Assessing the Performance of an Incremental Natural Language
Understanding Model for Noisy Slot Filling

Hannah Regine Fong and Ethel Ong
College of Computer Studies
De La Salle University
Manila, 1004 Philippines
hannah_regine_fong@dlsu.edu.ph, ethel.ong@dlsu.edu.ph

Abstract

Natural language understanding (NLU) sys-
tems should mirror the incremental nature of
human language processing for a more respon-
sive interaction with users. A recurrent neural
network is an ideal option for an incremen-
tal NLU system but its performance lags be-
hind bidirectional models and transformers that
are not limited to context in a single direction.
These models can be applied to an incremen-
tal NLU task through a restart-incremental in-
terface where increasing input prefixes are re-
peatedly passed to the non-incremental models.
However, the approach is computationally ex-
pensive especially for long input sequences. An
alternative is to employ a two-pass model with
adaptive revision to avoid unnecessary expen-
sive recomputations. We present our evaluation
of the performance of a two-pass incremental
NLU model in perturbed scenarios. Results
showed that performance degradation occurs
when dealing with noisy data. Specifically, fine-
grained noises on the character-level (e.g., ty-
pos) and word-level (e.g., speech errors) cause
more performance losses compared to coarse-
grained noises on the sentence-level (e.g., ver-
bosity, simplification, paraphrasing). This un-
derscores the need for the incorporation of ro-
bust noise-handling mechanisms in incremental
NLU systems.

1 Introduction

Language processing is inherently incremental. Hu-
mans produce words one at a time, in both speaking
and writing, even without having a fully formed
thought in mind. Similarly, they are capable of un-
derstanding the meaning of incomplete utterances.
Developing incremental natural language under-
standing (NLU) systems is thus important to mirror
the incremental nature of language. This can lead
to dialogue and interactive systems with lower la-
tency and faster response time by letting the NLU
models process partial utterances from the users.

A recurrent neural network (RNN) is the most
ideal neural network architecture for the incremen-
tal NLU task because it processes text sequentially,
one word at a time (Kahardipraja et al., 2023).
It also maintains a recurrent state that stores in-
formation from previous time steps which can be
used as context to guide the processing of the cur-
rent input. However, RNN is outperformed by
models that leverage bidirectional context such as
bidirectional long short-term memory (BiLSTM).
The transformer architecture introduced in 2017
uses self-attention mechanisms to capture all rela-
tions between tokens simultaneously, and has since
achieved SOTA performance in various NLP tasks.

Bidirectional models and transformers are not
designed for sequential processing that is needed
in incremental NLU systems. To address this,
Madureira and Schlangen (2020) deployed a restart-
incremental interface where partial prefixes of an
utterance are repeatedly fed into these unchanged
models. This approach, however, is very computa-
tionally expensive due to the recomputations made
in every time step. Kahardipraja et al. (2021) ex-
perimented with a linear transformer with recurrent
computation and found that this achieves better
incremental performance at the expense of lower
non-incremental performance, which can be miti-
gated using a delay strategy.

Another key feature that must be present in in-
cremental NLU systems is the ability to revise
their previous outputs due to the inherent ambiguity
of partial utterances. Restart-incremental systems
meet this requirement by recomputing the entire
output in every step, which is highly inefficient.
Kahardipraja et al. (2023) introduces an adaptive
revision policy that only performs recomputations
when necessary based on the history of inputs and
outputs. Their proposed model, TAPIR, achieved
comparable non-incremental performance with a
restart-incremental transformer and a better incre-
mental performance and inference speed. However,

TAPIR was only evaluated on clean data, which
is not realistic in real dialogue systems that are
susceptible to various types of noise including ty-
pos, speech errors, verbosity, simplification, and
paraphrasing (Dong et al., 2023).

In this paper, we present our experiments in eval-
uating the impact of different types of input per-
turbations to the performance and robustness of
TAPIR and assessing its effectiveness in real-world
scenarios. The dataset from Dong et al. (2023) is
utilized for this purpose.

