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Abstract

Significant advancements have been achieved
in sentiment analysis; however, aspect-based
sentiment analysis (ABSA) remains underex-
plored in the Vietnamese language despite its
vast potential across various natural language
processing applications, including 1) monitor-
ing sentiment related to products, movies, and
other entities; and 2) enhancing customer re-
lationship management models. A huge num-
ber of reviews are generated on e-commerce
platforms, and analyzing them in depth brings
a lot of helpful information to users. This
paper presents the first standard Vietnamese
dataset for the clothing reviews domain. Specif-
ically, we create a new Vietnamese dataset, Vi-
CloABSA, as a new benchmark based on a
strict annotation scheme for evaluating aspect-
based sentiment analysis. The proposed dataset
comprises 7,000 human-annotated comments
with five aspect categories and three polarity
labels for clothes collected from e-commerce
platforms. The dataset is freely available for
research purposes 1. We experiment with this
dataset using strong baselines and report er-
ror analysis. The evaluation results show that a
model based on large language models is supe-
rior to other existing works.

1 Introduction

Aspect-based sentiment analysis is challenging in
natural language processing (NLP) due to its need
for fine-grained sentiment classification, accurate
aspect extraction, and contextual understanding.
The complexity of the task is heightened by fac-
tors such as sparse data, interdependencies among
aspects, and the dynamic nature of language (Liu,
2020). With the boom of e-commerce, customers
generate a large number of user feedback reviews
on these platforms every day. These reviews are

*The corresponding author is Pham Ngoc-Hung.
1https://github.com/quochungvnu24/ViCloABSA

effective for customers, manufacturers, and service
providers.

People are very interested in costumes, so e-
commerce platforms sell many of these products.
When buying a set of clothes, customers often find
out information about some aspects of the product,
such as material, design, price, and more. Thanks
to this, it is possible to conduct some analysis to
understand customers’ attitudes towards clothes
deeply. This rationale underpins our decision to
select clothing reviews for constructing a dataset
that addresses the Aspect-Based Sentiment Anal-
ysis challenge within the context of e-commerce
reviews.

While the ABSA task has shown encouraging re-
sults in English across various numerical datasets,
much research hasn’t been done on it in Viet-
namese, especially for clothing products. This pa-
per fills the gap by investigating the capability of
five advanced methods for ABSA in Vietnamese
with a new dataset for clothing. In summary, this
paper presents two main contributions.

• It introduces a Vietnamese dataset focusing on
clothing reviews from e-commerce platforms,
specifically designed for the ABSA tasks.

• It conducts a comprehensive evaluation of ro-
bust baseline models tailored to ABSA tasks.

2 Related Work

ABSA datasets have significantly contributed to
the progression of sentiment analysis research, par-
ticularly in the context of product reviews. Vari-
ous datasets have driven recent advancements in
ABSA. Notable datasets include the SemEval-2014
Restaurant and Laptop datasets (Pontiki et al.,
2014), which were early benchmarks for ABSA
tasks, covering restaurant and laptop product re-
views. The SentiHood dataset (Saeidi et al., 2016)
extended ABSA to location-based sentiment analy-
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sis in a real-world context. The MultiAspect Multi-
Sentiment (MAMS) dataset was presented by Jiang
et al. (2019), in which each sentence contains mul-
tiple aspects with different sentiment polarities.
Expanding ABSA to non-English contexts, the Chi-
nese Review Datasets (ASAP) by Bu et al. (2021)
provided a crucial resource for Chinese product
reviews. Most recently, Xu et al. (2023) presented a
Diversified Multi-domain Dataset For Aspect Sen-
timent Triplet Extraction (DMASTE), manually
annotated to better fit real-world scenarios by pro-
viding more diverse and realistic reviews.

