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Abstract
This resource paper introduces a dataset for multi-scale rating inference of film review scores based upon review
summaries. The dataset and task are unique in pairing a text regression problem with ratings given on multiple
scales, e.g. the A-F letter scale and the 4-point star scale. It retains entity identifiers such as film and reviewer names.
The paper describes the construction of the dataset before exploring potential baseline architectures for the task,
and evaluating their performance. Baselines based on classifier-per-scale, affine-per-scale, and ordinal regression
models are presented and evaluated with the BERT-base backbone. Additional experiments are used to ground a
discussion of the different architectures’ merits and drawbacks with regards to explainability and model interpretation.

Keywords: ordinal regression, text regression, rating inference task, explainability, opinion mining, sentiment

analysis

1. Introduction

This paper introduces the MS-RottenTomatoes
dataset, which consists of enriched data scraped
from the Rotten Tomatoes film review aggrega-
tor. Critics submit their reviews to Rotten Toma-
toes, who aggregate them and then display them
on their website, grouped by film, along with their
own summarising rating. As an aggregator, Rot-
ten Tomatoes includes reviews from different film
critics across different publications, such as online
magazines and film critics’ own websites. Critics
can rate films on a variety of different scales such
as letter (A-F) or star scales (e.g. 4 or 5 point).
The main aim of the publication of this dataset is
as a benchmark for multi-scale text regression on
what Pang and Lee (2005) called the rating infer-
ence problem, that is predicting a rating given by
a reviewer from the associated review text.

Prediction of item ratings based on review text
has come up previously in the NLP literature,
where it has historically been framed as a proxy
for the sentiment analysis task with high ratings
correlated with positive sentiment. As Pang and
Lee (2005) note, film ratings can actually provide
additional information to a film review, by providing
an overall impression contrary to an otherwise neg-
ative or positive seeming review. Thus, it is likely
that in some cases, the connection between pre-
dictor and outcome variable may be rather poor,
making the task somewhat noisy. Additionally, dif-
ferent critics may interpret the same scale differ-
ently, for example being more or less generous
with awarding the top scale point. The ratings
themselves are ordinal data: ordered like nomi-
nal data; but with a finite number of outcomes like
multi-class data. To the best of our knowledge,
MS-RottenTomatoes is the first openly published

dataset with sufficient detail for rating scales them-
selves to be modelled as part of the rating infer-
ence task.

The dataset presents a number of challenges.
In many cases the review summaries simply do
not contain enough information from which to pre-
dict the grade, creating a heteroscedastic situation
when regressing the review scores based upon
review text, in which more vague reviews have a
much wider range of possible grades versus more
concrete reviews. In addition, some reviewers use
ratings to summarise their impressions of the films
rather than their reviews. This creates a gap be-
tween their review and their rating, resulting in data
points which provide random errors, or noise, to
the network during training.

In this dataset, critics give their perspective upon
films using both a rating and by giving their opin-
ion in the form of text, in doing so, they implic-
itly express another perspective on how they per-
ceive the rating scale. The presence of multi-
ple rating scales gives rise to a desire to induce
a single latent scale, so as to pool common at-
tributes across critics, and in order to work well
with gradient-based explainability techniques. On
the other hand, since critics have different per-
spectives upon the rating scales, each (critic, rat-
ing scale) pair should be modelled individually.
Finally, as ordinal data, using specialised tech-
niques such as ordinal regression seems natural
given metric methods implicitly assume data lies
on an interval scale, where scale points are equal
distances from one another. Liddell and Kruschke
(2018) give a detailed account of the downsides of
using metric methods with ordinal data, and indeed
the analysis of Section 6.1 shows that their usage
also introduces systematic errors in this setting.

The rest of this paper begins with some back-
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ground, before describing the construction of the
dataset and presenting baseline architectures and
evaluating them. The paper then moves onto an
analysis of the baseline results and discusses the
degree to which different systems lend themselves
to interpretability techniques. The paper closes by
reviewing some related work and discussing pos-
sibilities for future work.