2 Related Works

We briefly present prior approaches to incremental
NLU and their performance in perturbed scenarios.

2.1 Incremental NLU

An RNN is the most straightforward neural network
architecture to use for incremental NLU due to
its ability to process sequences per word and to
produce an output at each time step. Liu and Lane
(2016) utilized a conditional RNN for incremental
joint intent detection (ID), slot filling (SF), and
language modeling (LM). Their results indicate that
jointly modeling the intent and slot label history as
new input words arrive leads to better ID and LM
performance with minor degradation in SE.

Despite its strong sequence modeling ability,
an RNN is still unable to achieve a strong non-
incremental performance due to its strict left-
to-right processing (Kahardipraja et al., 2023).
Madureira and Schlangen (2020) adapted the
BiRNNs, BiLSTMs, and the transformer archi-
tectures for incrementality by using a restart-
incremental interface, where increasing input pre-
fixes are repeatedly fed into an unchanged non-
incremental model. Results showed that the
transformer-based model achieved the best non-
incremental performance in various sequence tag-
ging and sentence classification tasks. However, it
demonstrated worse incremental performance com-
pared to the bidirectional models in terms of edit
overhead (EO), correction time (CT), and relative
correctness (RC), especially in sequence tagging
tasks. This degradation in incremental performance
can be mitigated through strategies such as trun-
cated training, delayed output, and prophecies.

A restart-incremental transformer is computa-
tionally expensive especially when dealing with
long sequences. Instead of processing a sequence
of n tokens once, the restart-incremental approach

requires processing n sequences, each with > 7 k
tokens. To reduce the computational cost, Ka-
hardipraja et al. (2021) applied the linear trans-
former model introduced by Katharopoulos et al.
(2020), which replaces the traditional softmax at-
tention with a feature map-based dot product atten-
tion, achieving an improved time and memory com-
plexity. Results showed that the linear transformer
using recurrent computation performed worse com-
pared to the restart-incremental transformer and
linear transformer models across all the sequence
tagging and classification tasks investigated in the
paper. This may be attributed to the strict left-to-
right processing and sub-optimal approximation of
the softmax attention. However, it is significantly
more efficient by not performing recomputations at
each time step. The performance of the recurrent
linear transformer can be improved through the
combination of training with causal masking, input
prefixes, and delay. This variation also achieves the
best incremental performance.

Kahardipraja et al. (2023) combined the advan-
tages of RNNs and transformers for incremental
NLU by developing the Two-pass model for Adap-
tive Revision (TAPIR). TAPIR uses an RNN as the
incremental processor (i.e., first pass) and a trans-
former as the reviser (i.e., second pass). Revisions
are necessary in incremental NLU due to the inher-
ent ambiguity in partial utterances or the model’s
poor approximation. TAPIR uses an adaptive pol-
icy which avoids making unnecessary revisions. It
performs policy learning as a supervised problem
through the incorporation of supervision signals,
in the form of action sequences, into the training
process. The action sequences consist of WRITE
or REVISE actions that indicate whether the par-
tial outputs at a particular time step must be edited
or not. These are generated using a linear trans-
former, which combines the recurrence mechanism
of RNNs and the backward update ability of trans-
formers. Results showed that TAPIR achieved com-
parable non-incremental performance with better
incremental performance compared to the baseline
restart-incremental transformer.

2.2 Noisy NLU

Real dialogue systems encounter a lot of input per-
turbations and errors such as typos, ASR speech
errors, simplification, verbosity, and paraphrasing
(Dong et al., 2023). Constantin et al. (2019) main-
tained that partial utterances in incremental systems
are noisier due to the short available context. How-

ever, most existing state-of-the-art NLU models
are usually trained on perturbation-free datasets,
which leads to poor performance in real scenarios.
Liu and Lane (2016) evaluated their incremental
joint ID and SF model, trained on clean data, using
noisy ASR speech input. They obtained a worse
performance on the noisy data with a higher intent
error by 2.87 and a lower slot F1-score by 7.77%.
Constantin et al. (2019) incorporated human, ASR,
and artificial noises into the training data. The arti-
ficial noises were generated using random substitu-
tion, insertion, and deletion of words in the original
clean utterances. Results showed that the model
trained on noisy data achieved a better performance
than those trained on clean data.

