
 

 
 

Abstract 

This paper examines how word 

embeddings from large language models 

(LLMs) can be leveraged for corpus-

linguistic studies of co-occurrence. 

Specifically, I examine whether Phrase-

BERT (Wang et al. 2021) representations 

contain information about co-occurrence 

properties of English verbs and nouns, such 

as token frequency, attraction, productivity 

and dispersion, and if so, how Phrase-

BERT can be used alongside such measures 

in corpus-linguistic analyses. I find that (a) 

Phrase-BERT representations partially 

encode information from co-occurrence 

statistics, (b) Phrase-BERT by itself 

predicts quite well whether a verb-noun 

combination is a light verb construction, 

but predictions are further improved by 

corpus statistics and semantic information, 

(c) Phrase-BERT’s predictions as to 

whether something is an LVC can be 

partially explained through corpus statistics. 

1 Introduction 

Co-occurrence is at the heart of both corpus and 

computational linguistics. Both fields are interested 

in exploring forms that regularly co-occur with 

each other to form collocations or multi-word 

expressions. Both began studying co-occurrence 

with similar methods: counting co-occurrence 

between pairs of forms, computing statistics for 

measuring the salience of co-occurrence, and 

choosing the highest-scoring pairs (Dras & 

Johnson 1996, Evert 2005, Tan et al. 2006 etc.). 

Yet the two traditions have parted ways. Modern 

computational linguistics treats the extraction of 

multi-word expressions as a sequence labelling 

problem (e.g. Waszczuk et al. 2019, Taslimipoor & 

Rohanian 2018): Given a sequence of tokens in a 

corpus, how can we label the beginning and end of 

multi-word expressions? The methodology has 

moved beyond statistics to using pre-trained large 

language models (LLMs), which calculate the 

probabilities of strings of tokens using very large 

corpora. 

 Meanwhile, corpus linguistics has further 

developed the traditional method. Rather than a 

single co-occurrence statistic (such as PMI or 𝐺2), 

recent work suggests that co-occurrence properties 

are better captured by suites of statistics that 

operationalise different aspects of distribution with 

different psycholinguistic interpretations (e.g. 

Gries 2022a, 2024, van Hoey 2023). This 

movement towards multi-dimensionality is called 

tuplelisation: it involves gathering combinations, 

or tuples, of corpus statistics. Crucial to this 

development is the realisation that correlation 

between statistics comprising the tuples should be 

minimised, and the introduction of tools to do so 

(Gries 2022b, 2022c). 

Nevertheless, the versatility and accuracy of 

black-box language models remain attractive for 

corpus linguists. For example, while a linguist 

cannot obtain accurate co-occurrence statistics for 

a pair of words involving a word that did not occur 

in the corpus, this is unproblematic if we use word 

embeddings (vector-space representations) based 

on LLMs: word vectors are trained on much larger 

corpora and, in their modern incarnations, can 

handle unseen words, since word embeddings are 

creating by combining embeddings of subwords: 

fragments of words determined by a tokeniser. 

Given the strengths of LLM word embeddings, 

one may ask how to integrate them into the corpus 

linguist’s workflow without sacrificing the 

linguistic interpretability desired in theoretical 
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corpus-linguistic work, and how it make it work 

alongside traditional corpus-linguistic methods. 

Extensive work has demonstrated that LLM word 

embeddings encode all types of linguistic 

information, from word classes (Belinkov et al. 

2018) to agreement and anaphora (Lin et al. 2019), 

named entities and semantic roles (Tenney et al. 

2019), syntactic structures (Jawahar et al. 2019) 

and, crucially for this paper, constructional 

information (Tayyar Madabushi et al. 2020), 

including filler-slot attraction (Thrush et al. 2020). 

This suggests that LLM behaviour can be pinned 

down to aid corpus-based investigations of 

language use, including co-occurrence. 

 This paper tackles this question through the case 

study of association between verbs and their 

objects in English, particular as regards the 

identification of light verb constructions, 

combinations of a semantically light verb with a 

semantically heavy lexical noun, as such 

constructions are particularly relevant to corpus-

based lexicography and constructicography. LLM-

based word embeddings are taken from Phrase-

BERT (Wang et al. 2021).  

Specific research questions of this paper are: 

1. To what extent do Phrase-BERT embeddings 

of verb-object sequences encode co-

occurrence information between the verb and 

the head noun of the object? 

