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Abstract
This paper outlines the process of training the AraT5-MSAizer model, a transformer-based neural machine
translation model aimed at translating five regional Arabic dialects into Modern Standard Arabic (MSA). Developed
for Task 2 of the 6th Workshop on Open-Source Arabic Corpora and Processing Tools, the model attained a BLEU
score of 21.79% on the held-out test set associated with the task.
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1. Introduction

Arabic—a Semitic language spoken by over 400M
people—encompasses a range of languages and
dialects that have varying degrees of mutual in-
telligibility (Bergman and Diab, 2022). Perhaps
what is even more defining of the Arabic language
is the state of diglossia where all regional and
local Arabic dialects co-exist with a “very diver-
gent, highly codified (often grammatically more
complex) superposed variety” (Ferguson, 1959,
p. 336)—which is the Modern Standard Arabic
(MSA). MSA is often used in formal and legal con-
texts across Arab countries, while dialectal Ara-
bic (DA) comprises a rich array of regional and
local dialects, differing in phonology, morphology,
syntax and semantics (Habash, 2022). These
variations between Arabic dialects and MSA pose
challenges for Arabic Natural Language Process-
ing (NLP) systems, particularly because many of
the existing datasets and corpora have been fo-
cused on MSA rather than the myriad of Arabic di-
alects, and the very fact that MSA is shared across
the Arab world (Bender, 2019; Bergman and Diab,
2022).1

This paper presents a fine-tuned encoder-
decoder model to translate dialectal Arabic into
MSA. The model is the result of participating in
Task 2 under the 6th Workshop on Open-Source
Arabic Corpora and Processing Tools; the shared
task is presented in more detail in Section 2. The
model itself, along with the data used to train it,
are described in Section 3. In Section 4 we report
the results on the development and test datasets
provided by the task organizers. We briefly refer
to related work in Section 5 and reflect on findings

1We suspect that there are political as well as reli-
gious factors contributing to the marginalization of di-
alectal Arabic, or even looking down at dialectal varieties
as ‘ill-formed’ Arabic. Though not discussed any further
here, it is imperative to examine the status of Arabic NLP
resources in light of this, while acknowledging efforts like
the OSACT 2024 Shared Task, among others.

and the way forward in Section 6.

2. Task Description

The Dialect to MSA Machine Translation Shared
Task revolves around translating various Arabic di-
alects into Modern Standard Arabic, with the in-
tention to bridge the gap between colloquial Ara-
bic and formal written language. Participants were
asked to develop models to accurately translate
(or convert) dialectal Arabic into MSA. The task
covered five regional dialects, namely: the Gulf,
Egyptian, Levantine, Iraqi, and Maghrebi dialects.
The development and test datasets provided in
the task are modestly sized. The development
set comprises 1, 001 sentence pairs—200 pairs per
dialect—whereas the test set includes 1, 888 sen-
tence pairs that are unevenly distributed over the
dialects, as illustrated in Table 1.2 Participants
were allowed to utilize whichever resources avail-
able to train and/or fine-tune their systems. All sub-
missions to the shared task were evaluated using
two metrics, viz. BLEU (Papineni et al., 2002) and
Comet DA (Rei et al., 2022).3

3. Model Description

We dubbed our model AraT5-MSAizer, and it
is the result of fine-tuning the AraT5v2 model
by Nagoudi et al. (2022)—a pre-trained encoder-

2According to the Shared Task’s website there was
supposed to be 500 MSA-dialect pairs for each dialect,
both for development and testing. “For each dialect,
a set of 500 sentences written in both MSA and di-
alect will be provided for finetuning, and the testing
will be done on a set of 500 blind sentences” https:
//osact-lrec.github.io.

3More details on the shared task and the results can
be found on: https://codalab.lisn.upsaclay.
fr/competitions/public_submissions/17118

https://osact-lrec.github.io
https://osact-lrec.github.io
https://codalab.lisn.upsaclay.fr/competitions/public_submissions/17118
https://codalab.lisn.upsaclay.fr/competitions/public_submissions/17118
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Dialect No. sentence pairs

Gulf 586
Levantine 568
Magharebi 343
Egyptian 314
Iraqi 77

Table 1: Dialect-wise breakdown of sentence
pairs in the test dataset from the shared task.

decoder transformer model (Raffel et al., 2020).4
We chose to fine-tune this specific model be-
cause it was pre-trained on Twitter data, among
other datasets, which encompass dialectal Ara-
bic (Nagoudi et al., 2022). In addition, as we de-
scribe in Section 5, the AraT5v2 model has been
used in other related shared tasks for dialect-to-
MSA translation.5 We approached the task as
translation from dialect to MSA without distinguish-
ing between the different dialects (even though
those were provided in the development and test
datasets).