In Vietnamese, several datasets for sentiment
analysis across various domains are available. For
instance, Tran and colleagues from VNUHCM -
University of Information Technology (Tran et al.,
2022) introduced a Vietnamese dataset specifi-
cally tailored for assessing lipstick products within
the context of ABSA. Luc Phan et al. (2021)
presented the UIT-ViSFD dataset, a Vietnamese
Smartphone Feedback Dataset comprising 11,122
human-annotated comments related to mobile e-
commerce. Furthermore, Nguyen et al. (2018)
made public the SA-VLSP2018 dataset, designed
for ABSA tasks focusing on the restaurant and hotel
domains. Additionally, Nguyen and collaborators
(Van Nguyen et al., 2018) released the UITVSFC
dataset, which is centered on student feedback anal-
ysis. These datasets have facilitated extensive re-
search and model development in ABSA tasks.
However, to the best of our knowledge, there has
been no Vietnamese dataset on clothing reviews for
the ABSA task yet. It motivates the creation of a
new dataset, ViCloABSA, for this problem.

3 Dataset

We have built a comprehensive Vietnamese dataset
comprising customer reviews related to clothing
products tailored specifically for the ABSA task.
This dataset contains a collection of 7,000 reviews
acquired from Shopee2 and Lazada3, which are two
popular e-commerce platforms in Vietnam.

It encompasses two sub-tasks: aspect detection
and sentiment classification. In the aspect detection
sub-task, our focus is directed toward identifying
and categorizing aspects discussed within the feed-
back reviews. These aspects encompass five cate-
gories: MATERIAL, DESIGN, PRICE, SERVICE,
and GENERAL, each meticulously defined as pre-

2https://shopee.vn/
3https://www.lazada.vn/

sented in Table 1. These aspects are selected based
on their popularity and importance in clothing re-
views, facilitating a more comprehensive analy-
sis and providing detailed, helpful information for
businesses and customers. Additionally, the dataset
also entails the second sub-task of classifying the
sentiment polarity of these aspects as either posi-
tive, negative, or neutral.

3.1 Data Collection Process
The data collection process was systematically exe-
cuted through the acquisition of Vietnamese prod-
uct reviews pertaining to T-shirts from two promi-
nent e-commerce platforms, Shopee and Lazada,
which enable customers to write fine-grained re-
views regarding the T-shirts they have purchased
or utilized.

To collect review data, we utilized a combination
of web scraping tools and APIs. Our data collec-
tion process is conducted on the basis of respecting
customer privacy and complying with data owner-
ship regulations. Specifically, we collected product
reviews and ensured that all personal information
remained anonymous. In the reviews, users give
positive, neutral, or negative opinions on many
aspects, such as MATERIAL, DESIGN, PRICE,
SERVICE, and GENERAL.

3.2 Data Annotation Process
Following the completion of data collection, the
subsequent phase involved the meticulous anno-
tation of the acquired dataset utilizing the Label-
Studio tool. Two stages made up the data annotation
process: Phase 1 concentrated on combining guide-
lines, while Phase 2 observed annotators utilizing
the established guideline to annotate the remain-
ing samples, ensuring a systematic and consistent
approach throughout the entire annotation process.

In the initial phase, a stratified random sampling
method selected 200 reviews, which were divided
into two segments for systematic annotation. The
goal was to identify aspects within the reviews and
assess the associated sentiment. In the annotation
phase, two annotators participated, and their label-
ing outputs were compared using Cohen’s Kappa
coefficient to measure agreement scores. This pro-
cess was repeated to optimize the Kappa score and
create a comprehensive annotation guideline. Af-
ter achieving high inter-annotator agreement and
establishing a clear annotation guideline, the re-
maining reviews were divided into two segments
for annotation.



Aspect Mean
MATERIAL Evaluations of the product’s materials and fabrics.
DESIGN The review refers to the style and design of the clothing, e.g.,

color, shape, feeling of wearing, etc.
PRICE The review discusses clothing prices and affordability.
SERVICE The comment mentions sales service, warranty, and delivery.
GENERAL The review of customers is generally about the product.

