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Abstract
This study investigates the impact of continued
pre-training transformer-based deep learning
models on historical corpus, focusing on BERT,
RoBERTa, XLNet, and GPT-2. By extracting
word representations from different layers, we
compute gender bias embedding scores and an-
alyze their correlation with human bias scores
and real-world occupation participation differ-
ences. Our results show that BERT, an encoder-
only model, achieves the most substantial im-
provement in capturing human-like lexical se-
mantics and world knowledge, outperforming
traditional static word vectors like Word2Vec.
Continued pre-training on historical data sig-
nificantly enhances BERT’s performance, espe-
cially in the lower-middle layers. When histori-
cal human biases are difficult to quantify due
to data scarcity, continued pre-training BERT
on historical corpora and averaging lexical rep-
resentations up to the 6th layer provides an
accurate reflection of gender-related historical
biases and world knowledge.

1 Introduction

The core idea of distributional semantics models
(DSMs) is that the context of a word usage can be
used to explore its semantics (Harris 1954; Firth
1957). With the rapid advances in deep learn-
ing, models based on deep transformer networks
(Vaswani et al., 2017) have achieved remarkable
performance in many empirical tasks, such as an-
swering questions and engaging in dialogues (Ra-
jpurkar et al. 2016; Adiwardana et al. 2020).
Despite this success, how these models acquire
and encode linguistic information remains unclear
(Avetisyan and Broneske, 2023). These models
may reflect human-like gender biases at the seman-
tic level of certain words like humans. However,
there is little research on how these biases and se-
mantic information are encoded by the models, and
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deep-learning-based representations have not en-
gaged rigorously enough with semantic theory. It
is still difficult to differentiate whether the model
has genuinely progressed in modeling semantics
or merely increased its ability to memorize corpus
statistics (Pavlick, 2022).

Moreover, deep learning models are typically
pre-trained on large contemporary corpora, and
it is uncertain whether continued pre-training on
historical corpora can help the models learn more
human-like semantics and world knowledge related
to gender of historical times (Qiu and Xu, 2022).
Given that continued pre-training can be compu-
tationally expensive, it is necessary to determine
which model achieves the most human-like word
representation (Vulić et al., 2020). This includes
traditional DSMs like Word2Vec (Mikolov et al.,
2013), encoder-only models like BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019), or
decoder-only models like GPT-2 (Radford, 2019)
and XLNet (Yang, et al., 2019).

By probing into the gender biases learned by
these models from continued pre-training process,
it is possible to study historical societal perceptions
of gender bias that may be difficult to measure
directly. This research makes several significant
contributions: 1. Advancing research in histori-
cal sociolinguistics and cognitive bias by bridging
the gap between sociolinguistics and deep-learning
techniques. 2. Highlights the important role of
historical corpora as a treasure trove for studying
biases throughout history, allowing researchers to
reconstruct historical societal attitudes and analyze
biases in a more nuanced and precise manner. 3.
Enabling historical bias research in data-scarce en-
vironments by demonstrating that models can learn
biases from period-specific corpora, enabling his-
torical bias research in contexts where direct data
on societal attitudes may be scarce or non-existent.
It opens new avenues for studying historical biases
in diverse cultural and linguistic contexts.
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2 Related Work

For lexical representations, traditional distribu-
tional semantics models (DSMs) include count-
based methods like TF-IDF (Jones, 1973) and
prediction-based methods such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017).
These models produce a single word vector, po-
tentially overlooking semantic differences across
different contexts (McLevey et al., 2022).

In contrast, deep learning models aim to obtain
sentence representations for real-life applications,
with word representations emerging as a byproduct
(Pavlick, 2022). Models include BERT (Devlin
et al., 2018) and GPT-2/3 (Radford et al., 2019;
Brown et al., 2020), which have been extensively
studied for their semantic representation capabili-
ties.

Contextualized embeddings have been shown to
surpass traditional static word embeddings in cap-
turing word semantics and identifying diachronic
semantic shifts. Peters et al. (2018) and Radford et
al. (2019) demonstrated that contextualized token
embeddings encode word senses even without ex-
plicit training. Giulianelli et al. (2020) and Hu et
al. (2019) developed contextualized embeddings
for historical contexts, examining changes in word
meanings over time. However, these studies of-
ten rely on models pre-trained on modern corpora,
which may bias results towards contemporary lan-
guage use (Qiu and Xu, 2022).

To address this, Hamilton et al. (2016) created
HistWords, Word2Vec embeddings trained on his-
torical corpora, to study semantic changes over
100 years of American history (Garg et al., 2018).
Yet few works have extended this approach to con-
textualized language models. Vulić et al. (2020)
compared contextualized word embeddings like
BERT with traditional static DSMs like FastText,
finding that contextualized embeddings generally
outperform static ones. Gu et al. (2022) applied
lexical semantics in embeddings for practical tasks.
Nair et al. (2020) showed that contextualized em-
beddings have a higher correlation with human
judgments. Yet Yenicelik et al. (2020) found
that BERT embeddings’ organization is "not purely
determined by semantics." For world knowledge,
previous studies have indicated that climate varia-
tions in language and world knowledge are closely
linked (Huang and Dong, 2020; Dong and Huang,
2021). However, research comparing grounding

and reference is notably absent (Pavlick, 2022).
Some studies have explored multimodal variants
(Sun et al., 2019; Radford et al., 2021), but they
lack the semantic analysis depth of text-only mod-
els (Bender and Koller, 2020).