In the following sub-sections, we present the
training data used to fine-tune the model and the
training configuration.

3.1. Training Data
To fine-tune our model, we used a blend of
four distinct datasets; three of which comprised
‘gold’ parallel MSA-dialect sentence pairs. The
fourth dataset, considered ‘silver’, was generated
through back-translation from MSA to dialect, as
detailed in Section 3.1.2.

3.1.1. Gold Data

The Multi-Arabic Dialects Application and Re-
sources (MADAR). MADAR includes a parallel
corpus of 25 Arabic city-level dialects in addition
to MSA (Bouamor et al., 2018). As mentioned be-
fore, we train one model to translate from all di-
alects to MSA, and therefore we ‘collapsed’ all di-
alects and sub-dialects in MADAR to just DA, lead-
ing to a total of 88, 200 sentence pairs. We reserve
an additional 9, 800 pairs for early evaluation and
experimentation.6 MADAR was also used in for-
mer related shared tasks such as the Nuanced Ara-
bic Dialect Identification Shared Task organized by

4AraT5v2-base-1024 is available on https://
huggingface.co/UBC-NLP/AraT5v2-base-1024

5It is important to highlight that the model selection
and training as well as the data creation process were
also constrained by the limited resources available to the
author as an independent researcher.

6We did not follow the original train-dev-test split in
MADAR for selecting those sentences.

Abdul-Mageed et al. (2023).

The North Levantine Corpus. Krubiński et al.
(2023) recently introduced a multi-parallel corpus
focusing on the North Levantine dialect (aka the
‘Shami’ or Syrian dialect). The corpus is basically a
subset of the OpenSubtitles2018 parallel corpora
(Lison et al., 2018) where the Arabic sentences
have been manually translated to the North Lev-
antine Arabic dialect.7 The corpus includes about
120, 600 Shami-MSA pairs; we used 90% of which
for training.

The Parallel Arabic DIalect Corpus (PADIC).
PADIC is a multi-dialect parallel corpus cover-
ing six Arabic (sub-)dialects of the Levantine and
Maghrebi regional dialects (Meftouh et al., 2015,
2018). Like with MADAR, we do not distinguish be-
tween the different dialects for the purpose of train-
ing our model and, hence, end up with a dataset
of 41, 680 dialect-MSA pairs.

3.1.2. Synthetic Data

One way to augment our training data is to exploit
monolingual data (i.e. MSA-only datasets or cor-
pora). Back-translation is an effective approach to
‘create’ more training data (Sennrich et al., 2016),
where an MT system or model is trained in re-
verse; that is, the model is trained to translate tar-
get (MSA) to source (Arabic dialect). The result-
ing model can then translate target-side monolin-
gual data back into the source language, creating
a synthetic (or silver) parallel corpus for training a
source-to-target model.

To generate the synthetic data, we first fine-
tuned AraT5v2 to translate from MSA into dialec-
tal Arabic on the combination of the three afore-
mentioned gold datasets.8 We then used the re-
sulting MSA-to-dialect model to translate a sub-
set of the Arabic sentences in OPUS (Tiedemann,
2012; Zhang et al., 2020).9 We filtered the sen-
tences in OPUS to only include Arabic sentences
that are longer than 5 characters and shorter than
450 characters.

Given the nature of the data in OPUS, some
of the MSA-dialect pairs in the synthesized data
included parentheses around foreign names in

7The corpus includes pairings with several Indo-
European languages but these are not relevant to the
work presented here.

8We acknowledge that there isn’t a singular entity
called “dialectal Arabic”. However, we posit that if the
reverse-translation model is capable of producing any
variation of dialectal Arabic, the reuslting synthetic cor-
pus could prove beneficial.

