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Abstract

The move towards preserving judgement disagreements in NLP requires the identification of adequate evaluation
metrics. We identify a set of key properties that such metrics should have, and assess the extent to which natural
candidates for soft evaluation such as Cross Entropy satisfy such properties. We employ a theoretical framework,
supported by a visual approach, by practical examples, and by the analysis of a real case scenario. Our results
indicate that Cross Entropy can result in fairly paradoxical results in some cases, whereas other measures Manhattan
distance and Euclidean distance exhibit a more intuitive behavior, at least for the case of binary classification.

1. Introduction

As the realization grows that disagreement between
subjects in many natural language tasks may be
the result of genuine differences in interpretation
rather than of unclear guidelines or poor quality an-
notators (Poesio and Artstein, 2005; Passonneau
et al., 2012; Plank et al., 2014; Aroyo and Welty,
2015; Akhtar et al., 2019; Basile et al., 2021; Uma
et al., 2021b,a; Davani et al., 2022; Sap et al., 2022;
Leonardelli et al., 2023), many researchers have
started investigating methods for learning and eval-
uating models from datasets in which such differ-
ences in interpretation are preserved, particularly
for subjective tasks (Basile et al., 2021; Uma et al.,
2021b,a; Leonardelli et al., 2023). However, our
understanding of this form of evaluation is still only
at the beginning.

In this paper, we argue that soft evaluation metrics –
metrics to evaluate the ability of NLP models to pre-
dict not just the preferred interpretation of an item,
but also its probability and the probability of alterna-
tive interpretations according to human judgements,
that Uma et al. called soft label (Uma et al., 2021b)
– should satisfy a number of properties, that we
define within a theoretical framework.

We then analyze four candidate metrics with re-
spect of this set of formal properties. The metrics
analysed include Cross Entropy, possibly the most
widely used among such metrics, and which was
also the main soft evaluation metric in the two re-
cent Learning With Disagreements (LeWiDi) Se-
mEval shared tasks (Uma et al., 2021a; Leonardelli
et al., 2023). The other considered candidates are
Manhattan Distance, Euclidean Distance and the
Jensen-Shannon Divergence. For the binary la-
bel case, we also provide empirical examples and

graphical visualizations of the metrics’ behavior.
Moreover we analyze how the metrics behave in a
real case scenario, namely the LeWiDi shared task.
Finally we discuss the case of multi-class labels.

One key result is that the widely used Cross En-
tropy metric has several counterintuitive properties,
which other metrics considered do not suffer from,
at least for the binary classification case. The situ-
ation is more complex for multi-label classification.

2. Soft Evaluation Metrics

The fundamental characteristic required of a soft
evaluation metric is the ability to compare two prob-
ability distributions: the target distribution obtained
from annotator judgments, and the distribution pre-
dicted by a model. In this Section, we introduce
four metrics that have been used or could be used
for such soft evaluation (Uma et al., 2021b; Basile
et al., 2021; Uma et al., 2021a; Leonardelli et al.,
2023).

Cross Entropy Cross Entropy is a common mea-
sure used in information theory and machine learn-
ing to quantify the difference between two probabil-
ity distributions.
Given two distributions p, and q, their Cross Entropy
is defined as:

H(p, q) = Ep [logq] = −
∑
k

p(k) log(q(k)) (1)

Where Ep is the expected value operator with re-
spect to the distribution p.

In the binary classification case, Cross Entropy
simplifies to:

H(p, q) = −[p log(q) + (1− p) log(1− q)] (2)
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Manhattan Distance The Manhattan distance,
also known as L1 distance measures the absolute
differences between corresponding elements of two
distributions. Given two distributions p and q, the
Manhattan distance is defined as:

L1(p, q) =
∑
k

|p(k)− q(k)| (3)

Euclidean Distance The Euclidean distance,
also known as L2 distance measures the the
straight-line distance between two points in Eu-
clidean space. Given two distributions p and q,
the Euclidean distance is defined as:

L2(p, q) =
√∑

k

(p(k)− q(k))2 (4)

Jensen-Shannon Divergence (JSD) The
Jensen-Shannon Divergence is a symmetrized
and smoothed version of the Kullback-Leibler
Divergence (KL Divergence). Given two distribu-
tions p and q, the Jensen-Shannon Divergence is
defined as:

JSD(p, q) = 1

2
(DKL(p ∥ m) +DKL(q ∥ m)) (5)

Where DKL is the Kullback-Leibler Divergence and
m = 1

2 (p + q). That corresponds to:

JSD(p, q) =1

2

(∑
k

p(k) log
(

p(k)
m(k)

)
+

∑
k

q(k) log
(

q(k)
m(k)

)) (6)

where m(k) = 1
2 (p(k) + q(k)).