Gender bias is a critical topic across disci-
plines, with language analysis traditionally used
to study it qualitatively (Holmes and Meyerhoff,
2004; Coates, 2015). Gender issues can be stud-
ied through machine learning techniques (Lu et al.,
2022). If deep learning models can be continue pre-
trained to better reflect human-like gender-related
bias and world knowledge, they could become pow-
erful tools for sociological and linguistic studies.

Inspired by previous works, this study aims
to determine which model—BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), GPT-2 (Rad-
ford, 2019), or XLNet (Yang, et al., 2019) benefits
the most from continued pre-training on histori-
cal corpora in terms of capturing more human-like
gender-related attitudes, uncover how lexical se-
mantics and world knowledge are encoded across
model layers, and evaluate whether these models
provide better human-like lexical representations
compared to traditional static DSMs. By leverag-
ing deep learning techniques, this research goes
beyond previous traditional DSMs studies to ex-
plore the distribution of gender-related semantics
and world knowledge within deep-learning model
architectures, offering new insights into the inter-
section of language and society.

3 Methodology

The scarcity of historical quantitative data on gen-
der bias in sociolinguistic research underscores the
significance of this study. By using word repre-
sentation as a quantitative tool, we aim to measure
biases in historical societal changes. This study
employs the 1990 Corpus of Historical American
English (COHA) (Davis, 2010) for continued pre-
training of BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), GPT-2 (Radford, 2019), and XL-
Net (Yang et al., 2019).

For lexical semantics, we use the gender rat-
ing survey on different adjectives by Williams and
Best as a benchmark (1990). For world knowl-
edge, we use 1990 US demographic data on gender
occupation participation (Ruggles et al., 2015) to
validate the accuracy in the world knowledge di-
mension. We extract the corresponding word rep-
resentations from the continue pre-trained models



and conduct linear regression analysis to identify
the model that best reflects historical gender bias
and gender-related world knowledge. Additionally,
we aim to determine the best method for extracting
gender-related word representations. The flowchart
of the experiment can be seen in Figure 1:

3.1 Model Size
Previous empirical studies (Hu et al., 2020;
Warstadt et al., 2020; Radford et al., 2019; Zhang
et al., 2021) have shown that larger models tend to
improve task performance and capture semantic in-
formation more effectively. Therefore, to compare
the semantic representation capabilities of different
models, it is essential that the models are compa-
rable in size and are pre-trained on the same cor-
pus. This research selects four transformer-based
models of comparable sizes: encoder-only models
BERT Base (Devlin et al., 2018) and RoBERTa
Base (Liu et al., 2019), and decoder-only models
GPT-2 small (Radford, 2019), and XLNet Base
(Yang et al., 2019).

3.2 Layer Selection
Peters et al. (2018) and Tenney et al. (2019) found
that lower hidden layers of BERT-based models
tend to capture more syntactic information, while
higher layers capture more abstract semantic in-
formation. This study plans to extract word rep-
resentations from different layers of the models
to explore the general distribution of semantic in-
formation and determine which specific layer best
reflects human-like word representation.

3.3 Training Method
The choice between continued pre-training and
fine-tuning is crucial. Fine-tuning a pre-trained
model tends to yield better results for specific tasks
(Wang et al., 2019). However, fine-tuning can alter
the parameters of the higher hidden layers, poten-
tially losing some linguistic information (Liu et al.,
2019; Merchant et al., 2020; Mosbach et al., 2020).
Since this study does not focus on any specific
downstream task but aims to explore the general
semantic representation of words in the context of
a specific historical period, continued pre-training
on historical data is more suitable and will be con-
ducted here.

3.4 Evaluation
In terms of evaluation, NLP methods can be
broadly divided into three categories (Pavlick,

2022): Extrinsic Task-Based Evaluation, Targeted
Task-Based Evaluations (Linzen and Broni, 2020),
and Representational or Probing Evaluation (Be-
linkov and Glass, 2019). This study aligns with the
third category, as it investigates the model’s under-
standing of semantic structure by extracting and
analyzing word representations. By probing these
representations, we aim to reveal how effectively
the model captures underlying semantic patterns,
including gender biases present in the data.

4 Experimental Settings

4.1 Pre-processing

This experiment selects the Corpus of Historical
American English (COHA) (Davis, 2010) as the
dataset due to its relatively large and balanced his-
torical corpus. COHA contains over 475 million
words from various genres, including fiction, non-
fiction, newspapers, and magazines, spanning from
the 1820s to the 2010s. Given the lack of system-
atic quantitative data on stereotypes in social sci-
ence, this study utilizes the historical survey on gen-
der stereotypes from 1990 (Williams and Best), so
texts from 1990-1999 in COHA are selected as the
training corpus for subsequent experiments. This
subset contains 30,622,378 words and 2,374,121
sentences, with an average sentence length of 13
words.

For data processing, all text in COHA is con-
verted to lowercase, and all punctuation marks are
removed. Abbreviations are appropriately handled.
The study uses the model’s default tokenizer. An-
other important step is addressing possible mis-
matches between COHA and the tokenizer. For
example, in COHA, words like "don’t" are sepa-
rated into "do" and "n’t," which may cause issues
during tokenization(Qiu and Xu, 2022). These are
substituted back into their original forms. As sug-
gested by Gulordava and Baroni (2011), lemmati-
zation has little effect on the detection of semantic
change, so it is not performed in the pre-processing
process.