9See: https://huggingface.co/datasets/
Helsinki-NLP/opus-100

https://huggingface.co/UBC-NLP/AraT5v2-base-1024
https://huggingface.co/UBC-NLP/AraT5v2-base-1024
https://huggingface.co/datasets/Helsinki-NLP/opus-100
https://huggingface.co/datasets/Helsinki-NLP/opus-100
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MSA, but not in the dialect translation; we post-
processed the dataset to replace the opening and
closing parentheses with the empty string in such
cases.10 The resulting synthetic parallel corpus
consists of 965, 020 MSA-dialect pairs. As we will
see in the following sub-section, not all of those
pairs will be used for fine-tuning the final model.

One significant caveat of the MSA-to-dialect
translation model is the dominance of the Lev-
antine dialect, which is present in the three gold
datasets used to train the model. Indeed the North
Levantine Corpus is almost as large as PADIC and
MADAR combined, and the last two already in-
clude Levantine sentences (cf. Table 2).

3.1.3. Training Dataset

The dataset used to train the model is the combi-
nation of the three gold datasets in addition to a
further filtered version of the synthetic dataset. Af-
ter the first round of experiments, we decided to
filter out more sentence pairs from the synthetic
dataset.

We used the MSA text length, again, to filter
out all sentences that are shorter than 25 charac-
ters and longer than 300 characters. We opted to
keep shorter sentences, as we observed the trans-
lation quality degrading as the sentence length in-
creased. Lastly, we augmented the dataset with
about 17, 000 randomly-selected sentences from
MADAR where MSA is used as both the source
and the target.11 We included those instances to
present the model with cases where no changes
are required to ‘transform’ the source text into
MSA.

The final combined dataset consists of 700, 386
dialect-MSA sentence pairs in its train split and
77, 800 pairs in the development split. Table 2 sum-
marizes the size of the different datasets.

Dataset No. pairs

MADAR 88, 200
PADIC 41, 680
North Levantine Corpus 120, 600
Synthetic dataset - OPUS 965, 020

Gold+synthetic† 700, 386

Table 2: Number of dialect-MSA sentence pairs in
the gold and synthetic datasets. † Gold+synthetic
is the final combined and filtered dataset used to
train the model.

10Parentheses are often used to enclose foreign
names in Arabic (open) subtitles.

11On second thought, we think those examples could
have been sampled from some other monolingual MSA
resource.

3.2. Model Fine-tuning
We trained our models by fully fine-tuning AraT5v2

for one epoch only using the Transformers library
(Wolf et al., 2020). The maximum input length is
set to 1024 (same as in the original pre-trained
model) whereas the maximum generation length is
set to 512. The learning rate and batch size were
set to 2e-5 and 32, respectively.1213

4. Results

To gauge the effect of fine-tuning on datasets of
varying sizes and qualities, we fine-tuned three
AraT5v2 models:14

(1) AraT5MADAR trained on MADAR only

(2) AraT5Gold trained on the concatenation of the
three gold datasets

(3) AraT5gold+synthetic trained on the gold and
synthetic datasets

Table 3 shows result of evaluating the three mod-
els on the OSACT 2024 development split. From
the table we clearly see that the model trained on
both the gold and synthetic data outperforms the
model trained on gold data only. This observation
is consistent with the findings reported by Scherrer
et al. (2023) regarding the effectiveness of back-
translated data in enhancing the performance of
their neural models. To understand how good (or
bad) those models are we need a baseline ‘model’.
We simply used a leave-as-is baseline (Scherrer
et al., 2023), where the dialect text is used as trans-
lation for MSA (i.e. copy the source to target) and
attain 0.1445 in BELU score. With only MADAR
data for fine-tuning, we end up with a lower perfor-
mance than such a basic baseline approach.

As mentioned in Section 3.2, our models are
trained for one epoch only, but we did evaluate
AraT5gold+synthetic on the OSACT 2024 develop-
ment set every 2, 000 steps. The result of this eval-
uation can be seen in Figure 1. Note that only
greedy search was used with generation when
evaluating on the development split. As can be
seen from the figure, the model reaches its top per-
formance (with 0.2325 in BLEU) after almost 15, 000
steps, but we don’t restore the weights of the best
performing model at the end training.

Even though we trained one model for all di-
alects, we can still examine the results per dialect,
which are shown in Table 4.

12The training configuration as well as the train-
ing script can be found on https://github.com/
Murhaf/AraT5-MSAizer

13The models were trained on one NVIDIA RTX
A6000.

