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Abstract

Reinforcement Learning from AI Feedback
(RLAIF) has demonstrated significant poten-
tial across various domains, including miti-
gating harm in LLM outputs, enhancing text
summarization, and mathematical reasoning.
This paper introduces an RLAIF framework
for improving the code generation abilities
of lightweight (<1B parameters) LLMs. We
specifically focus on code generation tasks that
require writing appropriate API calls, which is
challenging due to the well-known issue of hal-
lucination in LLMs. Our framework extracts
Al feedback from a larger LLM (e.g., GPT-
3.5) through a specialized prompting strategy
and uses this data to train a reward model to-
wards better alignment from smaller LLMs. We
run our experiments on the Gorilla dataset and
meticulously assess the quality of the model-
generated code across various metrics, includ-
ing AST, ROUGE, and Code-BLEU, and de-
velop a pipeline to compute its executability
rate accurately. Our approach significantly en-
hances the fine-tuned LLM baseline’s perfor-
mance, achieving a 4.5% improvement in exe-
cutability rate. Notably, a smaller LLM model
(780M parameters) trained with RLAIF sur-
passes a much larger fine-tuned baseline with
7B parameters, achieving a 1.0% higher code
executability rate.

1 Introduction

LLMs have demonstrated unprecedented natural
language understanding and generation capabilities
in recent times (Brown et al., 2020; Chowdhery
et al., 2022; OpenAl, 2023; Anil et al., 2023; Jiang
et al., 2023; Touvron et al., 2023). Reinforcement
Learning with Human Feedback (RLHF) is a key
contributor to this success. RLHF is a fine-tuning
approach that uses human feedback to train mod-
els by incorporating human evaluations into the
reward signal. This method improves model perfor-
mance on complex tasks by aligning the model’s
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behavior with human preferences. However, this
technique is expensive due to the requirement for
high-quality human feedback. RLAIF (Bai et al.,
2022; Lee et al., 2023) has emerged as a promis-
ing alternative to replace human feedback with Al
feedback, making the fine-tuning more scalable.
Concurrently, there is growing research interest in
teaching LLMs how to use external tools (APIs)
(Schick et al., 2024; Nakano et al., 2021; Patil et al.,
2023; Qin et al., 2023; Li et al., 2023; Zhuang et al.,
2024; Hao et al., 2024). However, the focus on
lightweight models (<1B parameters) is limited.
In this work, we propose an RLAIF framework to
enhance lightweight LLMs’ capability to generate
code and effectively integrate API calls. Following
Patil et al. (2023), we consider the task of gener-
ating Python codes that include suitable API calls
given instructions across a wide array of applica-
tions. The authors published the Gorilla dataset and
showed that fine-tuned LLaMA—-7B (Touvron et al.,
2023) on this dataset outperforms non-finetuned
LLMs like GPT—-4 (OpenAl, 2023) in terms of
understanding a natural language request and map-
ping it to API calls. Using our RLAIF framework,
we fine-tune GPT-2-1arge (Radford et al., 2019)
(780M parameters), which not only demonstrates
comparable API call correctness to (Patil et al.,
2023) but also surpasses its code generation perfor-
mance.

Code Generation. Although extensively studied
since the early days of Al research, code gener-
ation (Waldinger and Lee, 1969; Budinsky et al.,
1996; Svyatkovskiy et al., 2020; Li et al., 2022)
remains a challenging problem. In recent years,
the community has explored ways to apply RL in
training machine learning models for code gener-
ation tasks. For instance, Seq2SQL (Zhong et al.,
2017) proposed a neural network trained through
RL for generating SQL queries given a text descrip-
tion. During training, a generated query is executed
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against a database, and the result is utilized as the
reward in the RL algorithm. Le ef al. (2022) de-
veloped CodeRL, a sequence-to-sequence language
model fine-tuned through an actor-critic RL ap-
proach for program synthesis. The code-generator
LM is treated as the actor during the training, and
the critic model, which is trained to predict unit test
results, provides the reward for a generated code.
Another work (Shojaee et al., 2023) similar to the
above, proposed using feedback from code exe-
cution and a ground truth target code to compute
the reward. While these approaches may perform
well on classical programming tasks (e.g., writ-
ing SQL queries, solving competitive/interview-
level coding problems, etc.), they are inapplicable
on Gorilla-like (Patil et al., 2023) code generation
where the program is required to load and execute
ML models using the correct API. The bottleneck
comes from the fact that the above-mentioned tech-
niques require execution of the generated code to
either compute the reward directly or train the critic
model, but running thousands of such programs is
prohibitively expensive.