4.2 Continued Pre-training on Models and
Representation Extraction

This study aims to continue pre-training BERT,
RoBERTa, GPT-2, and XLNet using the COHA
(1990) corpus and compare the results with a tradi-
tional Word2Vec model trained from scratch. The
training starts from the last checkpoint of the origi-
nal base models, following the official guidelines of



Figure 1: Flowchart of Continued Pre-training and Extraction of Gender-related Word Representation

Hugging Face. Since the average sentence length
in the 1990s COHA is just 13 words, much shorter
than the default 512, this research follows Qiu and
Xu (2022) and limits the maximum sequence length
to 128.

To thoroughly train the models, the number of
epochs is set to be 300. However, if the loss be-
comes stable for a long time or the evaluation score
stabilizes or starts to drop, early stopping will be ap-
plied. This research saves every checkpoint at the
end of each epoch to analyze the dynamic changes
in word representations. All training processes are
completed on Alibaba Cloud using NVIDIA A10
cards with 24GB memory. The output models are
stored in Alibaba Cloud OSS buckets.

For Word2Vec training, this research follows
Hamilton et al. (2016). The symmetric context
window size is set to 4 (on each side) with em-
beddings of size 300. The Word2Vec model is
trained using the CBOW method with a smoothing
parameter of 0.75. The negative sample prior is
set to log(5), and the context is simply the same
vocabulary as the target words.

Details of the models and configurations used
are shown in Table 1 and Tale 2, which provides
the necessary information to train the models using
the openly available source code.

Model Word2Vec
Parameters Vocabulary Size*300

Embedding Size 300
Window Size 4

Smoothing Parameter 0.75
Negative Sample Prior log(5)

sg 0

Table 1: Descriptions and Hyper-parameters of
Word2Vec Training

This study aims to explore the semantic represen-

tation of words as a more "abstract" concept, rather
than their representation in specific sentence con-
texts. Traditional static word embedding methods
intuitively use distributional semantics to represent
words, but deep learning models may differ from
static word vectors. Firstly, words may be tok-
enized into sub-word tokens, which are influenced
by the context and position within the sentence
(Mickus et al., 2019). However, research by Vulić
et al. (2020) demonstrates that pre-trained encoders
still retain lexical semantics despite various con-
texts. This research adopts Vulić et al. (2020)’s
unsupervised word-level representation strategies
and configurations to probe the lexical semantics
of words related to gender.

Model BERT-Base RoBERTa-Base
Parameters 110 million 125 million

Layers 12 12
Embedding Size 768 768

Max Sequence Length 128 128
Train Batch Size 64 64
Learning Rate 5e-05 5e-05

Optimizer AdamW AdamW
Gradient Clipping 1.0 1.0

Random Seed 42 42

Model XLNET-Base GPT-2-Small
Parameters 110 million 117 million

Layers 12 12
Embedding Size 768 768

Max Sequence Length 128 128
Train Batch Size 64 64
Learning Rate 5e-05 5e-05

Optimizer AdamW AdamW
Gradient Clipping 1.0 1.0

Random Seed 42 42

Table 2: Descriptions and Hyperparameters of Deep-learning
Model Training

For all models used in this research—BERT
Base (Devlin et al., 2018), RoBERTa Base (Liu



et al., 2019), GPT-2 Small (Radford et al., 2019),
and XLNet Base(Yang et al., 2019)—each word
representation is extracted in isolation without any
external context. Special tokens [CLS] and [SEP]
are excluded from sub-word embedding averag-
ing. Two strategies are used for comparison: one
is to extract only the representations from layer Ln,
and the other is to average representations over all
layers up to the n-th layer (including Ln).

4.3 Evaluation Metrics
This study utilizes historical survey data and objec-
tive records as benchmarks to evaluate the models’
abilities to capture lexical semantics and reflect
world knowledge.

To assess lexical semantics, we draw on the sur-
vey conducted by Williams and Best (1990), which
measured people’s perceptions of gender stereo-
types using a list of adjectives. Participants pro-
vided scores indicating whether each adjective was
perceived as more feminine or more masculine. For
our study, we retained only the adjectives that ap-
pear in the Word2Vec vocabulary. The complete
list of adjectives and their corresponding human-
elicited scores are provided in the appendix.

For evaluating world knowledge, we use data
from the 1990 U.S. Census (Ruggles et al., 2015)
to calculate the gender disparity in occupational
participation. This data serves as the "ground truth"
or "objective metric" for societal gender roles at
that time, reflecting historical realities. The full
occupational participation data, broken down by
gender, is also included in the appendix.

Building on the approach of Garg et al. (2018),
we have constructed two "gender" dimensions: one
for female-associated terms (e.g., "she," "her") and
another for male-associated terms (e.g., "he," "his").
These lists, along with the lists of adjectives and
occupations, are also available in the appendix.
Words from the adjective and occupation lists are
referred to as "neutral words" in this study.

To measure the association strength between
neutral words and gender groups, we first create
"gender group vectors" by averaging the vectors
of words within the female and male groups. We
then compute the Euclidean Distance between each
neutral word’s vector and the gender group vectors.
This allows us to determine the relative norm dis-
tance of each neutral word concerning the male and
female groups, from which the gender embedding
bias of each word from each model is calculated.
The bias score is defined as follows:

The neutral vector represents the vector of a neu-
tral word, and female and male vector denote the
average vectors for the female and male groups
respectively.