14All models were trained using the same configura-
tion and (hyper)parameters outlined in Section 3.2

https://github.com/Murhaf/AraT5-MSAizer
https://github.com/Murhaf/AraT5-MSAizer
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Model BLEU

AraT5MADAR 0.1140
AraT5Gold 0.2038
AraT5gold+synthetic† 0.2302

Baseline 0.1445

Table 3: BLEU score on the development
split of the AraT5v2 model fine-tuned on the
MADAR dataset only, three gold datasets and
the gold and synthetic datasets combined. † aka
AraT5-MSAizer

Figure 1: AraT5-MSAizer BLEU score on the OS-
ACT 2024 development set every 2, 000 steps.

The results in Table 4 can be partly explained
by the observation made by Bouamor et al. (2014)
where they found that Egyptian had the highest lex-
ical overlap with MSA while Tunisian had the least
lexical overlap with MSA amongst all the dialects
they studied.15

Lastly, Table 5 shows the official result of
our fine-tuned model, AraT5-MSAizer, on the
test split. We used beam search for the final
translation submission (specifically, 6 beams) as
beam search has proved to lead to better transla-
tion performance—at the cost of decoding speed
though (Freitag and Al-Onaizan, 2017). Our BLEU
score does seem reasonable compared to previ-

15We checked the lexical overlap between MSA and
the five dialects in the OSACT 2024 development set
and found that Magharebi has indeed the least over-
lap. Note that our lexical overlap method is rather sim-
ple, we tokenized the source and target sentences in
the dataset, computed the lexical overlap between each
pair, and then averaged the lexical overlap per dialect.

Dialect BLEU

Egyptian 0.2708
Gulf 0.2373
Iraqi 0.2209
Levantine 0.2255
Magharebi 0.2087

Table 4: AraT5-MSAizer BLEU scores for the dif-
ferent dialects in the OSACT 2024 development
set

Model BLEU Comet DA

AraT5-MSAizer 0.2179 0.0016

Table 5: Official evaluation results on the test split.

ously reported results on dialect-to-MSA transla-
tion (albeit on different evaluation datasets, cf. Sec-
tion 5).

5. Related Work

There exists a substantial body of research on sta-
tistical and neural machine translation from DA to
MSA, but in this section we only focus on Subtask
3 of the NADI-2023 Shared Task (Abdul-Mageed
et al., 2023) as it is the most relevant to the OS-
ACT 2024 Shared Task. Of the three participat-
ing teams, UniManc (Khered et al., 2023) and
Helsinki-NLP (Scherrer et al., 2023) are the
most similar to our approach. Both works—among
other things—fine-tuned the AraT5v2 model on ex-
isting parallel corpora for dialect-to-MSA transla-
tion. In addition, Scherrer et al. (2023) used a sta-
tistical machine translation model (SMT) to back-
translate monolingual datasets into dialects which
they then used as synthetic parallel corpora to train
or fine-tune neural machine translation models.

UniManc—the winning team of task 3 in the
NADI-2023 Shared Task—reached their best over-
all performance by fine-tuning the AraT5v2 model
on what they call “joint regional” configuration,
where all dialect-to-MSA pairs were used to train
the same model. We followed a similar approach
in the work presented in this paper, but with the
addition of synthetic data.

Helsinki-NLP achieved their best perfor-
mance with SMT models. However, they also fine-
tune the AraT5v2 model on gold data (viz. MADAR)
as well as synthetic back-translated data. Their
findings are pretty much in line with ours in that
fine-tuning on MADAR-only is barely enough and
that back-translation can be effective in the context
of fine-tuning pre-trained models.

6. Conclusion

In this paper we presented a machine translation
model that builds on a pre-trained text-to-text lan-
guage model to translate from five different Ara-
bic dialects to MSA. We showed that we can uti-
lize the already existing, though scare, parallel cor-
pora to produce more training data from mono-
lingual resources. We clearly demonstrated that
such synthetic data (via back-translation) does in-
deed help boost the model’s performance, in con-
trast to only relying on gold training data. Despite
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the promising results showcased in this paper—
which align with recent results in related tasks—
we believe that back-translation is not exploited to
its fullest yet. One pitfall we would like to avoid in
future work is re-using the same ‘genre’ of text in
the different datasets; this is especially the case
for the North Levantive Corpus and the synthetic
data we chose to back-translate. In addition, we
believe one can try and test the idea of iterative
back-translation (Hoang et al., 2018), but we sus-
pect a better starting point for the reverse transla-
tion system is needed.
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