Table 1: Aspect definition.

3.3 Statics

The dataset comprises 7,000 reviews, encompass-
ing evaluations across five distinct sentiment as-
pects. Table 2 presents some samples from our
dataset along with their respective aspects and sen-
timent classifications.

Figure 1 depicts the distribution of each aspect
and sentiment within the dataset. Across all as-
pects, Positive sentiment predominates. Further-
more, over 4,500 reviews are focused on the MA-
TERIAL aspect, comprising more than 60% of all
reviews. This highlights the considerable impor-
tance customers place on this aspect when making
clothing purchases.

The dataset has been thoughtfully partitioned
into three distinct sets: 5,000 reviews designated
for training, 1,000 reviews for development, and
another 1,000 reviews intended for testing. Table 3
presents an overview of the statistics for our dataset.

4 Aspect-based Sentiment Analysis
models

The problem is defined as follows, given a re-
view R = {S1, S2, ..., Sn} with n sentences. The
goal is to extract sets of aspects and their cor-
responding sentiment polarity pairs: [Ai, SPi] =
LM(R). LM denotes the Language Model.
The aspect-sentiment polarity pair [Ai, SPi] =
{(aki , spki ); aki ∈ Ai, sp

k
i ∈ SPi}, A =

{a1, a2, ..., am} is the set of aspects, and SP =
{sp1, sp2, ..., spm} is the set of sentiment polarity,
with spi ∈ [positive, negative, neutral].

Various methods address the ABSA problem,
including rule-based methods (Poria et al., 2014),
semantic similarities (Liu et al., 2016), SVM-based
algorithms (Jihan et al., 2017), and conditional
random fields (CRF) (Shu et al., 2017). Recently,
deep neural networks with long short-term memory
(LSTM) layers have excelled in extracting senti-
ment information from word embeddings (Zhang
et al., 2018). However, pre-trained language models

significantly outperform these methods (Do et al.,
2019; Scaria et al., 2023).

Recognizing the potential of language models
and the limitations of deep learning models like
LSTM, BiLSTM, and GRU for Vietnamese ABSA
(Thanh et al., 2021; Mai and Le, 2018), we applied
state-of-the-art models using pre-trained language
models to our dataset. To ensure compatibility with
Vietnamese, we used ViT5, a model pre-trained on
Vietnamese (Phan et al., 2022).

4.1 InstructABSA

From the success of instruction learning (Mishra
et al., 2022; Wei et al., 2022), there has been a
substantial improvement in the reasoning capa-
bilities of large language models, showcasing im-
pressive results across a variety of tasks. Based
on the research by Scaria et al. (2023) we intro-
duce two instruction prompts tailored to the ABSA
task. We employ two prompts to facilitate perfor-
mance comparison, where prompt 1 is translated
into Vietnamese from the prompt used by Scaria
et al. (2023). Meanwhile, prompt 2 is our proposed
prompt. Our approach involves defining these in-
struction prompts in a manner inspired by the struc-
ture depicted in Table 4.

For instruction prompt 1, in addition to the
definition, it requires corresponding examples for
each sentiment: Positive Example, Neutral Exam-
ple, and Negative Example. Recognizing that this
prompt is relatively lengthy and may increase train-
ing time, we proposed prompt 2, which only re-
quests one example that can encompass multiple
sentiments. Experimental results indicate that our
prompt is higher than the one used by Scaria et al.
(2023). The language model LM is refined through
instruction tuning using data equipped with in-
structions, resulting in the instruction-tuned model
LMInst. Subsequently, LMInst undergoes further
fine-tuning for downstream tasks related to ABSA.
The task is formulated as follows: [Ai, SPi] =



Review Aspect & Polarity
Giao hàng nhanh. Nhận được áo đẹp hơn cả mong đợi! Vải áo và
đường may rất đẹp, đóng gói rất xịn xò, đánh giá 5 sao. Lần sau sẽ
mua ủng hộ shop tiếp ạ.
(Fast delivery. Received a shirt even more beautiful than expected!
The fabric and stitching are excellent, and the packaging is very
fancy. rated 5 stars. Will support the shop again in the future.)