To measure embedding bias against historical
data, this research follows Garg et al. (2018) that
Ordinary Least Squares (OLS) linear regression
analysis is conducted between the survey (or cen-
sus) data and the gender embedding bias scores
from the models to examine the correlation be-
tween the model’s gender bias and the gender
stereotypes as reflected in human.

R² (coefficient of determination) is used as an
evaluation metric in this context because it quan-
tifies the proportion of variance in the human sur-
vey data or census data that can be explained by
the model’s embedding biases (Montgomery et al.,
2021). A higher R² value indicates a stronger cor-
relation between the embedding bias captured by
the models and the actual societal biases reflected
in human data. The OLS linear regression analysis
is conducted using the Python library statsmodels,
which provides a robust framework for such statisti-
cal evaluations. This method allows us to precisely
quantify the alignment between model-inferred bi-
ases and historical human biases, thus providing an
objective measure of model performance.

5 Results and Discussion

5.1 Distribution of Gender-related Lexical
Semantics and World Knowledge in
Proto-models

To investigate the distribution and fundamental
state of lexical semantics and world knowledge
of gender-related words in different deep learning
models, word representations for each neutral ad-
jective and occupation noun were extracted from
each layer of the original open-source models. The
gender bias embedding score for each word in these
models was calculated, followed by an analysis of
the correlation strength between the model’s gen-
der bias scores, human bias scores, and occupation
participation differences. The R² values from the
OLS (Ordinary Least Squares) analysis for each
layer across different models are presented in the
line charts in Figure 2:

Figure 2 presents the R² values comparing the
word representation bias scores of neutral adjec-
tives at each layer of various proto-models with



Figure 2: Lexical Semantic Representation of Adjec-
tives in Each Layer of the Original Models (The R²
value for Word2Vec is 0.099)

human bias scores obtained from the survey. Our
analysis indicates that deep learning models, when
used without fine-tuning or continued pretraining,
do not perform adequately in analyzing diachronic
semantic distributions. Specifically, the R² values
for each layer of all deep learning models fell short
of those obtained from traditional Word2Vec em-
beddings. Among the models evaluated, the origi-
nal BERT model outperformed the others, followed
by RoBERTa, XLNet, and GPT-2. Additionally,
Figure 2 suggests that encoder-only models gener-
ally outperform decoder models in this task.

Figure 3: World Knowledge Representation of Occupa-
tion Nouns in Each Layer of the Original Models (The
R² value for Word2Vec is 0.284)

Figure 3 illustrates the R² values between the
word representation bias scores for occupation
nouns at each layer of proto-models and the gender
occupation participation data from official census.
The results show that the performance of proto-
models remains unsatisfactory when compared to
the ground truth of gender occupation participation.
Among the models, only BERT and XLNet exhibit
slightly better performance.

Despite the presence of semantic information in
each layer of deep learning models, this informa-
tion tends to be dispersed across all layers. Gen-
erally, the core lexical semantics of words are pre-
dominantly concentrated in the lower-middle layers
of most models.

5.2 Effects of Continued Pre-training on
Historical Corpus on Deep-learning
Models

After continued pretraining of the afore-mentioned
models using the 1990s COHA corpus, we ex-
tracted word representations from each layer of the
trained models to assess their alignment with hu-
man similarity judgments and census data. We also
evaluated whether the gender-related semantic rep-
resentation abilities of the models were enhanced
compared to their original versions.

(a) R² Values of Adjectives 
for BERT

(b) R² Values of Adjectives 
for RoBERTa

(c) R² Values of Adjectives for
GPT-2

(d) R² Values of Adjectives
for XLNet

Figure 4: Summary of R² Values of Adjectives of Each
Layer from BERT, RoBERTa, GPT-2 and XLNet (before
and after Continued Pretraining)

Figure 4 summarizes the R² values compar-
ing adjectives’ word representations from BERT,
RoBERTa, GPT-2, and XLNet to human-elicited
survey scores, evaluated across each model layer
before and after continued pretraining on historical
data. The results demonstrate that continued pre-
training on a historical corpus generally enhances
the models’ ability to represent gender-related se-
mantics, aligning them more closely with human
judgments. Notably, BERT shows the most signifi-
cant improvement in capturing nuanced gender as-
sociations, particularly in the lower-middle layers.
RoBERTa and XLNet also exhibit enhanced perfor-



mance, though the gains are less consistent across
all layers. GPT-2 shows the least improvement,
reflecting the challenges faced by decoder-only ar-
chitectures in modeling fine-grained gender biases.
Overall, these findings underscore the importance
of continued pretraining on domain-specific cor-
pora to enrich the models’ semantic representations
and better reflect the complexities of human lan-
guage understanding.

(a) R² Values of Occupation
Nouns for BERT

(b) R² Values of Occupation
Nouns for RoBERTa

(c) R² Values of Occupation
Nouns for GPT-2

(d) R² Values of Occupation
Nouns for XLNet

Figure 5: Summary of R² Values of Occupation Nouns
of Each Layer from BERT, RoBERTa, GPT-2 and XL-
Net (before and after Continued Pretraining)

Figure 5 summarizes the R² values comparing oc-
cupation nouns’ word representations from BERT,
RoBERTa, GPT-2, and XLNet to real-world occu-
pation participation differences across each model
layer, both before and after continued pretraining
on historical data. The results reveal that pretrain-
ing on a historical corpus also significantly en-
hances the models’ ability to capture gender-related
world knowledge. This improvement is especially
evident in the lower-middle layers. BERT, in partic-
ular, show marked gains in representing gendered
associations related to occupation nouns, indicating
that the model benefit from integrating historical
context to develop a deeper understanding of how
gender roles have been encoded in language over
time. Overall, these findings highlight the poten-
tial of continued pretraining on specific corpora to
strengthen the semantic representation capabilities
of deep-learning models, especially in areas that
reflect societal attitudes and biases.