2. Do tupleised co-occurrence statistics encode 

any information useful for identifying light 

verb constructions not already present in 

Phrase-BERT? 

3. Can tupleised co-occurrence statistics, along 

with semantic and syntactic information, be 

used to interpret how Phrase-BERT predicts 

whether a verb-object sequence is a light verb 

construction? 

Section 2 gives the background information to 

this paper. Section 3 describes the nature of the 

datasets used. Section 4 shows that Phrase-BERT 

embeddings can partially predict tupleised co-

occurrence statistics calculated from the British 

National Corpus (BNC; Leech 1992). Section 5 

examines the detection of light verb constructions. 

It demonstrates that corpus statistics are still useful 

when used alongside Phrase-BERT embeddings 

for LVC detection. It also shows how tupleised 

corpus statistics can help interpret the behaviour of 

a Phrase-BERT-based model of light verb 

detection. 

2 Background 

2.1 Covarying collexeme analysis 

The linguistic phenomenon studied in this paper is 

combinations of verbs and objects within a specific 

construction type in English: active, transitive 

clauses. Thus, it can be regarded as a covarying 

collexeme analysis (Stefanowitsch & Gries 2005): 

We are looking at the co-occurrence of items within 

two constructional slots of a construction. 

2.2 Tupleised co-occurrence statistics 

The corpus statistics used in this paper are mostly 

based on Gries (2022a). Most of the measures are 

calculated using values from the following 

contingency table, where n stands for noun (i.e. the 

object), v stands for verb, and ¬ means ‘not’: 

 𝑛 ¬𝑛 Totals 

𝑣 𝑓(𝑛, 𝑣) 𝑓(¬𝑛, 𝑣) 𝑓( 𝑣) 

¬𝑣 𝑓(𝑛, ¬𝑣) 𝑓(¬𝑛, ¬𝑣) 𝑓(¬𝑣) 

Totals 𝑓(𝑛) 𝑓(¬𝑛) 𝑁 

 

For example, if n is ‘look’ and v is ‘take’, then 

𝑓(𝑛, 𝑣)  is the number of tokens of verb-object 

combinations with take as verb and look as object; 

𝑓(¬𝑛, 𝑣)  is the number of tokens of verb-object 

combinations where the verb is take and the object 

is not look; 𝑓(¬𝑣)  is the number of verb-object 

combinations where the verb is not take; and so on. 

From these numbers, estimated probabilities can be 

calculated: For example, 𝑝(¬𝑛, 𝑣) = 𝑓(¬𝑛, 𝑣)/𝑁 

is the estimated probability that a verb-object 

combination has take as verb and an object other 

than look, and 𝑝(𝑣|𝑛) = 𝑓(𝑣|𝑛)/𝑓(𝑛)  is the 

estimated probability that the verb is take given that 

the object is look. 

Eight corpus statistics will be considered in this 

paper. Firstly, token frequency is simply 𝑓(𝑛, 𝑣). 

The second and third statistics are measures of 

unidirectional association, i.e. how much is the 

noun attracted to the verb, and the verb to the noun? 

For the attraction of the verb to the noun, this is 

calculated using the Kullback-Leibler divergence 

(KLD) between the distribution of the verb given 

the noun and the unconditional distribution of the 

verb. The more dissimilar these two distributions 

are, the more highly the verb is attracted to or 

repelled from the noun: 

𝐾𝐿𝐷(𝑣|𝑛) = 𝑝(𝑣|𝑛) log2

𝑝(𝑣|𝑛)

𝑝(𝑣)

+  𝑝(¬𝑣|𝑛) log2

𝑝(¬𝑣|𝑛)

𝑝(¬𝑣)
 



 

 
 

Following Gries (2022a), this value is then 

normalised to fall between 0 and 1, with 0 being the 

lowest attraction and 1 being the highest attraction 

by applying the exponential function to -1 times the 

KLD and then subtracting the result from 1. In 

cases of repulsion, i.e. 𝑝(𝑣|𝑛) < 𝑝(𝑣), a negative 

sign is added in front of the negative KLD, so the 

final quantity ranges from -1 to 1. The formula for 

this value is as follows: 

𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛) = sgn(𝑝(𝑣|𝑛) − 𝑝(𝑣)) × (1

− 𝑒−𝐾𝐿𝐷𝑣→𝑛) 

The attraction of the noun to the verb is 

calculated similarly, just with n and v swapped in 

the formula. For example, in the construction play 

truant, play is highly attracted to truant (high verb-

to-noun attraction), but truant is not highly 

attracted to play (low noun-to-verb attraction), 

since if we know the noun is truant, the verb much 

more likely to be play than most other nouns; but if 

we know the verb is play, it is very hard to guess 

the noun is truant. 