2. Background

Deep ordinal regression techniques can be seen
as either modifying classification objectives, e.g.
as in Castagnos et al. (2022), or regression objec-
tives, considered further here. Cao et al. (2020)
used a ResNet-34 backbone together with an ordi-
nal regression head for age prediction from photos.
Their technique, referred to as CORAL, induces a
single latent scale which is used to predict an or-
dinal output Y, by modelling for each label thresh-
old k, P(Y > k + 1). ltis in this sense closely
related to the backward cumulative probability fam-
ily from the EL-MO class of models presented by
Wurm et al. (2021), where an Element Link (EL)
such as the logit most familiar from machine learn-
ing is combined with a Multinomial-Ordinal (MO)
family function which reduces the ordinal outcome
to a number of boolean outcomes.

Gradient-based explainability techniques such
as integrated gradients (Sundararajan et al., 2017)
can attribute perturbations in a deep neural net-
work’s outputs to specific areas of the input. Latent
variable models give a natural choice of output per-
turbation to answer questions of interest about the
input, e.g. Which parts of this film review are more
associated with the lower and higher ends of the
rating scale?

3. Dataset creation

This section describes how the Rotten Tomatoes
data was scraped and enriched into three derived
datasets, summarised in Table 1.

3.1.

The film ratings were scraped from Rotten Toma-
toes using a scraper written in Python using the
requests library. The process was split into the
following steps:

Scraping

"https://www.kaggle.com/datasets/
stefanoleone992/rotten-tomatoes-movies-—
and-critic-reviews—-dataset

2https://huggingface.co/datasets/
frankier/processed_multiscale_rt_critics

Shttps://huggingface.co/datasets/
frankier/multiscale_rt_critics_subsets

Table 1: Summary of the released datasets

Name RT-critics
Repository  Kaggle'
# Movies 17712
# Critics 11109
# Ratings 1130017
Name RT-normalized
Repository  Huggingface Hub?
# Movies 17619
# Critics 6832
# Ratings 617819
Task Text regression
Split Random
Train/Val/Test 60% / 20% / 20%
Name RT-critics 500
Repository  Huggingface Hub®
# Movies 16251
# Critics 266
# Ratings 315802
Task Multi-scale rating inference
Split  Stratified (critic, rating scale)
Train/Val/Test 60% / 20% / 20%

1. Collect film URLs from the film index;
2. Scrape film information from each film;
3. Scrape the critic reviews section of each film.

After scraping, films without at least one critic re-
view, and critic reviews without film information are
dropped. At this point, we have the non-task spe-
cific RT-critics dataset from Table 1.

3.2. Normalisation

In order to normalise the dataset for usage in multi-
scale prediction tasks, the type of scale being used
in each rating needs to be determined. Following
this, ratings can be converted into a whole number
numerical, ordinal scale, ready to be treated as ei-
ther a classification or ordinal regression task.

The scales are first divided into either letter
scales or number scales, which include e.g. star
ratings as well as percentage and out-of-10 scales.
Within the letter scales there are short and long
scales, with short scales ranging from F up to A
and long scales, which include plus and minus
grades, ranging from F- up to A+.

Number scales are broken down by three fac-
tors: the maximum score; whether the scale in-
cludes 0; and by granularity. A scale’s granu-
larity is whether it contains only whole numbers,
or whether fractional ratings such as 0.5 or 0.25
are included, and if so, what is the minimum di-
vision between them. Since Rotten Tomatoes al-
lows free text entry by reviewers submitting rat-


https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
https://huggingface.co/datasets/frankier/processed_multiscale_rt_critics
https://huggingface.co/datasets/frankier/processed_multiscale_rt_critics
https://huggingface.co/datasets/frankier/multiscale_rt_critics_subsets
https://huggingface.co/datasets/frankier/multiscale_rt_critics_subsets

ings, it is possible to have ratings not in the above
categories. These are either misentered data or
extremely rare, unusual forms of ratings and are
dropped altogether.

Grades are matched against either the list of let-
ter grades or matched as a fraction: two numbers
separated by °/. After this, grades are considered
to have a preliminary grade type.