Although the Wasserstein distance is commonly
used to quantify the difference between two proba-
bility distributions, it was not included in our analy-
sis: it is crucial to highlight that, in the specific case
of two binary distributions that are not rearranged,
the Wasserstein distance reduces to the Manhattan
distance.

3. Desirable properties

In this Section, we identify a set of properties that
soft evaluation metrics should satisfy. We will use
q(k) to indicate the probability of an item k hav-
ing the positive label according to the model, and
p(k) to indicate the real probability of k having the
positive label according to the gold (soft) standard.
Finally, we use M to indicate the general measure
to quantify the difference between two probability
distributions.

Property 1 [Symmetry] Given two probability dis-
tributions q(k) and p(k) representing the probability
of an item k being classified with the positive label
and the corresponding real value associated with k
in the golden standard,

M(p(k),q(k)) = M(q(k),p(k))

Property 2 [Boundedness] Given two probability
distributions q(k) and p(k) representing the proba-
bility of an item k being classified with the positive
label and the corresponding real value associated
with k in the golden standard, there exist constants
a and b such that, for every item k,

a ≤ M(p(k),q(k)) ≤ b

Property 3 [Triangle Inequality] Given three prob-
ability distributions q(k), r(k), and p(k) represent-
ing the probability of an item k being classified with
the positive label by two different models (q(k) and
r(k)) and the corresponding real value associated
with k in the golden standard (p(k)),

M(p(k),q(k)) +M(q(k),r(k)) ≥ M(p(k),r(k))

Property 4 [Transitivity] Given three probability
distributions q(k), r(k), and p(k) representing the
probability of an item k being classified with the
positive label by two different models (q(k) and
r(k)) and the corresponding real value associated
with k in the golden standard (p(k)),

M(p(k),q(k)) < M(p(k),r(k))
⇒ M(q(k),r(k)) < M(p(k),r(k))

Property 5 [Sum invariant] Given two probability
distributions q(k), and p(k) representing the prob-
ability of an item k being classified with the posi-
tive label by a model (q(k)) and the corresponding
real value associated with k in the golden standard
(p(k)). A divergence M is sum invariant if whenever
c is independent from p, q

M(c+ p(k), c+ q(k)) <= M(p(k), q(k))

This property is strictly related to the following three
subproperties:

Property 5.a [Minimum penalization at perfect
match] Given three probability distributions q(k),
r(k), and p(k) representing the probability of an
item k being classified with the positive label by
two different models (q(k) and r(k)) and the corre-
sponding real value associated with k in the golden
standard (p(k)), if p(k) = q(k) and r(k) ̸= p(k),
then

M(p(k),q(k)) < M(p(k),r(k))
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Property 5.b [Fair penalization] Given three prob-
ability distributions q(k), r(k) and p(k) represent-
ing the probability of an item k being classified
with the positive label by two different models (q(k)
and r(k)) and the corresponding real value as-
sociated with k in the golden standard (p(k)), if
|p(k)− q(k)| < |p(k)− r(k)|, then

M(p(k),q(k)) < M(p(k),r(k))

Property 5.c [Fair penalization on perfect match]
Given two probability distributions q(k), and p(k)
representing the probability of an item k being clas-
sified with the positive label by two different models
(q(k) and r(k)) and the corresponding real value as-
sociated with k in the golden standard (p(k)); given
two items ki and kj , if p(ki) = q(ki), p(kj) = q(kj)
and p(ki) ̸= p(kj), then

M(p(ki),q(ki)) = M(p(kj),q(kj))

Property 6 [Scale sensitivity] Given two proba-
bility distributions p(k) and q(k) representing the
probability of an item k being classified with the pos-
itive label (q(k)) and the corresponding real value
associated with k in the golden standard, (p(k)),
We say that M is scale sensitive (of order β), if
there exists a β > 0, and a real value c > 0, such
that for all k

M(cp(k), cq(k)) <= |c|βM(p(k),q(k))

If M is scale sensitive of order β = 1 then the
divergence M(δ, δ1/2) can be no more than half
the divergence M(δ0, δ1). If M is sum invariant,
then the divergence of δ0 to δ0 is equal to the
divergence of the same distributions shifted by a
constant c, i.e., of δc to δ1+c.