3 Task Description

We provide a formal definition of the slot filling
task and describe the DemoNSF dataset used in
the experiment. Additionally, the architecture of
the TAPIR model by Kahardipraja et al. (2023) is
outlined, which serves as the reference incremental
model used in the study.

3.1 Slot Filling Task

Slot filling is a sequence tagging task that assigns
a semantic label to every token in a given utter-
ance. Given an input word sequence with N tokens
x = (x1,...,xN), SF tags each token with a slot
label y = (y1, ..., yn) from a predefined list of slot
labels. In this paper, we follow the IOB tagging
format where the “B” prefix indicates the begin-
ning or first token of a slot, “I” indicates a token
inside or at the end of a slot, and “O” indicates a
word that does not belong to the predefined list of
slot labels in the dataset. Table 1 shows a sample
slot annotation where “stansted airport” is tagged
as a “depart” slot, denoting the place of departure,
and “11:45” is tagged as a “leave” slot, denoting
the time of leaving. The other tokens are labeled as
“0O”, indicating that they do not belong to any slot.

3.2 Dataset

We adopted the dataset from Dong et al. (2023)
and refer to it as DemoNSF, after the multi-task
demonstration-based generative framework they
proposed for noisy slot filling. DemoNSF is a noise-
robustness evaluation dataset that classifies noises
into sentence-level (verbosity, paraphrasing, sim-
plification), character-level (typos), and word-level
(speech). An example of a clean utterance and its
perturbed versions is presented in Table 2.

3.3 Two-pass Model for Adaptive Revision
(TAPIR)

The TAPIR architecture, depicted in Figure 1, has
four (4) components: incremental processor, re-
viser, memory, and controller. The incremental pro-
cessor (i.e., first-pass model) is a recurrent LSTM
network that outputs a slot label for each new input
token per time step. The reviser (i.e., second-pass
model) is a transformer that is used to recompute
the slot labels of the entire partial input at a spe-
cific time step. The memory stores the history of
inputs and outputs in caches for fast access. The
controller is a modified LSTMN that parametrizes
the revision policy which models the effect of the
new input token on past outputs.

1st Pass 2nd Pass (optional)

Qutput Buffer 3 A A

WRITE ri\‘ oREVISE

Controller ()
I 4CJ
T \—{'Memory‘}‘».
e hy

Transformer
Reviser

=

\' Input Buffer N } ,,,,,,,

Figure 1: TAPIR Architecture Diagram

When a new input token x; is fed into the in-
cremental processor, it produces an output label y;.
Then, the controller takes x;, the hidden state of
the incremental processor h;, and the input-output
representation in the memory I'? to compute action
a; using the revision policy. The action to be se-
lected also depends on the threshold 7 such that
the REVISE action is chosen if the policy value is
greater than or equal to 7. Otherwise, the WRITE
action is chosen. If a REVISE action is selected,
the input buffer containing the partial input thus
far will be passed to the reviser to recompute the
output labels ¥y, ..., ¥;_1, ¥;. Simultaneously, the
projected output vector z and input-output repre-
sentation ¢ in the caches will also be recomputed.
Otherwise, if the WRITE action is selected, y; is
added to the output buffer. The caches I'#, I'P, and
I'" are updated for the current time step, and the
algorithm proceeds to process the next token.

TAPIR is trained in a two-step process where
the reviser is first trained independently using cross
entropy loss. Subsequently, the incremental proces-
sor and the controller are trained together with a

Table 1: Sample Utterance from the DemoNSF Dataset with Slot Annotation in IOB Format

Utterance i would like to leave

from

stansted airport after 11:45

Slot Label O O O O O

B-depart I-depart O B-leave O

Table 2: 5 Types of Noise in the DemoNSF Dataset

Noise Type Utterance

Clean i would like to leave from
stansted airport after 11:45 .