5.3 Comparison of Models’ Human-Likeness
in Lexical Semantics and World
Knowledge

To determine which type of model best represents
human-like semantic representations, we extract
word vectors from each trained model and evaluate
their correlation with human similarity judgments
and census data. Two strategies are employed for
word vector extraction: the first involves using only
the representations from layer Ln, and the second
is averaging representations across all layers up to
the n-th layer (including Ln). Figure 6 presents the
results for adjectives using only the representations
from layer Ln, while Figure 7 shows the results
for occupation nouns only the representations from
layer Ln.

Figure 6: R² Values of Adjec-
tives in Single Layers

Figure 7: R² Values of Occu-
pation Nouns in Single Layers

As shown in Figure 6 and Figure 7, after contin-
ued pretraining on historical data, only the lexical
representations from layers 1-5 of BERT surpassed
those of Word2Vec for both adjectives and occupa-
tion nouns. In contrast, individual layers from other
models did not surpass Word2Vec. Additionally,
the trend observed indicates that type-level lexi-
cal information is more concentrated in the lower
layers, approximately layers 1-5.

Figure 8 and Figure 9 present the results for
adjectives and occupation nouns by averaging rep-
resentations across all layers up to the n-th layer
(including Ln).

Figure 8: Average Layers of 
Adjectives Representation

Figure 9: Average Layers of 
Occupation Representation



Since the original BERT and XLNet models
already outperform Word2Vec in terms of world
knowledge for occupation nouns, it is expected that
these models continue to surpass Word2Vec even
after training. However, the distribution of infor-
mation in BERT and XLNet has shifted from being
relatively uniform to being more concentrated in
the lower layers, with information primarily con-
centrated in layers 0-6. In contrast, GPT-2 and
RoBERTa perform relatively poorly and do not ex-
ceed Word2Vec.

The results indicate that only BERT achieved
notably positive outcomes, demonstrating the best
correlation with human annotations. According to
Vulić et al. (2020), the performance of individual
layers can be task and language dependent, while
averaging across all layers might sometimes reduce
performance, averaging across the bottom-most
layers is generally beneficial. For this study, which
aims to reflect historical human gender bias more
accurately, averaging up to the 6th layer (inclusive)
is recommended.

To verify the stability of these results, we further
analyzed R² values using 10 different random seeds
to check whether they remained consistent. Figure
10 shows the Mean Absolute Deviation (MAD)
error of R² values for each layer. The R² values are
generally stable, with the standard deviation for the
average 6th layer result being approximately 0.01,
indicating that the training is relatively robust and
stable.

Figure 10: R² Values with Adjectives and Occupation
Nouns of MAD Errors from Random Seed Training
Models

6 Conclusion

These findings demonstrate that continued pre-
training on historical data is effective for histor-
ical semantic analysis, particularly for examining
historical gender bias. Our findings reveal that
gender-related type-level semantic information is
primarily concentrated in the lower-middle layers
of deep-learning models, with an optimal strategy
being to average representations up to the 6th layer.

This approach allows for a more accurate reflection
of historical human biases, as evidenced by BERT’s
performance, which outperformed both static word
embeddings like Word2Vec and other transformer-
based models in generating human-like semantic
representations.

Overall, while each layer of a deep-learning
model contributes to capturing different aspects
of semantic information, type-level lexical infor-
mation is predominantly concentrated in the lower-
middle layers. The optimal performance of specific
layer can vary based on the language and task, how-
ever, averaging representations across all layers up
to a certain point generally proves to be a more
robust approach.

6.1 Significance and Implications
This study has several key implications. First, it
shows that continued pre-training on historical cor-
pora can enhance deep learning models’ ability
to represent gender biases in ways that align with
human understanding, supporting sociocultural re-
search.

Second, the findings highlight the strengths of
models like BERT in capturing linguistic nuances
that simpler models, like Word2Vec, might miss.
This study offers practical guidance for optimiz-
ing model design and application across linguistic
tasks.

Lastly, it demonstrates that deep-learning models
can reveal hidden patterns of bias even in data-
scarce environments, enhancing historical analysis.

6.2 Limitations and Future Directions
The study focuses on a specific period (the 1990s)
and one type of bias (gender-related). Future re-
search could explore other time periods, biases, and
cultural settings to broaden our understanding.

Additionally, the study did not examine other
fine-tuning strategies or larger models. Future work
could investigate domain-specific fine-tuning strate-
gies and assess if larger models provide more pre-
cise representations of historical biases.