The above mentions set of peroperties are desired
when evaluating soft metrics in order to ensure the
fairness and the consistency of the evaluation pro-
cess. In particular the Simmetry property ensure an
objective evaluation, independent by the arrange-
ment of the input data (i.e. regardless of whether
we evaluate predictions against ground truth or vice
versa). The Boundedness property guarantee that
the evaluation values remains in a defined range,
allowing for comparison among different models
and facilitating the identification of outlayers. The
Triangle Inequality property is essential for a con-
sistent evaluation since it guarantee that composed
metrics remain coherent and does not leads to con-
tradictory results. Similarly, the sum invariant prop-
erty ensuer the consistency of the metric when
combined or aggregated. The Transitivity property
guarantees consistency in comparisons across dif-
ferent instances or groups. It ensures the consis-
tency of a model performances when comparing

across different tasks, datasets, or experimental
conditions. Finally, the scale sensitivity property
guarantee that the metric correctly capture the mag-
nitude of the differences among models. In other
words, it ensure that sligh variations in the model’s
performance are reflected as a minor change in
the metric score, while big changes in performance
lead to a significant change in the metric score.

4. Metric properties assessment in
the binary case

In this Section, we analyze the extent to which the
evaluation metrics under consideration and pre-
sented in Section 2, satisfy the properties we deem
desirable and presented in Section 3, in the case
of binary labels. An analysis is performed (Section
4.1), focusing on the selected properties, provid-
ing theoretical background and practical examples
when the defined properties are not fulfilled. In Sec-
tion 4.2 a graphical representation of the metrics
behaviour at different target distributions is shown.
Furthermore, the figure is used as a visual support
to discuss some metrics’ properties. Finally, in Sec-
tion 4.3 we compare metrics behaviour in the real
case scenario of the LeWiDi competition.

4.1. Properties assessment and
examples

In this section, properties are discussed with re-
spect to selected metrics. Table 1 summarizes the
properties satisfied by the metrics.

Property 1 All the selected metrics satisfy the
simmetry property (P1), i.e. inverting target and
prediction does not affect the result, except for
Cross Entropy.
Cross Entropy, in fact, is asymmetric, given its rela-
tion to Kullback-Leibler Divergence. Cross Entropy
is related to KL-Divergence as follows:

H(p,q) = DKL(p||q) + E(p) (7)

where H is the Cross Entropy of distribution p and
q, DKL(p||q) is the KL-Divergence and E(p) is the
Entropy of the distribution p. Since E(p) can be
considered as a constant, Cross Entropy follows the
same asymmetry of KL-Divergence. The definition
of Cross Entropy reported in equation (1) leads to
the following inequality:

−
∑
i

pilogqi ̸= −
∑
i

qilogpi (8)

Example 1 shows two distributions for which the
symmetry property is not fulfilled by Cross En-
tropy: in the proposed example, H(p(k1), q(k1)) ̸=
H(p(k2), q(k2)), although p(k1) = q(k2) and q(k1) =
p(k2).
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Table 1: Properties of Evaluation Metrics (Binary Case)

Metric Properties
P1 P2 P3 P4 P5 P5a P5b P5c P6

Cross Entropy ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Manhattan Distance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Euclidean Distance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jensen-Shannon Divergence ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

Example 1 [Symmetry violation]
k Target p(k) Prediction q(k)
k1 [0.83; 0.17] [0.5; 0.5]
k2 [0.5; 0.5] [0.83; 0.17]

Cross Entropy values:
H(p(k1), q(k1)) = 0.6931
H(p(k2), q(k2)) = 0.9791

Property 2 In the binary case, all the selected
metrics satisfy the Boundedness property (P2), i.e.
they can only assume finite values. To note that
Cross Entropy is left-bounded by definition, also
given its relationship with the KL-Divergence. Com-
monly, it is bounded by introducing a smoothing that
affects the extremants. But the scaling technique
that is chosen to make the metric bounded has a
great effect on the interval where the H values are
distributed.

