d1, d2, ..., dN into the heuristic atten-
tion weight, as follow:

αh
i = sigmoid(βd2i ) (5)

where f(d) = βd2 is the activation function with
β = −0.03.

The final dual-attentive context vector ci of the
target token is product of token’s original vector
with the calculated attention scores. I.e.,

ci = αs
1i × αs

2i × αh
i × xi (6)

We further re-center and re-scale these con-
text vector using a batch normalization (Ioffe and
Szegedy, 2015) layer to keep model more stable
and to accelerate the training procedure.

3.1.3 CNN layer with Multi-kernel size
The sequence of context vectors is gathered to form
a matrix C = {ci}ni=1. We build a common CNN
text classification model on this C. Generally, we
define the vector ci:i+j as the concatenation of j
tokens, spanning from ci to ci+j−1. I.e.,

ci:i+j = c⌢i ci+1
⌢...⌢ci+j−1 (7)

To extract local features from the context vector
sequence, we perform k convolution operations
with a region size of r on every possible window
of r consecutive tokens to generate a convolved
feature map. Subsequently, a max pooling layer
collects the most significant features from each
feature map. In other words, the convolutional
layer calculates a feature f of the convolved feature
vector using a filter size of r as described below:

f = max
0≤j≤N−r+1

[cj:j+rw
c + bc] (8)

where wc ∈ RD×1 and bc ∈ R are the trainable pa-
rameters of the convolutional layer. With k convo-
lution operations, we could produced a convolved
feature vector with k dimensions. In this work,
to capture more n-grams features, we use various
kernel size from 3 to 5 tokens.

A softmax classifier is then built on the output
f of the convolutional layer to predict a K-class
distribution over labels ŷ:

ŷ = softmax (fWy + by) (9)

where Wy ∈ RD×K and by ∈ RK are parameter
of the network to be learned.

3.2 The Multi-fragment Ensemble Deep
Learning Architecture

3.2.1 The Overall Architecture
The overall of multi-fragment ensemble architec-
ture is illustrated in Figure 3. To take advantage
of the high variance of the baseline deep learning
models, we build an ensemble model over the top
of these base estimators.

Model Data Masking: Firstly, we created a
mask M for each base estimator with a fixed prob-
ability α. This data mask has same size with the
input dataset and is randomly initialized to the val-
ues 0 and 1, with the probability of value 1 being
α. I.e.,

M =

[{
1|rand() ≤ α
0, otherwise

]N
(10)
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Figure 3: The multi-fragment ensemble deep learning architecture. Each colored square node is a example in dataset.
The matrix-shaped figure is for demonstration purpose, the actual data is vector of examples. αi is the probability
of 1 value on data mask for the ith estimator.

⊗
denotes the element-wise matrix multiplication.

⊕
denotes the

element-wise average of two vector. f(θ) is the base estimator with parameters θ.

The mask will stay constant during the training
phase to ensure that a base estimator is only trained
on a part of input data.

Base Estimator on Masked Data Fragments:
During the training phase, we used the 0-1 data
mask to decide which model should contribute to
the final prediction. When a sample is fed, the
models with corresponding mask value of 1 will
be included for prediction. These models will be
updated simultaneously in the deep learning model
through error backpropagation. Otherwise, the
model with this value of 0, will be omitted in the set
of estimator models. Therefore, in the error back-
propagation step, the corresponding model could
not be trained (the parameters of the corresponding
model are not updated).

During the testing phase, the data mask is deac-
tivated that all estimator will be used in the final
prediction.

Aggregation block: For each instance, the pre-
diction from each model is considered as a vote.
There are various methods to combine the results
from the base models using voting mechanisms.
Two straightforward yet effective ensemble meth-
ods are the strict majority vote (Mehryary et al.,
2016) and weighted sum of results (Verga et al.,
2018). The soft-voting strategy uses the probabil-
ities returned by base models then average them
to get the final probabilities for prediction. In our

experiments, the strict majority vote has yielded
better results, so we use this approach along with
a threshold-moving technique to enhance perfor-
mance (Kambhatla, 2006; Collell et al., 2018).