SERVICE:positive
GENERAL:positive
MATERIAL:positive
DESIGN:positive

Hàng giao hơi lâu, chất đẹp so với giá tiền rất đáng nhưng màu
xanh pastel ở ngoài đậm hơn nhiều so với hình ảnh nên hơi thất
vọng một chút.
(The delivery took a bit long, the quality is quite good for the price,
but the pastel green color is much darker in person compared to
the photo, so I’m a bit disappointed.)

SERVICE:negative
MATERIAL:positive
PRICE:positive
DESIGN:negative

Table 2: Some samples from the ViCloABSA dataset.

MATERIAL DESIGN PRICE SERVICE GENERAL

neutral 449 304 307 60 219

negative 976 859 48 314 357

positive 3135 1675 1555 2646 3273
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Figure 1: Distribution of Aspects and Sentiments in the ViCloABSA dataset.

LMInst(Inst,R).

4.2 MVP

Gou et al. (2023) noted that previous studies of-
ten ordered sentiment elements left-to-right, ignor-
ing contrast and language diversity in emotional
expression, leading to errors and instability. To
address this, they proposed Multi-view Prompt-
ing (MVP), which synthesizes predicted emotional
factors in various orders. MVP, inspired by prompt
chaining (Liu et al., 2021; Wei et al., 2022), lever-
ages different perspectives in human reasoning to
control the sequence of emotional elements, en-
hancing diversity in target expressions.

4.3 GAS

Building on recent successes in framing language
tasks as content generation tasks (Raffel et al.,
2020; Athiwaratkun et al., 2020; Zhang et al.,
2021), we propose addressing ABSA issues with a
model that encodes natural language labels into the

output. This unified model adapts to multiple tasks
without needing task-specific designs.

To facilitate Generative Aspect-based Sentiment
Analysis (GAS), we have devised two customized
approaches: GAS-Annotaion and GAS-Extraction
modeling. These paradigms reframe the original
task as a generation problem. In the former, annota-
tions with label information are added to construct
the target sentence. In the latter, the desired natural
language label is used directly as the target. The
original and target sentences are paired for model
training. Additionally, a prediction normalization
strategy addresses deviations of generated senti-
ment elements from the label vocabulary set.

5 Results and discussion

The experimental results on the ViCloABSA
dataset for aspect-based sentiment analysis have
provided significant insights into the performance
of the evaluated methods. Table 5 illustrates the
variation of three key metrics: Precision (P), Recall



Set Review Positive Negative Neutral Total sentiment
Train 5000 8764 1823 954 11541
Test 1000 1721 405 198 2324
Dev 1000 1799 326 187 2312

Table 3: Statistics of our dataset.
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Definition

Kết quả đầu ra sẽ bao gồm các khía cạnh và cảm xúc của các khía cạnh.
Trong trường hợp không có bất kỳ khía cạnh nào, kết quả đầu ra sẽ là
"noaspectterm:none".
(The output results will include both aspects and the corresponding emotions
for those aspects. In cases where there are no aspects identified, the output
result will be "noaspectterm:none.")

Example

Input: giao hàng nhanh. nhận đc áo đẹp hơn cả mong đợi! vải áo và đường
may rất đẹp đóng gói rất xịn xò, đánh giá 5 sao lần sau sẽ mua ủng hộ shop
tiếp ạ.
Output: giao hàng nhanh:positive [SEP] đường may rất đẹp:positive
(Input: Fast delivery. The shirt received is more beautiful than expected! The
fabric and stitching are excellent, and the packaging is very fancy. I rated it
five stars. I will support the shop again in the future.)

In
st
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ct
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n

2 Definition
Hãy trích xuất ra các khía cạnh và phân loại cảm xúc của các khía cạnh đó.
(Extracting aspects and classifying the corresponding emotions associated
with those aspects.)