Verbose looking to leave from stansted air-
port after quarter of twelve be-
cause i have a presentation at
work that morning

Paraphrase departing from stansted airport
after 11:45

Simplification stansted airport after 11:45

Typos leave stansted air aftr 11:45

Speech so i would like to leave from

stanstead airport after eleven
forty five

combined loss. The controller requires the train-
ing set to have supervision signals in the form of
WRITE/REVISE action sequences for policy learn-
ing. The action sequences are generated using a lin-
ear transformer trained with causal masking to sim-
ulate a recurrence mechanism. The trained linear
transformer is then deployed on the same dataset
without masks in a restart-incremental setting to
collect the outputs for partial prefixes. These will
be used to derive the action sequences by compar-
ing the partial outputs at time step ¢ — 1 with that
of the current time step ¢. If there are differences
with the partial outputs, excluding y:, a REVISE
action is appended to the sequence. Otherwise, a
WRITE action is added.

4 Method

TAPIR was evaluated on the noisy DemoNSF
dataset to determine its non-incremental perfor-
mance, incremental performance, and incremental
inference speed. The application of a delay strat-
egy was also explored. The results are compared to
those of a reference restart-incremental transformer
and the non-incremental results of DemoNSF as
reported by Dong et al. (2023).

4.1 Dataset

The training set of DemoNSF, based on MultiWwOZ
(Budzianowski et al., 2018), consists of 56,117 ut-
terances across 4 domains (i.e., attraction, hotel,
restaurant, and train). The validation set has 5,000
utterances. The clean and perturbed test sets were
taken from RADDLE (Peng et al., 2021), and anno-
tated for the SF task using the IOB tagging format.
RADDLE is a crowd-source noise robustness eval-
uation benchmark for dialogue systems. Table 3
shows the number of utterances per type of test set.
There are 27 slot labels, some examples of which
are area, type, name, price, and day.

Table 3: Number of Utterances in the DemoNSF Dataset

Dataset Number of utterances

Training 56,117
Validation 5,000

Clean 306

Verbose 306
Test Paraphrase 298

Simplification 307

Typos 301

Speech 298

4.2 Experiments

There are 5 major steps in the implementation of
the TAPIR model: (1) Train the action generator
— linear transformer with causal masking — on the
train and validation sets; (2) Generate the action
sequences for the train and validation sets using the
trained action generator; (3) Train the transformer
reviser; (4) Train the two-pass configuration (i.e.,
the combination of the incremental processor, con-
troller, and the transformer reviser); and (5) Evalu-
ate the model on the clean and perturbed test sets.

Hyperparameter tuning was performed for the
transformer reviser and the two-pass configuration
model using Optuna. Due to resource constraints,
the number of search trials was limited to 10 and
5 for the transformer reviser and the two-pass con-

figuration model, respectively. The obtained hy-
perparameters are shown in Tables 4 and 5. The
hyperparameters for the transformer reviser was
also applied for the reference restart-incremental
model. The search space and other training pa-
rameters were adopted from the reference work by
Kahardipraja et al. (2023).

Table 4: Transformer Reviser and Reference Model
Hyperparameters

Hyperparameter Value
Layers 3
Gradient Clipping -1
Learning Rate 7e-05
Batch size 16
Feed-forward dimension 1024
Self-attention dimension 512

Table 5: Two-pass Configuration Hyperparameters

Hyperparameter Value
LSTM Layers 4
Controller Layers 2
Gradient Clipping 1.0
Learning Rate Te-05
Batch Size 16
LSTM Hidden Dimension 512
Controller Hidden Dimension 512
Memory Size 5

A delay with a look-ahead window of size 1
and 2 was applied in the training and inference of
TAPIR to investigate whether the availability of the
right context can lead to better performance. This
means that the slot label for input z; is outputted
at time step ¢ + d, where d denotes the delay. For
the reference restart-incremental transformer, the
delay was only incorporated in the inference.