6.3 Summary
In summary, our research suggests that deep-
learning models pre-trained on historical data are
powerful tools for semantic analysis. By under-
standing how these models distribute information
across layers, researchers can better explore the
evolution of language and bias. This work lays
the groundwork for refining model training tech-



niques, expanding linguistic corpora, and uncover-
ing deeper insights into the relationship between
language, culture, and society.
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A Appendix

A: Group Words

Man Words: he, son, his, him, father, man, boy,
himself, male, brother, sons, fathers, men, boys,
males, brothers, uncle, uncles, nephew, nephews

Woman Words: she, daughter, hers, her, mother,
woman, girl, herself, female, sister, daughters,
mothers, women, girls, females, sisters, aunt, aunts,
niece, nieces

B: Neutral Words

Occupations: bookbinder, waitstaff, laborer,
sailor, technician, porter, chemist, electrician,
inspector, salesperson, secretary, plumber, doc-
tor, mechanic, instructor, carpenter, upholsterer,
shoemaker, bartender, chiropractor, nutritionist,
pharmacist, administrator, surgeon, geologist,
teacher, painter, soldier, photographer, attendant,
economist, janitor, clergy, peddler, auctioneer,
artist, dentist, driver, dancer, cashier, cook, sheriff,
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nurse, compositor, author, lawyer, conductor, man-
ager, postmaster, dietitian, architect, gardener, op-
tometrist, housekeeper, sales, accountant, molder,
draftsperson, clerical, typesetter, musician, plas-
terer, machinist, newsperson, pilot, baker, weaver,
therapist, entertainer, police, jeweler, boilermaker,
bailiff, operator, surveyor, psychologist, professor,
engineer, judge, proprietor, librarian, broker, mill-
wright, welder, designer, lumberjack, toolmaker,
setter, huckster, clerk, smith, athlete, tailor, sci-
entist, mathematician, farmer, veterinarian, offi-
cial, statistician, physician, conservationist, cabi-
netmaker, guard, doorkeeper, mason, physicist

Adjectives: active, adaptable, adventurous, af-
fected, affectionate, aggressive, alert, aloof, ambi-
tious, anxious, apathetic, appreciative, argumen-
tative, arrogant, artistic, assertive, attractive, auto-
cratic, awkward, bitter, blustery, boastful, bossy,
calm, capable, careless, cautious, changeable,
charming, cheerful, civilized, clever, coarse, cold,
commonplace, complaining, complicated, con-
ceited, confident, confused, conscientious, conser-
vative, considerate, contented, conventional, cool,
cooperative, courageous, cowardly, cruel, curious,
cynical, daring, deceitful, defensive, deliberate, de-
manding, dependable, dependent, despondent, de-
termined, dignified, discreet, disorderly, dissatis-
fied, distrustful, dominant, dreamy, dull, effemi-
nate, efficient, egotistical, emotional, energetic, en-
terprising, enthusiastic, evasive, excitable, fearful,
feminine, fickle, flirtatious, foolish, forceful, fore-
sighted, forgetful, forgiving, formal, frank, friendly,
frivolous, fussy, generous, gentle, gloomy, greedy,
handsome, hasty, headstrong, healthy, helpful, hon-
est, hostile, humorous, hurried, idealistic, imagina-
tive, immature, impatient, impulsive, independent,
indifferent, individualistic, industrious, infantile,
informal, ingenious, inhibited, initiative, insight-
ful, intelligent, intolerant, inventive, irresponsible,
irritable, jolly, kind, lazy, leisurely, logical, loud,
loyal, mannerly, masculine, mature, meek, method-
ical, mild, mischievous, moderate, modest, moody,
nagging, natural, nervous, noisy, obliging, obnox-
ious, opinionated, opportunistic, optimistic, orga-
nized, original, outgoing, outspoken, painstaking,
patient, peaceable, peculiar, persevering, persis-
tent, pessimistic, pleasant, poised, polished, prac-
tical, praising, precise, prejudiced, preoccupied,
progressive, prudish, quarrelsome, queer, quick,
quiet, quitting, rational, realistic, reasonable, re-
bellious, reckless, reflective, relaxed, reliable, re-

sentful, reserved, resourceful, responsible, restless,
retiring, rigid, robust, rude, sarcastic, selfish, sen-
sitive, sentimental, serious, severe, sexy, shallow,
shiftless, shrewd, shy, silent, simple, sincere, slip-
shod, slow, sly, smug, snobbish, sociable, sophisti-
cated, spendthrift, spineless, spontaneous, spunky,
stable, steady, stern, stingy, stolid, strong, stub-
born, submissive, suggestible, sulky, superstitious,
suspicious, sympathetic, tactful, tactless, talkative,
temperamental, tense, thankless, thorough, thought-
ful, thrifty, timid, tolerant, touchy, tough, trusting,
unaffected, unambitious, unassuming, unconven-
tional, undependable, understanding, unemotional,
unfriendly, uninhibited, unintelligent, unkind, un-
realistic, unscrupulous, unselfish, unstable, vindic-
tive, versatile, warm, wary, weak, whiny, whole-
some, wise, withdrawn, witty, worrying, zany

C: Occupation Participation Census Data (1990)