The next four statistics all measure productivity: 

The degree to which verbs can combine with a 

variety of nouns, and vice versa. The fourth and 

fifth statistics are the type frequencies: the number 

of noun types that accompany each verb, denoted 

𝑡𝑓𝑣 , and the number of verb types that co-occur 

with each noun, denoted 𝑡𝑓𝑛 . I take the logged 

values of both, i.e. log(𝑡𝑓𝑣) and log(𝑡𝑓𝑛). 

The sixth and seventh statistics are entropy, 

which measures how unpredictable the noun is 

given the verb, and vice versa. Unlike type 

frequency, this measure also takes into account the 

relative prevalence of different collocates. For 

example, if one noun co-occurs with a single verb 

99% of the time and 99 other verbs the remaining 

1% of the time, its entropy would be nearly 0 even 

though the type frequency is 100. Unlike the 

conventional formula for entropy, the entropy used 

in this paper is normalised, following Gries 

(2022a), such that it cannot exceed 1. For the 

entropy of the verb given the noun, the entropy is 

normalised by the frequency of the noun: 

𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) =
− ∑ 𝑝(𝑣|𝑛) log2 𝑝(𝑣|𝑛)𝑣

log2 𝑓(𝑛)
 

The entropy of the verb given the noun is similarly 

calculated by swapping v and n in the formula. 

The eighth and final statistic is 𝐷𝑃𝑛𝑜𝑓𝑟𝑒𝑞 (Gries 

2022c). This calculates how evenly distributed the 

verb-object combination is within the corpus. The 

first step in calculating this value is to get the raw 

dispersion statistic DP. To do this, we first calculate 

the proportion of instances of a verb-object 

combination, say take + look, that comes from each 

document in the corpus. We then calculate the 

proportion of verb-object combinations in general 

that comes from each document in the corpus. We 

then find the Manhattan distance between the two 

vectors of proportions. Next, we estimate the 

minimum and maximum values of 𝐷𝑃  given the 

token frequency of take + look. Finally, we 

calculate 𝐷𝑃𝑛𝑜𝑓𝑟𝑒𝑞  by calculating its position 

within the range of possible values: the minimum 

value is 0, the maximum value is 1, and if the DP 

value is halfway between the minimum and 

maximum, then 𝐷𝑃𝑛𝑜𝑟𝑚 is .5, and so on. Details of 

calculation are in Gries (2022c). 

2.3 Light verb constructions 

The particular application of corpus statistics and 

Phrase-BERT in this paper will be focused on the 

identification of light verb constructions (LVCs). A 

light verb construction is a grammatical 

construction consisting of a semantically light verb 

that contributes little to no predicational 

information and a lexical item, generally a 

nominal, which contributes the bulk of the 

information about the event or state being 

described. In English, a typical light verb 

construction consists of a verb followed by an 

indefinite object such as take a peek or do 

backflips. This paper will consider exclusively 

those LVCs that contain a noun. 

Light verb constructions are studied in both 

corpus linguistics and NLP. They are a type of 

multi-word expression of great interest in both 

applied and theoretical linguistics: They are a 

common source of L2 errors because of their 

idiosyncratic properties (e.g. which verbs are 

paired with which nominals) (García Salido 2016), 

and their cognitive representation is a constant 

topic of interest, e.g. in English, they have the form 

of verb-object constructions, yet in some ways 

function like intransitive predicates (e.g. 

Wittenberg & Piñango 2011). It also has 

applications in NLP tasks like event extraction and 

information retrieval (Vincze et al. 2013), since the 

noun in an LVC should be treated as part of the 

predicate, rather than a participant in the event. 

Thus, extracting LVCs from corpora has many 

applications, such as for compiling computer- 

and/or human-readable glossaries of LVCs within 



 

 
 

a domain, for studying the grammatical properties 

of LVCs in L1 and L2 production, etc. 