Property 3 The Triangle inequality property (P3)
is satisfied by all metrics except Cross Entropy.
When comparing two binary distributions, the asym-
metry and sensitivity to specific distribution values
of Cross Entropy can lead to instances where the
distance between two distributions is not guaran-
teed to be less than or equal to the sum of their
distances to a third distribution. Therefore, Cross
Entropy does not consistently satisfy the triangle
inequality property (P3).

Example 2 reports an example in which the Trian-
gle Inequality property is not fulfilled by the Cross
Entropy. Triangle Inequality property implies that
the sum of the Cross Entropies for two consecu-
tive predictions should be greater than or equal to
the Cross Entropy between the target distribution
and the direct prediction. However, in the proposed
example, H(p(k), q(k)) +H(q(k), r(k)) is less than
H(p(k), r(k)) and contradicts the Triangle Inequal-
ity property for Cross Entropy.

Example 2 [Triangle Inequality violation]
Target p(k) Prediction q(k) Prediction r(k)
[0.7, 0.3] [0.95, 0.05] [1, 0]

Cross Entropy values:
H(p(k), r(k)) = 8.2893

H(p(k), q(k)) +H(q(k), r(k)) = 2.3162

Property 4 The Transitivity property is satisfied
by all metrics, except the Cross Entropy and the
Jensen-Shannon divergence that do not consis-
tently satisfy it.

Example 3 shows how despite H(p(k), q(k)) <
H(p(k), r(k)), the expected transitivity property
(H(q(k), r(k)) < H(p(k), r(k))) is not satis-
fied by Cross Entropy. Similarily, for Jensen-
Shannon Divergence: despite JSD(p(k), q(k)) <
JSD(p(k), r(k)), the expected transitivity property
(JSD(q(k), r(k)) < JSD(p(k), r(k))) is not satisfied.

Example 3 (P4)[Transitivity violation]
Target p(k) Prediction q(k) Prediction r(k)
[0.9, 0.1] [0.7, 0.3] [1, 0]

Cross Entropy values:
H(p(k), q(k)) = 0.4414
H(p(k), r(k)) = 2.7631
H(q(k), r(k)) = 8.2893

Jansen-Shannon values:
JSD(p(k), q(k)) = 0.1801
JSD(p(k), r(k)) = 0.1897
JSD(q(k), r(k)) = 0.3425

Property 5.a In the binary case, all the selected
metrics satisfy the Minimum penalization at perfect
match property. Indeed for each possible target,
the perfect match (the exact prediction of the tar-
get) assumes the minimum values possible for the
target considered. (See also Figure 1 and relative
discussion in Section 4.2)
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Property P5.b Cross Entropy tends to penalize
predictions that perfectly match the target distri-
bution when the target distribution itself is charac-
terized by a large entropy, resulting in an unfair
penalization. This is because, as shown in Equa-
tion 7, when p is ‘highly entropic’, E(p) is large.
Example 4 shows how Cross Entropy tends to un-
fairly penalize probability distributions close to the
boundaries. Despite the error performed in the
prediction q(k) is smaller then the one performed
by the prediction r(k), H(p(k), q(k)) is bigger than
H(p(k), r(k)) and contraddicts the Fair penalization
property.

The Jensen-Shannon tends to penalize those
cases that are less entropic (disregarding which
distribution, target, or prediction, is more entropic
than the other). Therefore, the Jensen-Shannon
measure does not fulfill the fair penalization prop-
erty (P5b). An example of distributions for which
the property is not fulfilled is reported in Example
4. In fact, despite the error performed in the pre-
diction q(k) is smaller then the one performed by
the prediction r(k), JSD(p(k), q(k)) is bigger than
JSD(p(k), r(k)) and contraddicts the Fair penaliza-
tion property.