4.3 Evaluation

The non-incremental and incremental performance
of TAPIR were compared with a reference model,
which is a Transformer encoder applied in a restart-
incremental interface. This performs revisions at
every time step due to recomputations. Addition-
ally, the non-incremental performance is compared

to the DemoNSF model, a generative framework
that performs multilevel data augmentation to cre-
ate a noisy candidate pool (Dong et al., 2023). This
is then used in the three noisy auxiliary pre-training
tasks (noise recovery, random mask, and hybrid
discrimination) to learn the semantic structural in-
formation of noises in different levels. It also in-
corporates demonstrations in the generative model.
The demonstrations are retrieved from the top k
most similar utterances to the input from the noisy
candidate pool.

The non-incremental performance of the mod-
els for the SF task, measured using the F1 score,
reveals their ability to arrive at a correct final out-
put. The incremental performance demonstrates
the ability of the models to generate correct and
stable partial outputs and to recover from wrong
outputs timely. This is measured based on three
metrics: edit overhead (EQO), correction time score
(CT), and relative correctness (RC) whose values
range from O to 1 (Madureira and Schlangen, 2020).
EO is the proportion of unnecessary edits, where a
value closer to O indicates fewer edits made. CT is
the average proportion of time steps needed before
a final decision is reached, where a value closer to 0
denotes sooner final decisions. RC is the proportion
of output prefixes that match the final output, where
a value closer to 1 indicates the ability of the sys-
tem to generate correct prefixes of the final output.
It must be noted that RC is evaluated based on the
final non-incremental output, instead of the gold
standard to focus the evaluation on the incremental
performance of the models. The incremental infer-
ence speed was also measured to determine if the
models are computationally efficient at inference.

5 Results

Aside from presenting the non-incremental perfor-
mance, incremental performance, and incremen-
tal inference speed obtained by TAPIR on the
DemoNSF, a qualitative analysis of how TAPIR
performs incremental slot filling is provided.

5.1 Non-incremental Performance

The non-incremental performance results of the
models across the different test sets are shown in
Table 6.

5.1.1 DemoNSF vs. Incremental SF Models

The performance of the models on the clean test
set are relatively similar. However, the perfor-
mance gap between DemoNSF and the incremen-

Table 6: Non-incremental Performance of DemoNSF, Reference, and TAPIR models

Test Set DemoNSF Reference TAPIR
Delay 0 Delay1 Delay 2

Clean 95.72 95.24 95.34 94.81 94.89
Verbose 82.37 79.55 77.94 75.39 76.16

Sentence-level ~ Paraphrase 89.98 88.6 86.09 85.2 88.05
Simplification 89.49 81.77 82.45 84.32 82.39

Character-level Typos 76.63 66.2 60.43 62.69 62.42
Word-level Speech 87.55 74.73 71.72 72.07 70.84

tal models (i.e., reference and TAPIR) becomes
more pronounced on the noisy test sets. This is
expected because the incremental models were not
exposed to input perturbations during training un-
like DemoNSF which is a noisy SF framework.
This highlights the need to adapt the training of
incremental systems to improve their robustness
against noisy inputs, which are prevalent in real
dialogue systems.

5.1.2 Reference Model vs. TAPIR

TAPIR achieves comparable performance with the
restart-incremental transformer even with fewer re-
computations, demonstrating the effectiveness of
the revision policy on the clean test set. TAPIR also
achieved a higher F1 score on the simplification
test set. This may be attributed to the shorter avail-
able context, which can make transformers less
effective. The LSTM component (i.e., first-pass
model) of TAPIR is well-suited for handling sim-
plified utterances because it can effectively use the
available left context for prediction without relying
on long-range dependencies.

The reference model outperformed TAPIR, with
differences ranging from 1.61% to 5.77%, on the
noisy test sets excluding simplification. This may
be because the reference model is deployed in a
restart-incremental fashion, which enables it to per-
form revisions as new input token arrives. Hence,
this reveals the weakness of the current revision
policy employed in TAPIR in noisy scenarios.