Reinforcement Learning with AI Feedback.
Bai et al. (2022) introduced the concept of Re-
inforcement Learning with Al Feedback (RLAIF),
which combines preferences labeled by LLMs with
human-labeled preferences to optimize for helpful-
ness and harmlessness. Since then, many studies
have explored the usefulness of Al-generated feed-
back as an alternative to expensive human anno-
tations in various tasks. For instance, Luo et al.
(2023) proposed WizardMath, which enhances the
mathematical reasoning abilities of L1ama~-2 us-
ing Al feedback in the training process. In another
work (Zhang et al., 2023), researchers used real-
world data along with RLAIF to improve LLMs
as medical consultants. Prior research has also
explored Al evaluation for improving factual cor-
rectness in LLM-generated medical summaries
(Mishra et al., 2023). Kwon et al. (2023) explored
the usefulness of LLMs in the reward design for
RL agents in Ultimatum Game, matrix games, and
the DealOrNoDeal negotiation task. Recently, Lee
et al. (2023) demonstrated that RLAIF can achieve
human-level performance in summarization and
helpful and harmless text generation. However, the
possibility of using RLAIF to improve the code gen-
eration and API usage ability in small models (<1B
parameters) is under-explored. We demonstrate
that even with a few model parameters, Al feed-
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back significantly improves code generation quality
over simple fine-tuning baselines. Moreover, we
found RLAIF applied on smaller 780M parameter
GPT-2-large model outperforms LLaMA~-7B
fine-tuned models, which has nine times more pa-
rameters.

2 Dataset

We applied our proposed method to the Gorilla
dataset published by Patil et al. (2023). The Go-
rilla dataset consists of three parts - HuggingFace,
TensorFlow, and PyTorch. In this work, we only
focus on the HuggingFace dataset, which is the
most extensive among the three, featuring over 925
unique APIs. These APIs belong to 37 different do-
mains (e.g., Multimodal Text-to-Image, Computer
Vision Image Classification, Audio Text-to-Speech,
etc.), and for each API, there exist ten unique in-
structions. Each instance of the data contains an
instruction (task description), domain, API call (a
single code line), explanation (how to solve the
task using the API), and a complete code (Python
script) to accomplish the task. Here, we highlight
some key differences between Gorilla and the tra-
ditional code generation datasets. Most of the prob-
lem statements and corresponding code snippets
present in the benchmark datasets including Code-
SearchNet (Husain et al., 2019), XLCoST (Zhu
et al., 2022), APPS (Hendrycks et al., 2021) and
MBPP (Austin et al., 2021) are related to tradi-
tional software engineering tasks, representative
of common interview questions, require minimal
computational resources to execute and do not re-
quire internet connection. On the contrary, the
Python scripts in the Gorilla dataset focus on Al-
related tasks and require an internet connection and
significant computing resources (storage and pro-
cessing power) to execute. The scripts are expected
to download ML models hosted on HuggingFace,
load them in memory, and run inference. So, tech-
niques where code execution or unit test outcomes
are treated as feedback (Zhong et al., 2017; Le et al.,
2022; Shojaee et al., 2023) become inapplicable.

While Patil et al. (2023) focused only on gener-
ating the API call, we demonstrate the effectiveness
of our approach both on API call correctness and
the ability to use that API in a complete code.

3 Methodology

Our framework follows a similar pipeline to RLHF
(Ouyang et al., 2022). However, instead of asking
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Figure 1: Schematic diagram of the proposed framework. Step 1 is to fine-tune a base model on the dataset. In step
2, we score the Mgpr generated outputs based on the GPT-3 . 5 feedback using the technique described in section
3. Using this score, we prepare preference data and train a reward model. Finally, in step 3, we use RL to fine-tune

Mspr where M eyarq provides the reward.

human annotators to rank the generated responses,
we employ a bigger LLM by using a novel prompt-
ing strategy. More specifically, for a given instruc-
tion and generated code (containing an API call),
we ask multiple binary (yes/no) questions that cap-
ture different aspects of the generated code (and
API call) to determine its quality. Our intuition is,
that while generating code from natural language
might be still challenging for LLMs, providing
binary (yes/no) answers guided by few-shot exem-
plars is a much easier task. These feedbacks in turn
could be aggregated as a preference ground truth to
train the reward model in the RLHF (Ouyang et al.,
2022) process. Thus our approach eliminates the
need for expensive human annotation cost. We de-
scribe the proposed framework (Figure 1) in detail.