Example 4 (P5b)
Unfair penalization

Target p(k) Prediction q(k) Prediction r(k)
[0.9, 0.1] [1, 0] [0.7, 0.3]

Cross Entropy values:
H(p(k), q(k)) = 2.7631
H(p(k), r(k)) = 0.4414

Jensen-Shannon values:
JSD(p(k), q(k)) = 0.1897
JSD(p(k), r(k)) = 0.1801

Property P5.c Another effect of the entropy in the
distribution on the Cross Entropy emerges when
comparing the scores associated to different distri-
butions that correctly predict the target. Example
5 reports an example showing that the Fair penal-
ization on perfect match property is not satisfied:
despite both distributions correctly predict the tar-
get, H(p(k1), q(k1)) is not equal to H(p(k2), q(k2)),
due to the corresponding entropy in the distribu-
tions.

Example 5 (P5c)
Unfair penalization on perfect match
k Target p(k) Prediction q(k)
k1 [0.5, 0.5] [0.5; 0.5]
k2 [0.9; 0.1] [0.9; 0.1]

Cross Entropy values:
H(p(k1), q(k1)) = 0.6932
H(p(k2), q(k2)) = 0.3251

Property 6 Considering two binary distributions
p and q, and a positive real value c; let p′ and q′ be
scaled versions of p and q by the constant factor c:
p′ = c · p and q′ = c · q.

Cross Entropy: In the binary classification sce-
nario, the Cross Entropy distance does not fulfill the
scale sensitivity property. Substituting the scaled
distributions into the Cross Entropy distance for-
mula (Eq. 1), we obtain:

H(p′,q′) = −
∑
k

c · p(k) log(c · q(k))

= −c ·
∑
k

p(k) log(c · q(k))
(9)

By comparing this with |c| ·H(p,q) we obtain:

|c| ·H(p,q) = |c| · −
∑
k

p(k) log(c · q(k)) (10)

The two expressions are not directly proportional.
Therefore, the Cross Entropy distance does not
satisfy the scale sensitivity property.

Manhattan distance: In the binary classification
scenario, the Manhattan distance satisfies the
scale sensitivity property.

Considering two binary distributions p and q, the
Manhattan distance between them is defined as
shown in Eq. 3.

Substituting the scaled distributions into the Man-
hattan distance formula (Eq. 3), we obtain:

L1(p′,q′) =
∑
i

|c · p(k)− c · q(k))|

= c ·
∑
k

|p(k)− q(k)|
(11)

By comparing this with |c| · L1(p,q) we obtain:

|c| · L1(p,q) = |c| ·
∑
k

|p(k)− q(k)|

Indicating that the Manhattan distance scales lin-
early with the constant factor c, fulfilling the scale
sensitivity property with a sensitivity order (β) of 1.
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Euclidean Distance: In the binary classification
scenario, the Euclidean distance fulfills the scale
sensitivity property.

Considering two binary distributions pandq, the Eu-
clidean distance between them is defined as shown
in Eq. 4.

Substituting the scaled distributions into the Man-
hattan distance formula (Eq. 4), we obtain:

L2(p’, q’) =
√∑

k

(c · p(k)− c · q(k))2

= c ·
√∑

k

(p(k)− q(k))2
(12)

By comparing this with |c| · L2(p,q) we obtain:

|c| · L2(p,q) = |c| ·
√∑

k

(p(k)− q(k))2

Indicating that the Euclidean distance scales lin-
early with the constant factor c, fulfilling the scale
sensitivity property with a sensitivity order (β) of 1.

Jensen-Shannon: In the binary classification sce-
nario, the Jensen-Shannon distance fulfills the
scale sensitivity property.

Considering two binary distributions p and q, the
Jensen-Shannon distance between them is defined
as shown in Eq. 5.

Substituting the scaled distributions into the Man-
hattan distance formula (Eq. 5), we obtain:

JSD(p’, q’) = 1

2
(DKL(p

′ ∥ m′) +DKL(q
′ ∥ m′))

=
1

2
(DKL(c · p ∥ c ·m)+

DKL(c · q ∥ c ·m))

=
1

2
(c ·DKL(p ∥ m) + c ·DKL(q ∥ m))

(13)

where m′(k) = 1
2 (p

′(k) + q′(k)) and m(k) =
1
2 (p(k) + q(k)).

By comparing this with |c| · JSD(p,q) we obtain:

|c| · JSD(p,q) =1

2
(|c| ·DKL(p ∥ m)+

|c| ·DKL(q ∥ m))
(14)

Indicating that the Jensen-Shannon distance
scales linearly with the constant factor c, fulfilling
the scale sensitivity property with a sensitivity order
(β) of 1.