2.4 Phrase-BERT 

As mentioned above, this paper uses Phrase-BERT 

(Wang et al. 2021) to classify constructions as 

LVCs. The main advantage of Phrase-BERT is that 

unlike most BERT-based approaches to calculating 

phrasal similarity, it is trained on collections of 

paraphrases such that phrases with similar meaning 

but no words in common will have similar 

embeddings, whereas words with overlapping 

words but very different meanings will have 

different embeddings. Thus, Phrase-BERT does 

not rely heavily on lexical overlap between 

phrases, and can better capture similarity between 

phrases that do not necessarily share words. As 

LVCs are a highly abstract category mostly 

characterised by how meaning is distributed in 

different parts of the construction, using Phrase-

BERT can potentially make it easier to detect LVCs 

even if their component words do not appear in 

LVCs in the training data, and avoid mistakenly 

classifying non-LVCs as LVCs just because they 

share words with LVCs. This may be especially 

useful for detecting LVCs in L2 production, which 

may have less lexical overlap with LVCs in L1 

data, but still share the semantic properties of 

LVCs. 

2.5 Related work 

To date, LLMs’ most common uses in corpus 

linguistics are (a) using word embeddings to 

measure semantic similarity, which predates LLMs 

(Desagulier 2019, Tiun et al. 2020, etc.) and (b) 

using outputs generated from LLMs for automatic 

annotation (e.g. Weissweiler et al. 2024, Yu et al. 

2024). Though this paper also uses LLMs to 

produce annotations, it uses word embeddings 

originating from LLM representations as 

predictors, rather than using LLM-generated 

output directly. 

Concerning co-occurrence specifically, Uchida 

(2024) found that ChatGPT produces a collocation 

list that has 42.8% overlap with the list of 

collocations in the Corpus of Contemporary 

American English (COCA) created by selecting all 

collocations with mutual information (a 

bidirectional association measure) over 1, 

suggesting that ChatGPT’s weights may encode 

some knowledge about co-occurrence of words 

(though the collocations may have also come from 

memorising collocation lists and dictionaries in the 

training data, rather than actually analysing co-

occurrence between words). 

In computational linguistics, Kanclerz & 

Piasecki (2022) has reintegrated statistical 

measures into MWE labelling; their approach, 

however, only uses bidirectional association 

measures to create lists of non-MWEs for negative 

training data. Thus, their co-occurrence statistics 

are not tupleised, and word embeddings and co-

occurrence statistics are used at two different stages 

of their system for different purposes; they were 

not directly compared. To my knowledge, no work 

has attempted to compare word embeddings from 

LLMs to tupleised co-occurrence statistics. 

3 Data 

Three data sources were used for this study. 

Firstly, I took the verb-object constructions from 

the British National Corpus annotated by Tu & 

Roth (2011). This dataset includes the verbs make, 

get, do, have, take, give; around half were 

annotated as LVCs and half as non-LVCs. Secondly, 

I took annotations of OntoNotes 4.0 (Weischedel et 

al. 2011) from the latest version of PropBank 

(Bonial et al. 2014), which annotates for LVCs and 

other verb-object combinations. These two datasets 

were combined; to make the two comparable, the 

surrounding context of the LVCs, i.e. words before 

the verb or after the object, were discarded. 

Instances where the noun precedes the verb were 

also ignored. Dependency parses of the LVCs were 

used to extract the presence of dependencies like 

articles (a, an, etc.). An LLM-based 

disambiguation model (Wahle et al. 2021) was used 

to find the WordNet synset corresponding to the 

noun. The lexical file of the synset was then used 

as a semantic feature, dividing the nouns into 

categories like ‘artifact’, ‘cognition’, ‘process’, 

‘substance’, ‘animal’, etc., similar to one of the 

features in Tu & Roth (2011). This dataset will be 

referred to as the LVC dataset. 

For calculation of corpus statistics related to 

verb-noun constructions, the entire BNC was 

parsed using spaCy (Honnibal & Montani 2017) 

and all verb-direct object pairs were extracted. The 

eight statistics were then calculated. This dataset 

will be referred to as the VN dataset. Details of the 

construction of the datasets are in Appendix A. 



 

 
 

4 Experiment 1: Predicting co-

occurrence statistics from Phrase-

BERT embeddings 

The first experiment investigates whether 

information contained in corpus statistics is 

represented in Phrase-BERT in some form. This 

was done by attempting to predict corpus statistics 

from Phrase-BERT embeddings. If Phrase-BERT 

embeddings do contain information on association, 

entropy, etc., then these measures should be 

predictable from Phrase-BERT representations. 

4.1 Methodology 

A neural network (Figure 1) was used to predict co-

occurrence statistics from Phrase-BERT 

embeddings. The model architecture consisted of 

an input layer containing all Phrase-BERT 

embeddings with dropout rate .5, a hidden layer of 

60 units with ReLU activation and dropout rate .2, 

and finally eight output units with linear activation. 