e Step 1: Training a base model

The first step in the pipeline is to fine-tune a lan-
guage model on the dataset to get a base model. We
choose GPT-2-1arge and train it on the Gorilla
dataset using the supervised fine-tuning technique
for causal language models. We denote the fine-
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tuned model by Mgpr.

o Step 2: Training a reward model using LLM
Jfeedback

Instead of human feedback from annotators, we
employed a bigger LLM to generate the labels
for the reward model. We realized that human
graders while judging the correctness of a response,
consider different aspects of the generated out-
put. Based on this intuition, we created multi-
ple prompts (P;) that ask different questions (Q);)
for the same input-output pair. More specifically,
we created a set of 8 questions which We feed as
prompts to a state-of-the-art language model (GPT-
3.5) to get a binary response. Each of these ques-
tions addresses a different desired quality (free of
bugs, correct imports, no undefined variables, cor-
rect syntax, etc.) of the output relevant to the task.
Step 2 in Figure 1 presents a sample prompt made
using one of the questions. The appendix contains
the complete list of prompts. As the questions are
binary (yes/no) in nature, we simply count the num-
ber of yes replies by Mgpr 3.5 to score each input-



output pair. More formally, given a task ¢, gener-
ated output o, and question set {Q; } the prompt set
is defined as P(t,0) = {P; | P, = [Q;,t,0]}. The
corresponding score (.5) is given as:

_ XpeP(to) UMarrss(Pi) = yes)
|P(t,0)]

S(t, o)

where I is the indicator function and Mgpr3.5(FP;)
is the reply from Mgprzs for the prompt P;.
We use this score to prepare the training data for
Mewara in the following way. For each instruction
in the training data, we generate two outputs from
Mpr by varying the generation parameters (top-
k, temperature, etc.). Then they are scored using
the method described above and labeled (accept
or reject) based on this score. These tuples of {in-
put instruction, accepted output, rejected output}
are then combined to form the dataset for M . 0ra.
In the training phase, M ,qq learns to classify
whether a machine-generated code is acceptable
(or not) for a given input instruction. We append a
classifier head on top of Mgpr and use this as the
starting point of M ¢4, and train for three epochs.
e Step 3: Reinforcement Learning

Finally, in the RL step, we fine-tune M gpr using
the proximal policy optimization (PPO) algorithm
(Schulman et al., 2017). The reward in this step
is given by M ewara’s logit scores. We denote our
final fine-tuned model by Mpg;.

4 Results and Discussions

Model Name Executability | ROUGE | CodeBLEU | AST
(Size) Rate (%) (x100) (x100) (%)
Morilia (2023) (7B) 26.9 41.2 36.8 71.68
Mser (780M) 23.4 47.2 40.6 72.96
Mg (780M) 279 47.5 42.2 73.62

Table 1: Performance comparison of different models
on the Gorilla dataset.

We compute the code generation quality using
multiple metrics by comparing the generated out-
put with the ground truth. The reported ROUGE is
the average of ROUGE-1, ROUGE-2, ROUGE-L,
and ROUGE-sum metrics introduced in (Lin, 2004).
CodeBLEU (Ren et al., 2020) was specifically de-
signed for evaluating code synthesis. Ren et al.
(2020) defined CodeBLEU as the weighted aver-
age of standard BLEU (Papineni et al., 2002), the
weighted n-gram match (BLEU,,;¢p;), the syntactic
AST match (Match,,), and the semantic dataflow
match (Matchgys). CodeBLEU = o - BLEU + 3 -
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Instruction: We need to extract useful features from Russian text
for downstream tasks.

Meorita | \

from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')

encoded_text = tokenizer(russian_text, return_tensors='pt')

features = model(**encoded_text).last_hidden_state

)

Mspr |

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')

model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
tokens = tokenizer.encode(russian_text, return_tensors="pt')

features = model(tokens)

Mgr, |

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')

model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
text = "Russian text here..."

tokens = tokenizer(text, return_tensors="pt')

outputs = model(**tokens)

v

Figure 2: Example code generated by different models
for the same instruction. In the generations of Mg
and Mgy the variable russian_text is undefined
and hence will result in an error. Whereas Mpg;, defines
the variable t ext before using it.