5.1.3 Delay Strategy

A delay of 1 is the most effective in improving the
performance of TAPIR on the typos, speech, and
simplification test sets. These datasets are charac-
terized by syntax errors and lack of context. Hence,
the left token is effective in disambiguating the
noisy inputs. TAPIR achieved higher performance

on the paraphrase test set using a delay of 2. This
indicates that the availability of a longer context
aids in disambiguating the rich and varied syntax in
paraphrased text data. The delay strategy was not
effective in improving the performance of TAPIR
on the clean and verbose test sets, indicating that
the addition of a delay may impair the model’s
ability to learn the relationship between the input
and the delayed output. These results show that
the effectiveness of the delay strategy and the look-
ahead window size depends on the type of data to
be processed. A longer delay does not necessarily
lead to better performance.

The performance of the incremental models on
the different noisy test sets are ranked, from best to
worst, as follows: (1) clean, (2) paraphrase, (3) sim-
plification, (4) verbose, (5) speech, and (6) typos.
This shows that incremental models are more sen-
sitive to fine-grained noises, with character-level
noise (i.e., typos) negatively affecting its perfor-
mance the most, followed by word-level noise
(i.e., speech). This is because incremental mod-
els process sequences one token at a time, thus
fine-grained noises have a significant impact due
to the lack of access to the full context.

5.2 Incremental Performance

The incremental performance of the reference
model and TAPIR are shown in Figure 2. For no
delay, TAPIR evidently outperformed the reference
model across the three incremental metrics (i.e.,
CT, EO, and RC). This implies that it is better at
producing stable outputs that are correct prefixes
of the final non-incremental output. Applying the
delay strategy generally reduces the EO and CT
with minimal improvement on RC for both models.
Howeyver, it can be observed that their incremen-
tal performances are worse on the noisy test sets

Table 7: Comparison of Incremental Inference Speed
(in sequences/sec.) Between the Reference Model and
TAPIR

Test Set Reference TAPIR

Clean 3.05 11.87 (3.89x)
Verbose 2.18 8.76 (4.02x)

Sentence-level ~ Paraphrase 3.32 13.58 (4.09x)
Simplification 5.32 19.43 (3.65x)

Character-level Typos 3.51 12.84 (3.66x)
Word-level Speech 3.11 11.97 (3.85x)
Average 3.42 13.07 (3.82x)

compared to those on the clean test set. The graph
clearly shows that the incremental performance de-
grades most significantly on the typos test set, illus-
trating that incremental systems are highly affected
by character-level input perturbations.

5.3 Incremental Inference Speed

Table 7 compares the incremental inference speed
between the reference model and TAPIR. TAPIR
has significantly faster inference speed, being able
to process 3.82x sequences per second compared
to the reference model. This confirms that using
transformers in a restart-incremental manner for
incremental NLU is computationally costly due to
the unnecessary recomputations of the entire partial
output at every time step.

5.4 Qualitative Analysis

Figure 3 illustrates two examples of how TAPIR
performs incremental slot filling—one where it
performed a correct revision and another where it
made a mistake due to an input perturbation. In the
example on top with the input sequence “stansted
airport after 11:45”, the model mistakenly revised
the slot label of the token “airport” from “I-depart”
to “I-dest” when it encountered the new input token
“after” att = 3. Att = 4, the controller was able to
identify the output inconsistency where the “I-dest”
is preceded by “B-depart” when it should be “B-
dest”. Hence, it emitted a REVISE action to correct
the slot label of “airport” back to “I-depart”.

In the second example, the model was able to
generate the correct input prefixes up to ¢t = 4,
which was when a typo “aftr” arrived in the input
sequence. However, upon the arrival of the final
token, the controller mistakenly revised the correct
prefixes “B-depart” and “I-depart” into “O”, which
may be attributed to the inclusion of the typo “aftr”

in the history of inputs used for the computation of
the next action.