Occupation Percentage Difference
bookbinder 0.12

waitstaff 0.65
laborer -0.63
sailor -0.93

technician -0.08
porter -0.79

chemist -0.46
electrician -0.95
inspector -0.51

salesperson -0.18
secretary 0.96
plumber -0.97
doctor -0.58

mechanic -0.32
instructor -0.16
carpenter -0.96

upholsterer -0.50
shoemaker -0.82
bartender 0.05

chiropractor -0.37
nutritionist 0.80
pharmacist -0.26
bankteller 0.80

administrator 0.08
surgeon -0.58

geologist -0.69
teacher 0.49
painter -0.64
soldier -0.78

photographer -0.32



Occupation Percentage Difference
attendant 0.60
economist -0.12

janitor -0.11
clergy -0.54

peddler 0.38
auctioneer -0.68

artist 0.09
dentist -0.73
driver -0.75
dancer 0.57
cashier 0.62
cook 0.04

sheriff -0.62
nurse 0.84

compositor 0.37
author 0.01
lawyer -0.49

fireperson -0.92
conductor -0.88
manager -0.29

postmaster -0.05
dietitian 0.80
architect -0.64
gardener -0.83

optometrist -0.69
housekeeper 0.86

sales -0.03
accountant 0.07

molder -0.67
draftsperson -0.62

clerical 0.43
typesetter 0.37
musician 0.19
plasterer -0.96
machinist -0.90

newsperson 0.05
pilot -0.92
baker -0.03

weaver 0.34
therapist 0.52

entertainer 0.01
police -0.71
jeweler -0.42

boilermaker -0.95
bailiff -0.62

operator 0.16
surveyor -0.76

psychologist 0.19
professor -0.16
engineer -0.77

Occupation Percentage Difference
judge -0.49

mailperson -0.51
tradesperson -0.89

proprietor -0.28
librarian 0.77
broker 0.02

millwright -0.93
welder -0.90

designer 0.17
lumberjack -0.73
toolmaker -0.95

setter -0.95
huckster 0.38

clerk -0.39
smith -0.90
athlete -0.42
tailor 0.01

scientist -0.38
mathematician -0.41

farmer -0.70
veterinarian -0.45

official -0.25
statistician -0.09
physician -0.58

conservationist -0.70
cabinetmaker -0.85

guard -0.64
doorkeeper -0.64

mason -0.97
physicist -0.75

Table 3: Occupation Participation Census
Data(1990)

D Williams and Best Survey (1990)

word year score transformed score
absent-minded 1990 60 -100

active 1990 81 -310
adaptable 1990 37 130

adventurous 1990 93 -430
affected 1990 20 300

affectionate 1990 10 400
aggressive 1990 88 -380

alert 1990 60 -100
aloof 1990 50 0

ambitious 1990 82 -320
anxious 1990 23 270
apathetic 1990 53 -30

appreciative 1990 26 240
argumentative 1990 59 -90



word year score transformed score
arrogant 1990 74 -240
artistic 1990 34 160

assertive 1990 73 -230
attractive 1990 14 360
autocratic 1990 86 -360
awkward 1990 64 -140

bitter 1990 51 -10
blustery 1990 65 -150
boastful 1990 77 -270
bossy 1990 68 -180
calm 1990 48 20

capable 1990 70 -200
careless 1990 65 -150
cautious 1990 33 170

changeable 1990 28 220
charming 1990 19 310
cheerful 1990 36 140
civilized 1990 48 20

clear-thinking 1990 71 -210
clever 1990 64 -140
coarse 1990 91 -410
cold 1990 58 -80

commonplace 1990 54 -40
complaining 1990 21 290
complicated 1990 30 200

conceited 1990 68 -180
confident 1990 77 -270
confused 1990 33 170

conscientious 1990 45 50
conservative 1990 53 -30
considerate 1990 35 150
contented 1990 43 70

conventional 1990 54 -40
cool 1990 64 -140

cooperative 1990 46 40
courageous 1990 86 -360
cowardly 1990 45 50

cruel 1990 79 -290
curious 1990 24 260
cynical 1990 69 -190
daring 1990 86 -360

deceitful 1990 52 -20
defensive 1990 43 70
deliberate 1990 61 -110

demanding 1990 48 20
dependable 1990 56 -60
dependent 1990 19 310
despondent 1990 36 140
determined 1990 78 -280
dignified 1990 53 -30

word year score transformed score
discreet 1990 49 10

disorderly 1990 76 -260
dissatisfied 1990 42 80
distractible 1990 40 100
distrustful 1990 45 50
dominant 1990 87 -370
dreamy 1990 17 330

dull 1990 56 -60
easy-going 1990 64 -140
effeminate 1990 41 90
efficient 1990 63 -130

egotistical 1990 77 -270
emotional 1990 12 380
energetic 1990 82 -320

enterprising 1990 81 -310
enthusiastic 1990 51 -10

evasive 1990 46 40
excitable 1990 33 170

fair-minded 1990 59 -90
fault-finding 1990 33 170

fearful 1990 17 330
feminine 1990 8 420

fickle 1990 27 230
flirtatious 1990 35 150

foolish 1990 33 170
forceful 1990 93 -430

foresighted 1990 58 -80
forgetful 1990 58 -80
forgiving 1990 33 170

formal 1990 61 -110
frank 1990 65 -150

friendly 1990 42 80
frivolous 1990 28 220

fussy 1990 24 260
generous 1990 55 -50

gentle 1990 21 290
gloomy 1990 56 -60

good-looking 1990 36 140
good-natured 1990 51 -10

greedy 1990 67 -170
handsome 1990 69 -190

hard-headed 1990 74 -240
hard-hearted 1990 77 -270

hasty 1990 54 -40
headstrong 1990 71 -210

healthy 1990 69 -190
helpful 1990 35 150

high-strung 1990 32 180
honest 1990 55 -50
hostile 1990 66 -160



word year score transformed score
humorous 1990 73 -230

hurried 1990 55 -50
idealistic 1990 54 -40

imaginative 1990 32 180
immature 1990 48 20
impatient 1990 59 -90
impulsive 1990 44 60