In the experiment, we use different threshold α
from 0.1 to 1.0 to construct data mask for different
bootstrap data size. Each threshold αi, we use ki
base estimators to form total of K = k1 + k2 +
...+ kn predictions, denote as Ŷ:

Ŷ =
{
ŷi

}K

i=1
(11)

We then aggregate the output of these models by
soft- or hard-voting, as follow:

ȳ =
1

K

K∑
i=1

f(ŷi) (12)

with f is identical function for soft-voting whilst
f is round function for the simple majority vote.

3.2.2 Number of base estimators
The number of base estimators is a hyper-parameter
we need to decide for proposed ensemble model.
Typically, this number is chosen heuristically by
increasing the number of based estimators on de-
velopment set until the F1 begins to stop showing
improvement. Based on our hardware limitations,
we heuristically select 100 as the number of base
models to construct the ensemble for the BioCre-
ative V dataset.



3.2.3 The size of bootstrap training data
In some cases, we maintain the original size of
training data, but it’s not a strict requirement. In
our experiments, we allow the size of bootstrap
data run from 10% to 100% of original training
data size, with two approaches: with and with-
out replacement. To conduct the with-replacement
random data sampling experiment, we add an up-
sampling data with replacement before the masking
block of ensemble model.

An interesting observation in the experiment
shows that the best results are achieved at the size
of 70%, not 100%. This observation raises a ques-
tion about choosing the suitable size of bootstrap
training datasets: What size should we choose?
And why don’t we use different sizes to make new
datasets that are more different, then gain diversity?
In this work, we train the base models on different
sizes of bootstrap data, from 50% to 100%.

3.2.4 Model training
In this ensemble architecture, we are less concerned
if the individual model is overfitting of the training
data. For this reason and efficiency, the individual
models may grow deeper to have both high vari-
ance and low bias. Therefore, the early-stopping
technique is no longer used. Base on the experi-
ments, we fix 15 epochs of training on BioCreative
V dataset. We also omit the dropout layer in the
training phase of ensemble model. Other param-
eters are kept the same as when using a single
baseline model.

4 Results and Discussion

Experiments were carried out using two bench-
mark RE corpora: the Chemical-induced Disease
corpus (from BioCreative V shared task, 2015) and
the Drug-Drug Interaction corpus (form Semveval
DDI shared task, 2013). The Chemical-induced
Disease (BC5 CDR) corpus (Li et al., 2016) com-
prises 1, 500 PubMed articles annotated with 3, 116
chemical-induced disease relationships. The Drug-
Drug Interaction (DDI) corpus (Herrero-Zazo et al.,
2013) includes 792 documents from the DrugBank
database and 233 Medline abstracts, annotated with
5, 028 drug-drug interactions. For each dataset,
we utilized official task evaluations based on F1
score, precision (P ), and recall (R), focusing solely
on actual relations at the abstract level. To assess
the MERE model’s effectiveness, we compared
it against the average performance of 100 models

Model Features P R F1
Baseline Baseline 58.72 57.50 58.1
BioCreative
official
results∗

Co-occurrence 16.43 76.45 27.05
Averaged result 47.09 42.61 43.37
Best result 55.67 58.44 57.03

ASM Dependency graph 49.00 67.40 56.80

hybridDNN
Syntactic features 62.15 47.28 53.70

+ Context 62.39 47.47 53.92
+ Position 62.86 47.47 54.09

ME+CNN
Sentence context 59.70 57.50 57.20

+ Cross-sentence 60.90 59.50 60.20
+ Post
processing

55.70 68.10 61.30

BRAN
BRAN 55.60 70.80 62.10

+ Data 64.00 69.20 66.20
+ Ensemble 65.40 71.80 68.40

RbSP

Attentive
augmented SDP

57.68 57.27 57.48

+ Ensemble 58.78 57.20 57.98
+ Post
processing

52.38 72.65 60.78

MERE mf-60/REP 63.54 58.31 60.79

∗Provided by the BioCreative 2015 organizer.
Results are reported in %.

Highest result in each column is highlighted in bold.

Table 1: The comparison of MERE with other
comparative models on BC5 CDR corpus.

Model Features P R F1
2-phase
classification-
Hybrid kernel
SVM

Heterogeneous
set of feature

64.6 65.6 65.1

2-phase
classification-
SVM

Rich features 73.6 70.1 71.8

biLSTM
+ Attention

Position-aware
attention

+ Pre-processing
75.8 70.3 73.0

RbSP
Attentive
augmented SDP

54.0 57.1 55.5

MERE mf-10/REP 61.9 58.7 60.3

Results are reported in % at abstract level.
Highest result in each column is highlighted in bold.