6 Discussion

Results revealed that TAPIR outperforms the
more naive restart-incremental model in terms of
non-incremental performance, incremental perfor-
mance, and incremental inference speed. However,
TAPIR experiences performance degradation when
dealing with noisy input data. From our findings,
three key considerations emerge for the develop-
ment of incremental NLU systems:

Robustness to Noise. Despite its sophisticated
architecture, TAPIR experiences notable perfor-
mance degradation when processing noisy input
data. It was observed that fine-grained noises at
the character-level (e.g. typos) and word-level (e.g.
speech errors) cause more significant performance
losses. This sensitivity arises because incremen-
tal systems process input per token, leading to a
higher impact of noise due to the absence of the
full context. These findings emphasize the need
to incorporate robust noise-handling mechanisms
in incremental NLU systems to achieve reliable
performance in real-world scenarios where noise is
unavoidable.

Revision Policy. The ability to revise is crucial
in incremental NLU tasks to resolve misinterpre-
tations that occur due to the inherent ambiguity
of partial utterances. The adaptive revision pol-
icy of TAPIR is key to its significantly faster in-
ference speed compared to a restart-incremental
model by avoiding unnecessary recomputations. It
was also proven to be effective on clean and sim-
plified test sets. However, TAPIR falls behind the
restart-incremental model on the noisy test sets,
revealing its weakness under more challenging sce-
narios. This underscores the need for further re-
finement of the adaptive revision policy without
incurring significant computational cost.

Delay strategy. Delaying the output generally
results in better performance by providing the incre-
mental model with additional context. The results
showed that a delay of 1 is effective in improving
the non-incremental performance on test sets char-
acterized by syntax errors and limited context, such
as typos and speech errors. A delay of 2 improves
performance on paraphrased inputs by providing a
longer context that can help disambiguate syntacti-
cally varied sequences. However, it is worth noting
that the delay strategy was not effective on clean

No delay
0125

0.100
0075
0050
0025

0.000

Mean Correction Time

S © & $ 3 N
& 5 S
& & & & &
<) & R
L .
< &
No delay
020 020
015 01
o o
3 3
£ on £ on
s s
3 oo F ooes
c c
g s
8 8
2 o0 2 o0
N o o N o N N o
& & S & %
& & 58 & & &
e 40&"6 0@«\ (}\@ A o © & &
< & <
No delay
100 100
g o g o7
4 4
2 2
g B
£ os0 £ os0
5 1
o o
2 2
£ o £ oz
e 2
c <
g 0.00 g 0.00
N o o N o N N
= & & ¢ & & = & &
N & N B @ &
<® & <®

Delay=1

Delay=1

& o
o <

B Reference [TAPIR

Delay=2

Mean Edit Overhead
g &
7
%,
s

& ~¢ S £ 3 & &
PP A
Q ¥ o &

& < &
Delay=2
100
g on
¢
g
B
£ os0
5
o
2
2 oxs
g
<
g 0.00

& o = S &L @ & < >

5 & 3 & & & & & &
& < o S & 5 é&“b S of

é\é‘

Figure 2: Incremental Performance of the Reference Model and TAPIR

time incremental outputs action
1 B-depart write
2 B-depart |-depart write
3 B-depart l-dest ¢ O revise
4 B-depart I-departi O B-leave [revise
stansted airport after 11:45
B-depart |-depart o] B-leave gold
time incremental outputs action
1 (o] write
2 o) B-depart write
3 o) B-depart |-depart write
4 0 B-depart |-depart O write
5 O o 04 O B-eave [evise
\J
leave stansted air aftr 11:45
(o] B-depart |-depart O B-leave gold

Figure 3: Examples of Incremental Inference Using
TAPIR

and verbose test sets, suggesting that inappropri-
ate delay settings can impair the model’s ability to
learn correct input-output relationships. These find-
ings demonstrate that longer delays do not necessar-
ily lead to better performance. Therefore, the delay
strategy must be tailored to the specific nature of
the input data to achieve siginificant performance

improvement.