The co-occurrence measures were centred and 

scaled before modelling, and a training-dev-test 

split of 8-1-1 was used. The model was 

implemented in Keras (Chollet et al. 2015). 

4.2 Results & discussion 

Figure 2 plots the predicted values from the neural 

network against the actual corpus statistics. As can 

be seen from the graph, although there are 

considerable deviations between the predicted and 

actual values of the co-occurrence statistics, the 

embeddings do have substantial predictive power 

overall. The mean squared error (calculated on the 

normalised corpus statistics) in the test set was 

.521. Were a curvilinear activation function 

employed, some of the predictions may be even 

more accurate. Moreover, it should be noted that 

some of the noise may come from noise in the co-

occurrence statistics themselves, rather than in the 

ability of the embeddings to predict co-occurrence 

patterns. In sum, embeddings seem to encode 

some, though not necessarily all, of the information 

available in co-occurrence statistics. 

5 Experiment 2: Relative contribution of 

BERT and co-occurrence statistics to 

light verb prediction 

Since Experiment 1 found that word embeddings 

do encode information relevant to co-occurrence, 

one question is whether problems traditionally 

faced by corpus linguists that call for co-

occurrence statistics can be solved by using word 

embeddings alone, or if co-occurrence measures 

still contain independent information that matter. In 

 

Figure 2: Predicted values of the corpus statistics 

using Phrase-BERT embeddings and actual 

values of the eight corpus statistics as calculated 

using the BNC. Only the test set is shown. Dots 

on the diagonal line have exactly equal actual 

and predicted values. The actual and predicted 

values are presented in their original scales, 

rather than the normalised version used in 

modelling. 

 

Figure 1: Architecture of the model used in 

Experiment 1. 

 

Figure 3: Architecture of the model used in 

Experiment 2. 



 

 
 

this section, we will consider the particular 

problem of extracting light verb constructions from 

a corpus. Imagine, for example, that we would like 

to teach light verb constructions in an L2 language 

instruction setting, and would like locate all light 

verb constructions in a set of level-appropriate texts 

to determine which readings would best serve the 

purpose. Would Phrase-BERT alone suffice to 

complete the job, or do we need traditional sources 

of information like co-occurrence statistics? 

To answer this question, in this section, I aim to 

predict whether a phrase is a light verb construction 

from Phrase-BERT embeddings, corpus statistics, 

and both. If Phrase-BERT embeddings perform 

similar to or better than corpus statistics, and using 

both does not constitute an improvement over 

Phrase-BERT alone, then Phrase-BERT already 

contains all the useful information contained in the 

corpus statistics. If, on the other hand, using both 

sources of information is better than using Phrase-

BERT alone, then this implies that corpus statistics 

contain useful information for LVC prediction that 

is not encoded in Phrase-BERT. I also run versions 

of these three models that add WordNet lexical 

files, dependency syntax information, or both, to 

see if any advantage of adding corpus statistics can 

be eliminated when semantic and/or syntactic 

information is added. 

5.1 Methodology 

The model trained in this section aims to predict 

whether a phrase is a light verb construction, based 

on the LVC dataset. Different combinations of 

predictors were used: I trained models using 

Phrase-BERT only, co-occurrence statistics only, or 

both, with syntactic information, semantic 

information, or both.  Note that although both the 

corpus statistics and the Tu & Roth light verb 

judgements used the BNC, the Tu & Roth 

judgements were not involved in the calculation of 

corpus statistics, so there is no information leak. 

The model architecture (Figure 3) consisted of 

an input layer containing the various variables, a 

hidden layer, and a sigmoid output layer for the 

choice between LVC vs non-LVC. Class weights 

were proportional to the reciprocal of the sample 

size of each class. Decision thresholds were tuned 

to maximise F1 using a grid search between 0 and 

1 (exclusive) and a step size of .01. Grid search was 

used to determine the number of hidden layer units 

and dropout rates; all combinations of the values in 

Table 1 were tried, and for each combination of 

variables, I took the hyperparameter combination 

that resulted in the highest F1 in the validation set.  

As with Experiment 1, scaled and centred corpus 

statistics were used, and the training-dev-test split 

was 8-1-1. 