independent 1990 84 -340
indifferent 1990 69 -190

individualistic 1990 71 -210
industrious 1990 60 -100

infantile 1990 44 60
informal 1990 84 -340
ingenious 1990 69 -190
inhibited 1990 42 80
initiative 1990 75 -250
insightful 1990 58 -80
intelligent 1990 68 -180

interests narrow 1990 34 160
interests wide 1990 73 -230

intolerant 1990 65 -150
inventive 1990 81 -310

irresponsible 1990 63 -130
irritable 1990 50 0

jolly 1990 59 -90
kind 1990 29 210
lazy 1990 73 -230

leisurely 1990 59 -90
logical 1990 79 -290
loud 1990 76 -260
loyal 1990 42 80

mannerly 1990 48 20
masculine 1990 96 -460

mature 1990 56 -60
meek 1990 25 250

methodical 1990 60 -100
mild 1990 22 280

mischievous 1990 63 -130
moderate 1990 48 20
modest 1990 32 180
moody 1990 39 110
nagging 1990 30 200
natural 1990 53 -30
nervous 1990 28 220
noisy 1990 65 -150

obliging 1990 40 100
obnoxious 1990 72 -220

opinionated 1990 67 -170
opportunistic 1990 72 -220

optimistic 1990 58 -80

word year score transformed score
organized 1990 55 -50
original 1990 60 -100
outgoing 1990 64 -140

outspoken 1990 66 -160
painstaking 1990 44 60

patient 1990 32 180
peaceable 1990 35 150
peculiar 1990 50 0

persevering 1990 60 -100
persistent 1990 63 -130

pessimistic 1990 50 0
planful 1990 63 -130
pleasant 1990 26 240

pleasure-seeking 1990 68 -180
poised 1990 44 60

polished 1990 45 50
practical 1990 63 -130
praising 1990 44 60
precise 1990 67 -170

prejudiced 1990 48 20
preoccupied 1990 57 -70
progressive 1990 78 -280

prudish 1990 24 260
quarrelsome 1990 43 70

queer 1990 63 -130
quick 1990 72 -220
quiet 1990 37 130

quitting 1990 43 70
rational 1990 75 -250

rattlebrained 1990 34 160
realistic 1990 75 -250

reasonable 1990 63 -130
rebellious 1990 61 -110
reckless 1990 74 -240
reflective 1990 53 -30
relaxed 1990 59 -90
reliable 1990 61 -110

resentful 1990 40 100
reserved 1990 41 90

resourceful 1990 70 -200
responsible 1990 65 -150

restless 1990 68 -180
retiring 1990 52 -20

rigid 1990 74 -240
robust 1990 85 -350
rude 1990 83 -330

sarcastic 1990 61 -110
self-centered 1990 61 -110
self-confident 1990 79 -290
self-controlled 1990 64 -140



word year score transformed score
self-denying 1990 36 140
self-pitying 1990 30 200

self-punishing 1990 47 30
self-seeking 1990 59 -90

selfish 1990 61 -110
sensitive 1990 14 360

sentimental 1990 11 390
serious 1990 74 -240
severe 1990 81 -310
sexy 1990 14 360

shallow 1990 36 140
sharp-witted 1990 68 -180

shiftless 1990 60 -100
show-off 1990 67 -170
shrewd 1990 60 -100

shy 1990 25 250
silent 1990 42 80
simple 1990 45 50
sincere 1990 44 60

slipshod 1990 63 -130
slow 1990 50 0
sly 1990 60 -100

smug 1990 64 -140
snobbish 1990 44 60
sociable 1990 43 70

soft-hearted 1990 19 310
sophisticated 1990 28 220
spendthrift 1990 46 40
spineless 1990 52 -20

spontaneous 1990 49 10
spunky 1990 63 -130
stable 1990 71 -210
steady 1990 70 -200
stern 1990 84 -340

stingy 1990 69 -190
stolid 1990 76 -260
strong 1990 92 -420

stubborn 1990 63 -130
submissive 1990 16 340
suggestible 1990 26 240

sulky 1990 45 50
superstitious 1990 13 370
suspicious 1990 35 150

sympathetic 1990 27 230
tactful 1990 47 30
tactless 1990 62 -120
talkative 1990 22 280

temperamental 1990 34 160
tense 1990 53 -30

thankless 1990 66 -160

word year score transformed score
thorough 1990 59 -90

thoughtful 1990 47 30
thrifty 1990 46 40
timid 1990 25 250

tolerant 1990 45 50
touchy 1990 27 230
tough 1990 91 -410

trusting 1990 42 80
unaffected 1990 72 -220

unambitious 1990 30 200
unassuming 1990 44 60

unconventional 1990 59 -90
undependable 1990 53 -30
understanding 1990 33 170
unemotional 1990 82 -320
unexcitable 1990 70 -200
unfriendly 1990 67 -170
uninhibited 1990 66 -160
unintelligent 1990 32 180

unkind 1990 74 -240
unrealistic 1990 35 150

unscrupulous 1990 72 -220
unselfish 1990 45 50
unstable 1990 32 180

vindictive 1990 49 10
versatile 1990 61 -110

warm 1990 27 230
wary 1990 47 30
weak 1990 17 330
whiny 1990 23 270

wholesome 1990 57 -70
wise 1990 77 -270

withdrawn 1990 40 100
witty 1990 67 -170

worrying 1990 27 230
zany 1990 67 -170

Table 4: Williams and Best Survey (1990)
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