7 Conclusion

We evaluated the robustness of TAPIR in noisy slot
filling task and assessed the impact of input per-
turbations to the performance of incremental NLU
systems. Results showed that TAPIR lags behind
the reference restart-incremental transformer on
noisy test sets, which reveal the weakness of its
adaptive revision policy on more challenging sce-
narios. It was also observed that character-level
and word-level noises cause larger performance
losses, demonstrating the sensitivity of incremen-
tal NLU models to fine-grained noise due to the
absence of a global context. Employing a delay
strategy can improve non-incremental and incre-
mental performance. However, the optimal size of
the look-ahead window depends on the nature of
the input data. Future work can focus on develop-
ing robust noise-handling mechanisms for incre-
mental NLU systems. Further research must also
be conducted on improving the revision policies
that can effectively balance the frequency and ac-
curacy of revisions. Furthermore, researchers can
look into optimizing delay strategies to improve
the performance of incremental NLU systems.

References

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Stefan Constantin, Jan Niehues, and Alex Waibel. 2019.
Incremental processing of noisy user utterances in the
spoken language understanding task. In Proceedings
of the 5th Workshop on Noisy User-generated Text
(W-NUT 2019), pages 265-274, Hong Kong, China.
Association for Computational Linguistics.

Guanting Dong, Tingfeng Hui, Zhuoma GongQue,
Jinxu Zhao, Daichi Guo, Gang Zhao, Keqing He,
and Weiran Xu. 2023. DemoNSF: A multi-task
demonstration-based generative framework for noisy
slot filling task. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
10506-10518, Singapore. Association for Compu-
tational Linguistics.

Patrick Kahardipraja, Brielen Madureira, and David
Schlangen. 2021. Towards incremental transformers:
An empirical analysis of transformer models for in-
cremental NLU. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1178-1189, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Patrick Kahardipraja, Brielen Madureira, and David
Schlangen. 2023. TAPIR: Learning adaptive revi-
sion for incremental natural language understanding
with a two-pass model. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
4173-4197, Toronto, Canada. Association for Com-
putational Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers
are rnns: fast autoregressive transformers with lin-
ear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20.
JMLR.org.

Bing Liu and Ian Lane. 2016. Joint online spoken lan-
guage understanding and language modeling with
recurrent neural networks. In Proceedings of the
17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 22-30, Los Angeles.
Association for Computational Linguistics.

Brielen Madureira and David Schlangen. 2020. In-
cremental processing in the age of non-incremental
encoders: An empirical assessment of bidirectional
models for incremental NLU. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 357-374, On-
line. Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Zhu Zhang, Chenguang

Zhu, Jinchao Li, and Jianfeng Gao. 2021. RADDLE:
An evaluation benchmark and analysis platform for
robust task-oriented dialog systems. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4418-4429, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D19-5535
https://doi.org/10.18653/v1/D19-5535
https://doi.org/10.18653/v1/2023.findings-emnlp.705
https://doi.org/10.18653/v1/2023.findings-emnlp.705
https://doi.org/10.18653/v1/2023.findings-emnlp.705
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2023.findings-acl.257
https://doi.org/10.18653/v1/2023.findings-acl.257
https://doi.org/10.18653/v1/2023.findings-acl.257
https://doi.org/10.18653/v1/W16-3603
https://doi.org/10.18653/v1/W16-3603
https://doi.org/10.18653/v1/W16-3603
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2021.acl-long.341
https://doi.org/10.18653/v1/2021.acl-long.341
https://doi.org/10.18653/v1/2021.acl-long.341

	Introduction
	Related Works
	Incremental NLU
	Noisy NLU

	Task Description
	Slot Filling Task
	Dataset
	Two-pass Model for Adaptive Revision (TAPIR)

	Method
	Dataset
	Experiments
	Evaluation

	Results
	Non-incremental Performance
	DemoNSF vs. Incremental SF Models
	Reference Model vs. TAPIR
	Delay Strategy

	Incremental Performance
	Incremental Inference Speed
	Qualitative Analysis

	Discussion
	Conclusion