5.2 Results 

Precision, recall, F1 and AUC values of all the 

models trained were shown in Table 2. Phrase-

BERT alone performs substantially better than 

corpus statistics on all metrics. Yet when we 

combine both, the resulting model does better on 

all metrics but recall compared to the model with 

BERT alone. This pattern (adding statistics 

improves most metrics) largely persists even after 

adding syntactic dependencies and/or semantic 

categories to the model, though the model with just 

BERT and statistics remains the best model in 

terms of F1. Thus, co-occurrence statistics contain 

useful information beyond what is encoded in 

Phrase-BERT, syntactic dependencies on the noun, 

and WordNet lexical files. 

Model P R F1 AUC 

BERT 0.937 0.970 0.953 0.955 

STAT 0.910 0.935 0.922 0.835 

BERT + STAT 0.950 0.964 0.957 0.958 

BERT + SYN 0.951 0.958 0.954 0.952 

STAT + SYN 0.898 0.969 0.932 0.846 

BERT + STAT 

+ SYN 

0.953 0.960 0.956 0.958 

BERT + SEM 0.946 0.961 0.953 0.949 

STAT + SEM 0.901 0.961 0.930 0.870 

BERT + STAT 

+ SEM 

0.940 0.972 0.956 0.955 

BERT + SYN 

+ SEM 

0.955 0.948 0.952 0.954 

STAT + SYN 

+ SEM 

0.915 0.955 0.935 0.890 

BERT + STAT 

+ SYN + SEM 

0.951 0.958 0.955 0.956 

Table 2: Results of Experiment 2 based on the test 

set. P = precision, R = recall, F1 = F1-value, AUC = 

area under the curve, BERT = Phrase-BERT 

embeddings, STAT = co-occurrence statistics, SEM 

= WordNet lexical files, SYN = noun modifiers’ 

presence. 

Hyperparameter Values 

# of hidden layer units 15, 30, 45 

Dropout rate for input layer .2, .35, .5 

Dropout rate for hidden layer .2, .35, .5 

Table 1: Hyperparameter values tested. 



 

 
 

5.3 Discussion 

To examine how important corpus statistics were, I 

used a permutation variable importance approach 

on the maximal model. I randomly shuffled the 

values of each of all four groups of variables, and 

examined the impacts on the F1 in the test set. I did 

this reordering 20 times per variable group. As seen 

in Figure 5, the biggest drop in F1 by far came from 

reordering BERT, but reordering corpus statistics 

still resulted in a rather more substantial drop in 

performance than the semantic or syntactic 

variables. This suggests that corpus statistics have 

a small, but still substantial contribution towards 

the predictive power of the model. 

But which statistics exactly are still important in 

this full model, i.e. are not captured by Phrase-

BERT or by the syntactic and semantic properties? 

I repeated the permutation variable importance 

process, but this time shuffling each statistic 

independently, for three models: (a) statistics only, 

(b) statistics with syntax and semantics, (c) 

statistics with BERT, syntax and semantics (Figure 

4). Going from model (a) to (b), there is a drop in 

all of the variables’ importance, but all of them still 

matter, so semantics and syntax only capture a 

small part of the useful information from co-

occurrence statistics. Unsurprisingly, once BERT is 

added, all the statistics’ importance drop drastically, 

though 𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) remains important. 

To further examine how exactly co-occurrence 

statistics contribute to better predictions in 

qualitative linguistics terms, I qualitatively 

compared the predictions of the full model (c) with 

the model with everything but co-occurrence 

statistics (hereafter the no-stats model). I looked at 

cases in which one model got something wrong 

that the other got right. 

Firstly, I looked at cases of phrases labelled as 

non-LVCs in the original dataset but one of the two 

models judge as an LVC. These cases are especially 

important as the two models differ substantially in 

precision. Phrases that were classified as false 

positives in the full model and true negatives in the 

no-stats model often seem to be mislabelled in the 

original data or edge cases, e.g. take effect or do 

some work (many similar phrases were counted as 

LVCs in the data). On the other hand, if we look at 

the opposite situation – phrases that were false 

positives in the no-stats model but true negatives in 

the full model – there were fewer apparently 

mislabelled items. Instead, many were clear non-

LVCs where the verb is seemingly light (and is 

light in many other contexts), but in the specific 

phrase retains the non-light lexical meaning, e.g. 

made a profound impression (where the verb 

indicates the subject is actually creating something) 

or get credit (where the subject metaphorically 

receives something). In these cases, the useful 

contribution from corpus statistics likely comes 

from the ability to relate the noun to the verb rather 

than considering them separately. For example, get 

is a frequent verb often appearing in LVCs and 

credit is an abstract noun, which are often 

associated with LVCs. So looking at get and credit 

 

Figure 5: Permutation variable importance of the 

four variable groups, as calculated by drop in F1 

after shuffling the relevant variable group. 