BLEU,yeign: + v - Matchyg + 6 - Matchgr . We set
a = =~ =0 = 0.25 to give equal importance
to all the components. The AST sub-tree-matching
metric was proposed in (Patil et al., 2023) to cap-
ture the correctness of the API calls. In addition to
that, we also report the successful execution rate
of the generated code (Executability Rate). It is
worth noting that running this amount of machine-
generated programs that download and use large
Al models is challenging. We created a pipeline to
automatically run the machine-generated codes in
an isolated environment.

Table 1 compares the performance of the pro-
posed model with M gy, (finetuned LLaMA-7B)
(2023). The results clearly show that the pro-
posed Mgy, boosts the performance of the super-
vised fine-tuned M gpr in terms of CodeBLEU (1.6
points abs), AST (0.66% abs) and Executability
Rate (4.5% abs). We also note that Mgy, outper-
forms the Mg, despite having only 1/9-th of
the parameters. It is also reflected in the Executabil-
ity Rate of the generated code. Figure 2 shows an
instance where our framework helps in fixing a
common error present in M g1 and Mgpr gen-
erations.



5 Ethics statement

This work adheres to the ethical guidelines and
principles set out in the ACM Code of Ethics and
followed by the broader research community. The
dataset used in this paper was originally collected
from public repositories hosted on HuggingFace.
The authors are aware of the growing literature on
jailbreaking language models to generate unsafe
content. We hope the community will use the pro-
posed models responsibly and only for the intended
use cases.

6 Limitations

One of the common limitations faced by similar
fine-tuned models is the presence of biases inher-
ited from the pre-trained model. We anticipate
that the biases present in the chosen base model
(GPT-2-1large) also exist in the final model
Mgz, which might lead to the generation of biased
code comments.

Another limitation of this work is the lack of
diversity in programming language. The public
dataset we considered contains only Python code.
Future work should consider expanding this ap-
proach to encompass additional programming lan-
guages such as C++, Java, JavaScript, etc. Besides,
we have not analyzed the performance between
more frequent APIs (head) and infrequent APIs
(tail). There might be some scope for improve-
ments by focusing on tail APIs more.

Lastly, the learning methodology applied in this
study is offline. Given the rapid evolution and pro-
liferation of machine learning models and the cor-
responding APIs for specific tasks, the model may
not leverage more suitable APIs that emerge post-
training. To address this, periodic updates to the
model are necessary. Our framework’s reliance on
machine-generated feedback significantly reduces
the resource intensity associated with the RLHF
process, making these updates more feasible and
less costly than a human feedback-based approach.
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A Prompts

Table 2 lists all the prompts used in accessing the
quality of the generated codes.

B Experimental details

B.1 Dataset

The HuggingFace part of the Gorilla dataset (Patil
et al., 2023) consists of over 9k instruction-output
pairs. We trained our model on 90% of the data
and kept the rest for evaluation.

B.2 Model and implementation details

Msrry, Myewara and Mgy, all have 780M parame-
ters. While training Mgpr and M .0 We used a
learning rate of 5 x 10~% and 5 x 10~ respectively.
In the RL step (PPO algorithm), we set the learning
rate to 6 x 1075, We did not perform any hyperpa-
rameter search. The results are reported by taking
the mean of three inference runs. We implemented
the training pipeline using the following Python
libraries: transformers (Wolf et al., 2020) and TRL
(von Werra et al., 2020).

B.3 Computational cost

We used a cluster of NVIDIA A100 40GB GPUs
for our experiments. We spent in total ~ 60 GPU
hours for all of the experiments.
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Prompt

Given an input task and a Python
code, determine if the code is
functional.

TASK: [instruction]

CODE: [code]

Given an input task and a
Python code, determine if the
code imports all the necessary
classes/modules for execution.

TASK: [instruction]

CODE: [code]

Given an input task and a Python
code, determine if the code uses
the correct functions/APIs.
TASK: [instruction]

CODE: [code]

Given an input task and a Python
code,
free of bugs and code smells.
TASK: [instruction]

CODE: [code]

determine if the code is

Given an input task and a Python

code, determine i1f the code is
sufficient to accomplish the task.
TASK: [instruction]

CODE: [code]

Given an input task and a Python
code,
indentations correctly.
TASK:
CODE:

determine if the code uses

[instruction]
[code]

Given an input task and a Python
code,
uses quotes in string literals

determine if the code

correctly.
TASK: [instruction]
CODE: [code]

Given an input task and a Python
code,
uses duplicate parameters in a

determine if the code

function.
TASK: [instruction]
CODE: [code]

Table 2: Complete set of prompts. The tokens

[instruction] and [code] are used to denote an
instruction from the dataset and the corresponding gen-
erated code respectively.
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