Table 2: The comparison of MERE with other
comparative models on DDI corpus.

trained on data sets equivalent in size to the original
training data. The term ‘Baseline without replace-
ment’ refers to training all models on the same
original dataset, with any performance differences
attributed to model variations such as random seeds
and initializations.

Performance comparison with comparative
models:

We make the comparison between our proposed



models and comparative models on BC5 CDR cor-
pus in Table 1. We evaluate the MERE model by
comparing it with three types of competitors: (i)
Baseline models (a base models, bootstrap data set
were built with or with our replacement), (ii) The
first-ranked result in the original challenges, (iii)
State-of-the-art mode. For BC5 CDR corpus, we
use three competitor results that only worked on
intra-sentence RE: ASM (Approximate Subgraph
Matching on the dependency graph (Panyam et al.,
2018)), hybridDNN (LSTM and SVM (Zhou et al.,
2016)) and RbSP (LSTM with attention mecha-
nism (Can et al., 2019)). Two models capable of
identifying inter-sentence relations are ME+CNN
and BRAN. ME+CNN, which achieved top results
in the BC5 CDR task, combines a CNN for intra-
sentence relation extraction with a maximum en-
tropy model for inter-sentence relations (Gu et al.,
2017). BRAN employs a CNN with multi-layer
attention to work on abstract-level graphs (Verga
et al., 2018). MERE yields very competitive results
when compared to other models that did not take
into account the inter-sentence relationships (Zhou
et al., 2016; Panyam et al., 2018; Gu et al., 2017;
Can et al., 2019).

To provide a more comprehensive comparison
and analyze the impact of the multi-fragment en-
semble model on imbalanced data, we tested the
model on the DDI corpus. In DDI corpus, the
negatives take up 85.3%. The remaining 14.7%
consisted of four different relation labels with 5%,
21%, 31% and 40% of positive data, equivalent
to 0.74%, 3.09%, 4.56% and 5.88% of the total
data. Comparative models include Chowdhury and
Lavelli (2013), which employs a two-phase clas-
sification approach using a hybrid kernel SVM,
where one classifier detects positive instances and
another classifies them. Similarly, Raihani and
Laachfoubi (2017) used a comparable SVM-based
architecture. Zhou et al. (2018) combined binary
and multi-class softmax functions with an RbSP
model LSTM featuring an attention mechanism
(Can et al., 2019). The experimental results and
comparisons are presented in Table 2. We there-
fore conducted a grid search tuning and got the
best results with 10%− 50% of negative data with
MERRE models (called mf-10/REP configuration).
The results are far below the comparative models.
However, this result proves that the multi-fragment
ensemble model has a better effect on unbalanced
data. Compared to the baseline model, MERE
helps to increase P by 7.9%, R by 1.6% and F1

by 4.8%. These improvements are significantly
greater than the increases observed with the MERE
model on the BC5 CDR corpus.

The MERE model with mf-60/REP mechanism
takes 587, 209 seconds to train 100 RbSP base mod-
els (20 epochs per model) and 792 seconds to gen-
erate their outputs as well as vote for final output.

Multi-fragment analysis:
We also performed multiple experiments on the

BC5 CRD corpus to thoroughly evaluate the multi-
fragment mechanism, analyze the impact of boot-
strap training data size, and compare the effects
of using replacement versus non-replacement ap-
proaches for selecting training data. Table 3 and
Figure 4 show the detailed experimental results
on BC5 CDR corpus. The interesting observa-
tion is, using fewer data may bring better ensem-
ble results. Using the traditional bagging ensem-
ble mechanism, the best F1 archived at 70% data
for replacement ensemble model (58.76%), and
50% data for the without-replacement ensemble
(58.28%). Comparing to the size of 100% data, the
result of the replacement ensemble model increases
0.66%, while the with out replacement ensemble
model increases 0.55%. The MERE mechanism
demonstrates its effectiveness, helps to boost the
F1 of replacement ensemble model for 2.69% and
without-replacement ensemble model for 0.97%.

0.56

0.57

0.58

0.59

0.6

0.61

10 20 30 40 50 60 70 80 90 100

mf-REP mf-w/o REP REP w/o REP
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MERE – with replication                                  MERE – without replication
Traditional bagging mechanism – with replication
Traditional bagging mechanism – without replication

Figure 4: The changes of multi-fragment ensemble
model’s results with different sizes of training data.