 

Figure 4: Permutation variable importance of the 

tupelised co-occurrence statistics in (a) the STAT 

model, (b) the STAT + SYN + SEM model, (c) the 

BERT + STAT + SYN + SEM model. Note that 

the x-axis is different in each graph, with the scale 

of the x-axis in (c) much smaller than (a) and (b). 



 

 
 

separately, one may be tempted to classify this as 

an LVC. But the noun is not strongly attracted to 

the verb (z-score of 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) = −.21). Out 

of the 815 input variables, the most negative 

Shapley value is 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) (Shapley value = 

-0.03), suggesting that it was a major factor that 

pushed the maximal model to treat this phrase as 

non-LVC. This suggests such information was not 

encoded as well in Phrase-BERT alone. 

I then examined cases where phrases labelled as 

LVCs in the original dataset were classified as non-

LVCs by one of the two models. Very few phrases 

were false negatives in the full model but true 

positives in the no-stats model. There were no clear 

patterns in phrases that were false negatives in the 

no-stats model but true positives in the full model, 

except that they sometimes have less frequent 

nouns, like booking (seen once training data) or 

injection (seen twice). This is unsurprising given 

that the models are close in terms of recall. 

Of course, these results do not imply that corpus 

statistics are always needed on top of Phrase-BERT 

for LVC classification. I did not consider the 

context surrounding the LVCs, so I do not know 

whether Phrase-BERT better captures surrounding 

contextual information than corpus statistics like 

previous and next word entropy (Zhào et al. 2016). 

Moreover, the workflow for my system requires the 

user to first locate candidate verb-object 

combinations, rather than getting a list of LVCs 

from a raw text corpus; statistics may be hard to use 

in this situation. Still, the results suggest that 

corpus statistics remain relevant in at least some 

situations relevant to the corpus linguist. 

5.4 Follow-up experiment 

Since Experiment 2 found that much of the useful 

information in corpus statistics is found in Phrase-

BERT, one may ask how Phrase-BERT uses this 

implicit co-occurrence information to make 

predictions about LVC membership. To do this, I 

used the syntactic, semantic predictors and co-

occurrence statistics to predict the behaviour of the 

BERT-only model. Again, a neural network with a 

single ReLU hidden layer of 15 units was used, 

with the same dropout rates as Experiment 1. The 

output layer has linear activation, and predicts the 

estimated probability from the BERT-only model, 

with a logit transformation applied to the 

probability so that it can be any real number. 

Permutation variable importance (Figure 7) 

shows that WordNet semantic information is the 

most important, and as before, 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛) , 

𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) and the type frequencies stand out as 

the most important predictors based on co-

occurrence statistics. To see the exact way in which 

statistical information encoded in Phrase-BERT is 

used to predict light verb construction status, 

partial dependency plots of the relationship 

between the statistics and the prediction of the 

BERT-only model are shown in Figure 6. The 

strongest relationships are: 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛)  (i.e. 

the verb’s attraction to the noun) is positively 

associated with LVC status, while 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) 

is positively associated for very low values but 

negatively associated elsewhere. These results can 

be interpreted as Phrase-BERT having learnt that in 

LVCs, the verbs are generally strongly attracted to 

the noun, and the nouns are somewhat, but not very, 

attracted to the verb.  The productivity of the noun 

with respect to the range verbs it combines with, as 

 

Figure 7: Permutation variable importance of the 

statistics in the follow-up experiment, as 

calculated by drop in F1 after shuffling the 

relevant variable group. 

 

Figure 6: Partial dependency plots of the six 

statistics in the test set. Note that these are based 

on z-scores, not original values. 



 

 
 

measured by type frequency and entropy, is also 

negatively associated with LVC status. 

These results may be compared to those 

obtained for Tibetan LVCs in Lai (in press). 

However, there are several important differences 

between the two studies. Firstly, in this paper, 

noun-verb combinations are investigated 

regardless of frequency, whereas in Lai (in press), 

only combinations with the highest frequency were 

taken. Secondly, in this study, only verbs that 

appear in at least one LVC are considered, whereas 

Lai (in press) makes no such restriction. 