4.2. Metrics graphical representation
Figure 1 shows distinct plots for each metric, with
the x-axes representing the prediction values and
the y-axes representing the corresponding distance
values (or score) based on the metric under con-
sideration. These plots provide a detailed visual
representation of the metrics behaviors at different
target values. Moreover, we can visually explore
the properties, and in the following we discuss P5.a,
P5.b and P5.c.

In Figure 1 we can observe how all the selected
metrics satisfy the Minimum penalization at perfect
match property (P5.a): for each target’s curve plot-
ted, the minimum values of the curve corresponds
to the perfect match, i.e. the exact prediction of the
tar get.

To demonstrate the influence of prediction errors on
metric performance (P5.b), distance values when
a nominal error of 0.2 appears in the forecast are
highlighted with points within the same plots. This
intentional perturbation enables an investigation of
the metric’s robustness in the presence of slight
prediction mistakes, evaluating the ability of fair
evaluation across a range of targets. Horizontal
alignment between two prediction points that are
equally distant from the target, indicate that prop-
erty P5.b is respected (see the cases of Manhattan
Distance and Euclidean Distance, Figure 1 b and c).
Conversely, deviations from this horizontal align-
ment implies unfair penalizations (see the cases of
Cross Entropy and Jensen Shannon Divergence,
Figure 1a and d).

Finally, to contribute to a more detailed understand-
ing of the Fair penalization on perfect match prop-
erty (P5.c), within each plot, dots are used to high-
light the resulting score, when the target is correctly
predicted. The alignment of all dots along a horizon-
tal axis (such as in the case of Figure 1b,c and d),
indicates a fair penalty for perfect matches across
targets. Deviations from this horizontal alignment,
such in the case of Figure 1a (Cross Entropy) imply
diverse penalization levels for perfect matches on
diverse targets, revealing disparities in the metric’s
treatment of different target values.

4.3. Impact on a Leaderboard: The
LeWiDi Case Study

In this section, we aim to investigate the applica-
tion of some of the discussed evaluation metrics to
a real case scenario. To this end, we exploit the
data from a recent shared task, the Learning With
Disagreements task (LeWiDi) (Leonardelli et al.,
2023) proposed at the 2023 edition of SemEval 1.
The challenge proposed by the task foresees to

1https://semeval.github.io/
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(a) Cross Entropy (b) Manhattan Distance

(d) Euclidean Distance (e) Jensen-Shannon Divergence

Figure 1: Metric Visualization: Each plot demonstrates the sensitivity of the analyzed metric to varying
target values. X-axes represent prediction values, while Y-axes depict corresponding distance values
according to the metric. Dots highlight distance values for accurately predicted targets, while points
represent distance values when a nominal error of 0.2 appears in the prediction.

model the disagreements among annotators in four
textual datasets that encompass different binary
classification tasks (e.g. hate speech, offensive
language, sexism detection). Teams competing
in the shared task were asked to model annota-
tors agreement/disagreement, represented in the
form of soft labels: the probability of each item to
be assigned to one class or the other is given by
the agreement among annotators on the label. In
the official competition to evaluate the performance
of participants, Cross Entropy was considered the
main evaluation metric. Here, for each of the four
datasets that were part the LeWiDi task, rankings
were recalculated for the evaluation metrics consid-
ered, and statistical difference was assessed from
top to bottom using the Wilcoxon signed-rank test.
Pairwise comparison among the different evalua-
tion metrics, in terms of percentage of teams for
which rank changed and the mean rank’s position
change, are summarized in Table 2. Results shown
report the average value across the four datasets
of the LeWiDi challange.