Threshold-moving analysis:
Our model on the BC5 CDR corpus is a binary

classifier with only one relation chemical-disease,
and the other is negative. The threshold of the hard-



With replacement∗ W/o replacement∗

P R F1 P R F1
Baseline 58.72% 57.50% 58.10% 57.68% 57.77% 57.73%

Traditional bagging mechanism.
Using different size
of bootstrap data†

10 57.38% 55.42% 56.39% 58.28% 54.30% 56.22%
20 58.84% 56.17% 57.47% 59.30% 56.17% 57.69%
30 58.33% 56.92% 57.62% 58.69% 56.73% 57.70%
40 58.89% 56.55% 57.69% 58.29% 57.49% 57.89%
50 58.63% 57.77% 58.20% 59.00% 57.58% 58.28%
60 59.27% 57.30% 58.27% 58.80% 57.11% 57.94%
70 59.68% 57.86% 58.76% 58.75% 57.39% 58.06%
80 59.51% 57.58% 58.53% 58.85% 57.49% 58.16%
90 59.81% 57.49% 58.62% 59.21% 57.02% 58.09%
100 59.25% 56.45% 57.82% 58.78% 57.20% 57.98%

MERE -
Multi fragment bootstrap‡

mf-50 62.87% 57.86% 60.26% 60.56% 56.64% 58.54%
mf-60 63.54% 58.26% 60.79% 60.49% 57.02% 58.70%
mf-70 63.40% 58.31% 60.75% 60.36% 56.45% 58.34%
mf-80 61.73% 57.96% 59.79% 59.76% 56.83% 58.26%
mf-90 61.74% 57.29% 59.43% 59.68% 56.64% 58.12%

The highest results in each column are highlighted in bold.
The highest F1 of traditional bagging mechanism are highlighted in underline.

∗Bootstrap data sets were built with or without replacement.
†The size of bootstrap data compared to the original size of training data, run from 10% to 100%.

‡Multi-fragment bootstrap ‘mf-n’ means using several bootstrap sizes, run from n% to 100%

Table 3: MERE detailed results on BC5 CDR corpus.

voting mechanism for the ensemble model can
be used in a flexible mode to improve the results
(Kambhatla, 2006; Collell et al., 2018). Choosing
a threshold at k% means that we assign an instance
as positive if and only if at least k models agree
to give this instance a positive label. Moving from
10% to 100%, a high threshold helps to increase P ,
but a small threshold increases the R. This thresh-
old can be adjusted according to the characteristics
of the data; for example, in cases of imbalanced
data with a minority of positive classes, a lower
threshold can be set to prioritize the positive class.
In these experiments, we move the threshold and
explore the changes of P , R and F1 as in Figure 5.
The best F1 is archived at threshold 40%, a slight
increase compared to the traditional majority vote
(50%). Applied post-processing rules, we reach
53.57% for P , 74.84% for R and 62.44% for F1.
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32.00%

37.00%

42.00%

47.00%

52.00%

57.00%

62.00%

67.00%

72.00%

77.00%

10 20 30 40 50 60 70 80 90 100

Precision Recall F1

Figure 5: The changes F1 with different vote threshold
on BC5 CDR corpus.

5 Conclusion

In this paper, we introduce MERE — the Multi-
fragment Ensemble model — designed to address
the overfitting challenges commonly associated
with deep learning models while leveraging the
benefits of ensemble mechanisms. MERE builds
upon a novel base learning model that incorporates
advanced deep learning techniques. Additionally,
we enhance the model’s variance and bias by exper-
imenting with different data sizes, thereby validat-
ing the effectiveness of our multi-fragment ensem-
ble approach. We assessed our model using two
benchmark datasets: the chemical-induced Disease
(BC5 CDR) corpus and the Drug-Drug Interactions
(DDI) corpus, and compared its performance with
leading state-of-the-art models. Additional exper-
iments were conducted to evaluate the effective-
ness of the model’s main components. The results
demonstrated both the advantages and robustness
of our model. However, MERE only identifies rela-
tions within a single sentence, which explains the
lower recall compared to systems that handle cross-
sentence relations. We will address this limitation
in future work.
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