Example

Input: mua size M nhưng cảm thấy hơi bé một xíu, vải mát, đóng gói kĩ, đẹp.
Output: vải mát:positive [SEP] hơi bé một xíu:negative [SEP] đóng gói kĩ,
đẹp:positive
(Input: bought size M but felt a bit small, cool fabric, carefully packaged,
beautiful.)

Table 4: Instruction prompts.

(R), and F1-score (F) for each evaluation method
when using different percentages of the dataset.
MVP consistently demonstrates adaptability across
different percentages of the dataset, showcasing its
robustness in handling varying amounts of training
data. For instance, at 5%, MVP achieves a Precision
of 34.17, Recall of 31.88, and F1-score of 32.99,
while at 100%, these metrics improve to 54.90,
55.94, and 52.61, respectively.

Method Metrics
P R F1

MVP 54.90 55.94 52.61
InstructABSA1 74.00 72.12 73.11
InstructABSA2 74.11 72.68 73.39

GAS-Annotation 53.74 51.94 52.83
GAS-Extraction 45.30 44.13 44.71

Table 5: Performance analysis of evaluated methods on
ViCloABSA Dataset.

InstructABSA1 and InstructABSA2, two meth-

ods utilizing guidance during training, exhibit high
performance even with small percentages of the
dataset. InstructABSA2 appears more effective,
with a substantial increase at higher percentages. At
5%, its Precision, Recall, and F1-score are 59.79,
58.08, and 58.92, respectively, and these values
increase to 74.11, 72.68, and 73.39 at 100%.

GAS-Annotation stands out for its Precision,
which progressively improves with a larger dataset.
However, a corresponding reduction in Recall at
higher percentages suggests a potential bias or se-
lectiveness in attention. For example, at 5%, GAS-
Annotation achieves a Precision of 9.28 and Recall
of 8.52, while at 100%, these metrics change to
53.74 and 51.94, respectively.

GAS-Extraction, while displaying strong Pre-
cision, experiences a substantial decline in Re-
call, emphasizing the delicate balance between
these metrics and shedding light on the impact of
the chosen extraction methodology. At 5%, GAS-
Extraction’s Precision, Recall, and F1-score are



38.80, 36.66, and 37.70, and at 100%, these metrics
decrease to 45.30, 44.13, and 44.71, respectively.

The performance of these methods with various
data segmentations is shown in Figure 2. The trend
shows two important points. First, all strong models
exhibit an increasing trend in F1-scores as the num-
ber of samples in the dataset increases. It indicates
that the models can learn and predict more accu-
rately with more data. Second, both InstructABSA1
and InstructABSA2 exhibit high F1-scores, demon-
strating robust performance, particularly at higher
percentages of data.

6 Conclusion

In the context of advancing research in aspect-
based sentiment analysis, this paper introduces Vi-
CloABSA, a meticulously curated dataset designed
to propel the field forward. Comprising a sub-
stantial collection of over 7,000 human-annotated
comments sourced from the domain of clothes e-
commerce, ViCloABSA offers a nuanced perspec-
tive on sentiment expressions. Each feedback entry
undergoes detailed manual annotation, precisely
identifying spans relevant to five fine-grained as-
pect categories, accompanied by their associated
sentiment polarities. This study contributes in two
major ways. First, the study introduces a specialized
Vietnamese dataset centered on clothing reviews
from e-commerce platforms, specifically crafted
for ABSA tasks. Second, a comprehensive assess-
ment of robust baseline models customized for
ABSA tasks is carried out by the research.

We believe that our published dataset will be
a valuable resource for future research, promot-
ing further exploration in the field of e-commerce
customer feedback analysis. The significant effort
invested in ViCloABSA’s creation aims to not only
provide a comprehensive dataset but also to serve
as a catalyst for the development of cutting-edge
NLP models.
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