From Table 2 we can observe how Cross Entropy
rankings are substantially different from all the other
metrics considered (although the mean position

Table 2: Pairwise comparison of evaluation metrics
rankings: percentage of teams ranked differently
and mean position’s change across the LeWiDi
datasets

Evaluation metrics
compared

% of teams
re-ranked

Mean position
change ±std

Cross Entropy vs 79% 2.1±2
Manhattan distance

Cross Entropy vs 73% 2±2.1
Euclidean distance
Cross Entropy vs 75% 2±2
J-S Divergence

Manhattan distance vs 2% 0.1±0.2
Euclidean distance

Manhattan distance vs 21% 0.4±0.6
J-S Divergence

J-S Divergence vs 23% 0.4±0.6
Euclidean distance

change is relatively small). On the contrary, the
other metrics produce more homogeneous results,
with Manhattan distance and Euclidean distance
exhibiting almost no difference. This confirms that
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the metrics’ differences in adhering to the properties
outlined above, exert a certain influence on the
application of the metrics in the real cases.

5. Multiclass Classification

Additional analyses have been performed consid-
ering the Multiclass Classification scenario. The
most promising metrics, selected through the binary
classification analysis (i.e., Manhattan distance and
Euclidean distance), have been evaluated with re-
spect to further desirable properties defined in the
scope of multiclass classification.

Property 7 [Non-Invariance with respect to the
Most Probable Label] Given three probability distri-
butions q(k), r(k), and p(k) representing the prob-
ability of an item k being classified with the positive
label by two different models (q(k) and r(k)) and
the corresponding real value associated with k in
the golden standard (p(k)), let M(p,q) and M(p, r)
denote the distance measure between the two prob-
ability distributions and the golden standard if the
most probable label in q corresponds to the tar-
get distribution p, and the most probable label in
r does not correspond to the target distribution p,
then M(p(k),q(k)) < M(p(k), (r(k))).

The proposed property is not fulfilled by the se-
lected metrics. For instance, Example 6 reports an
example in which two different predictions lead to
the same value, according to the Manhattan dis-
tance. However, r(k) leads to a wrong classifica-
tion, while q(k) still preserves the ground truth of
the target distribution.

Example 6
Target p(k) Prediction q(k) Prediction r(k)
[0, 0.1,0.1,0.8] [0.1, 0.3,0.2,0.4] [0,0.1,0.5,0.4]

Manhattan Distance values:
L1(p(k), q(k)) = 0.8
L1(p(k), r(k))= 0.8

Similarly, Example 7 reports an example in which,
despite the most probable label in the second pre-
diction (r(k)) does not correspond to the most prob-
able label in the target prediction (p(k)), it is consid-
ered closer, according to the Euclidean distance,
with respect to the other prediction (q(k)). However,
in the last prediction, the most probable label cor-
responds to the most probable label in the target
prediction.

Example 7
Target p(k) Prediction q(k) Prediction r(k)
[0, 0.1,0.4,0.5] [0.1, 0.2,0.3,0.4] [0,0.1,0.5,0.4]

Euclidean Distance values:
L2(p(k), q(k)) = 0.2
L2(p(k), r(k))= 0.1414

Property 8 [Positional Error Sensitivity for Mul-
tiple Labels] Given three probability distributions
q(k), r(k) and p(k) representing the probability of
an item k being classified with the positive label by
two different models (q(k) and r(k)) and the corre-
sponding real value associated with k in the golden
standard (p(k)), if

∑
i |pi(k)− qi(k)| ≤

∑
i |pi(k)−

ri(k)|, then M(p(k),q(k)) ≤ M(p(k), (r(k))).

The Manhattan distance confers equivalent signifi-
cance to a substantial error on a single label and to
minor distributed errors across multiple labels rela-
tive to the target distribution. In other words, even if
a prediction leads to performing the smallest num-
ber of errors (implying a more realistic prediction
that is close to the target one) it has the same dis-
tance of a probability distribution that spreads the
wrong prediction across the remaining labels (hav-
ing a distribution that is characterized by a higher
entropy). On the other hand, the Euclidean dis-
tance penalizes more a single large error on a given
label than small distributed errors on multiple la-
bels.

An example of these behaviors is shown in Example
8. Even if a prediction results in the fewest number
of errors (implying a more realistic prediction that
is close to the target one), it achieves an equal or
lower distance score (according to the Manhattan
and the Euclidean distance respectively), than a
probability distribution that spreads the incorrect
prediction across the remaining labels. This indi-
cates that the largest-scaled probability value will
outperform the rest.