The relationship between 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛)  and   

𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) and LVC status is mostly in accord 

with the Tibetan findings. The initial positive 

relationship between 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣)  and LVC 

status found here is absent from the Tibetan study, 

likely because low-frequency noun-verb 

combinations were not considered there. Lower 

entropy of the verb slot given the noun 

𝐻norm(𝑣|𝑛)  and type frequency of the noun 

log (𝑡𝑓𝑛) being associated with LVC status is also 

consistent with the Tibetan findings. In the Tibetan 

study, higher values of 𝐻norm(𝑛|𝑣) and log (𝑡𝑓𝑣) 

were visually found to be associated with LVC 

status (though the statistical test was insignificant), 

contrary to the weak negative association found 

here. This small difference, however, does not 

necessarily indicate a typological difference, as it 

can likely be attributed to the fact that the present 

study excludes verbs that never appear in LVCs: 

such verbs were likely absent from LVCs precisely 

because they appear with fewer nouns, and their 

inclusion would have tipped the scales the other 

way. 

6 Conclusion 

In this study, we showed that a considerable 

amount of information in co-occurrence statistics is 

encoded in Phrase-BERT, though not all. We saw 

that tupleised corpus statistics only do slightly 

worse than Phrase-BERT at predicting whether a 

verb-object combination is an LVC, and moreover, 

the statistics have an independent contribution to 

LVC detection beyond information also encoded in 

Phrase-BERT, mostly coming from 𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) , 

the normalised entropy of the verb slot for each 

noun. Finally, corpus statistics can be used to 

partially interpret how Phrase-BERT identifies 

LVCs. Indeed, the patterns found through this 

analysis largely accord with findings in Lai (in 

press) for Tibetan, showing that the power and 

robustness of tupleised corpus statistics for LVC 

detection crosslinguistically. Importantly, this 

would not be possible in a traditional single-

statistic approach, which would not capture e.g. the 

fact that noun-to-verb attraction is mostly 

negatively associated with LVC status but verb-to-

noun attraction is positively associated. 

Thus, tupleised corpus statistics can aid in 

interpreting black-box systems and improving the 

performance of such systems when added as 

additional predictors. Tupleisation contributes to 

the lasting relevance of co-occurrence statistics for 

corpus linguists in the age of LLMs. 
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A Details of data extraction 

To create the LVC dataset, Tu & Roth’s data was 

used as-is, with no modifications except replacing 

the underscores with spaces. To extract non-LVC 

verb-object combinations from PropBank, I looked 

for verbs (pos = V), and then looked for an ARG1 

whose constituency tree representation starts with 

(NP in the corresponding proposition. To extract 

LVC verb-object combinations, I looked for verbs 

again, but this time looked for a word labelled 

ARGM-PRR which indicates it is the head of a light 

verb nominal. If this is not immediately adjacent to 

the verb, then the closest word to the ARGM-PRR 

whose constituency tree representation starts with 

(NP is considered the start of the light verb 

nominal. Otherwise, the word itself is considered 

the entirety of the light verb nominal. 

Phrase-BERT representations of the examples of 

the LVC dataset were computed for the string of 

words starting with the verb and ending in the light 

verb nominal, including anything in between, such 

as indirect object pronouns (e.g. throw them a 

curveball). 

The object nominals were dependency-parsed 

and dependents on the object were extracted, 

including a, the, no, some, any, good, this, little, 

more, great and first. The syntax features used in 

this paper are simply Boolean features indicating 

the presence of these words. 

The WordNet lexical files were based on the 

head of the object alone. I used nltk to get the 

synsets corresponding to the head, and then used 

Wahle et al.’s model to find the most appropriate 

meaning given the LVC instance. A sample input is 

as follows: 
question: which description 

describes the word " explanation "           

best in the following context? \ 

descriptions:[  " a statement that 

makes something comprehensible by 

describing the relevant structure 

or operation or circumstances etc. 

", " thought that makes something 

comprehensible ", or " the act of 

explaining; making something plain 

or intelligible " ] 

context: gave us an " explanation 

" . 

I then took the lexical file of the synset whose 

definition was deemed most appropriate. 

To create the VN dataset, sentences were first 

extracted from the HTML version of the BNC. 

Then I used spaCy to dependency-parse and 

lemmatise everything in the corpus. Direct objects 

(dobj) and passive subjects (nsubj:pass) were 

extracted from the corpus along with their verbal 

heads. Statistics were then calculated based on 

extracted verb-object combinations. 