Example 8
Target p(k) Prediction q(k) Prediction r(k)
[0,0,0,0,0,1] [0,0,0,0.2,0.8] [0,0.05,0.05,0.05,0.8]

Manhattan Distance values:
L1(p(k), q(k)) = 0.4
L1(p(k), r(k))= 0.4

Euclidean Distance values:
L2(p(k), q(k)) = 0.2828
L2(p(k), r(k))= 0.2236

The unfulfillment of this property can lead to some
cases in which the Euclidean distance penalizes
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less completely misclassified distributions than par-
tial (erroneoulsly) label distributions, as shown in
Example 9.

Example 9
Target p(k) Prediction q(k) Prediction r(k)
[0,0,0,0,0.3,0.7] [0.25,0.25,0.25,0.25,0,0] [0,0,0,0,1,0]

Euclidean Distance values:
L2(p(k), q(k)) = 0.911
L2(p(k), r(k))= 0.99

The identification of unique properties for Multiclass
Classification problems is crucial due to the intri-
cate nature of multiclass categorization itself. Mul-
ticlass settings frequently have hierarchical struc-
tures or allow for potential label relationships. The
complexity of multiclass issues is further increased
in multilabel classification, where multiple labels
for instance are allowed. Specific properties for
each classification problem might be defined, for
instance, to deal with the concept of label similar-
ity, to attribute a lower penalization for failures in
predicting similar labels with respect to errors in
predicting dissimilar labels. The proposed prop-
erty offers a preliminary insight into the study of
multiclass classification, highlighting the need for a
more sophisticated understanding.

6. Related Work

We are grateful to one of the reviewers of this paper
for directing us towards (Geng, 2016), which we
had never previously encountered and appears to
come from an entirely different research community.
The objectives of that paper are, however, very dif-
ferent from ours, and closer to those of (Uma et al.,
2021b). Geng considers six approaches to what
he calls Label Distribution Learning and we would
call Learning from Disagreement, and compares
their performance on 16 datasets, none of which
are of NLP tasks (1 is artificial, 11 are biological
datasets, 3 are image understanding datasets, and
1 is movie ratings). To do this, he selects six met-
rics supporting a comparison between label distri-
butions, chosen among 41 (!) measures proposed
in previous literature–this selection is made in order
to maximize diversity between the metrics. There
is essentially no overlap between the metrics con-
sidered in the paper, and no proposal regarding the
properties such metrics should satisfy, or analysis
of the extent to which they satisfy them. This said,
that paper does point out to the existence of an
extensive literature on soft evaluation metrics we
should investigate in the future.

7. Conclusion and Future Directions

In this paper, we propose a set of properties that
soft evaluation metrics should have in order to allow
for a fair comparison of computational models, and

assess the extent to which plausible candidate met-
rics satisfy these properties. Our analysis suggests
that Manhattan distance and Euclidean distance
are the most suitable metrics for a robust and fair
soft evaluation for binary classification problems,
since they adhere to all the desired properties. Our
investigation of the LeWiDi real case scenario gave
us some indication as to the impact of the adoption
of different metrics in a real-case scenario, show-
ing differences in the rankings definitions and thus
implying the importance of selecting the best eval-
uation metric for ensuring a fair evaluation. Further
preliminary analysis in the Multiclass Classification
domain demonstrated however the unsuitability of
the analyzed metrics to provide a fair comparison of
models in this scenario. Future works will concen-
trate on Multiclass Classification and will include
the definition of properties in accordance with the
different task specifics (e.g. hierarchical, multilabel,
etc). The performed analysis suggests the need for
a novel metric that overcomes the limitations that
arise in Multiclass Classification evaluation.

Ethical issues

This study analyzes the impact of metrics on a real-
case scenario. Data from Learning With Disagree-
ments task (LeWiDi) have been exploited. However,
no sensitive information is used nor reported within
the paper.

Limitations

The investigation of the application of the explored
metrics limits to one real-case scenario (Learn-
ing With Disagreements task (LeWiDi) at SemEval
2023). The achieved results highlight a relationship
among the entropy of the dataset and the impact
of a variation of the evaluation metric on the leader-
board. The four LeWiDi datasets exhibit diverse
characteristics such as types, languages, goals
(misogyny, hate speech, offensiveness detection),
and annotation methods and represent therefore
a solid case-study. However, additional analysis
on real-case scenarios would provide a deepen
understanding of the studied phenomena.
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