For numerical grades, the granularity is found
by considering the Least Common Multiple (LCM).
This is done group-wise, keyed on the (publisher,
grade type) pair. Next, the grade is divided by the
granularity to obtain a normalised integer grade. A
single non-conforming grade will change the LCM.
Rather than rounding grades, rare grades, defined
here as those with less than 50 reviews across
the whole dataset, together with 8 manually cho-
sen entries with unusual grade values are dropped.
These grades include for example, 2.4/5 on a grad-
ing scale which otherwise has 0.5 as the granular-
ity. Since these do not fit with their grading scale,
they may be the result of a typo, and including
them would change the LCM, affecting all other en-
tries in the same group. This cleaned dataset is
released as RT-normalized (see Table 1).

3.3. Schema and tasks

The columns of the dataset can be broken down
into: Entity identifiers useful for linking within or be-
yond the dataset: the movie’s title, the review pub-
lisher's name, and the critic’'s name; Textual con-
tent consisting of the review text itself; Numerical
data including the review score as originally pre-
sented, along with a normalised integer 0-based la-
bel, and an accompanying number of scale points
thought to exist within the scale; and finally infor-
mation about how the grade was normalised, such
as the detected grade scale granularity, which can
be used to convert back and forth between the nor-
malised and unnormalised form of the grade.

This data is rich enough to be viewed from a
number of perspectives, which are summarised
in Table 2. Namely, the fact that the authors
are named means this dataset could be used for
author identification. Additionally, the ability to
form a matrix of films and critics means that item-
response theory* could be applied in order to anal-
yse aspects of the critics and films themselves, e.g.
film quality and critic fussiness estimated on a com-
mon scale. However, it is the multi-scale rating in-
ference problem, where film ratings are regressed
based upon the review text that is considered for

“ltem-response theory is used here as an umbrella
term for methods utilising latent variable models which
estimate parameters for some general type of “items”
and “respondents” on a common scale based on a cross
tabulated response matrix.
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the rest of this paper.

3.4. Splits and subsets

We further process the dataset for the multi-scale
rating inference task. In order to model the be-
haviour of each critic on each scale, we consider
each group keyed by a (critic, rating scale) pair as
a task within a multi-task learning setup. We drop
all groups with less than 500 items. This is done
so as to create a dataset where each task contains
a sufficient number of samples to model it indepen-
dently. It has the additional benefit of reducing the
total dataset size, leading to a more energy effi-
cient dataset to use for benchmarking.

Next, we create training, test and validation
splits using stratified sampling grouped by task.
The rest of this paper considers only this RT-critics
500 dataset (see Table 1).

3.5. Analysis

Different critics treat each rating scale differently.
Figure 1 shows the marginal distributions of four
different critics across an out-of-5 scale and a long
letter scale. The critic in the bottom left panel ap-
pears to avoid fractional grades, while the critic in
the top left panel uses them in proportiona with the
other grades, but is more cautious about giving 5/5.
On the right, both critics avoid giving C+ grades,
but the top critic gives plus and minus grades at
the top end of the scale in proportion to bare letter
grades, whereas the bottom critic gives relatively
less plus and minus grades. These marginal dis-
tributions show different behaviours, and suggest
that critics should be at least partially modelled in-
dependently. In addition, they fairly clearly show
the ordinal nature of the data. Different grade
points are not equally spaced, but rather it is a mat-
ter of determining some reasonable thresholds on
a latent scale.

4. Systems

In order to demonstrate the dataset, some base-
lines are presented here®. In particular, we look
at the performance of fine tuning foundational lan-
guage models on the dataset. In all cases, the idea
is to train a single backbone model for all (critic, rat-
ing scale) pairs. The baseline systems consist of
fairly typical ways of approaching the problem of
predicting film ratings based upon their text.

A block-diagram level overview of the different
baselines is given in Figure 2. The backbone
used in all experiments is BERT-base (Devlin et al.,

®Code to reproduce the baselines and experi-
ments is made available at https://github.com/
frankier/ms_text_regress.


https://github.com/frankier/ms_text_regress
https://github.com/frankier/ms_text_regress

Table 2: A list of possible tasks relating to the MS-RottenTomatoes dataset

Task Target

Regressors

Techniques

Critic

Film quality and
Critic “difficulty”
Film rating
Review text

Author identification
Film/critic analytics

Rating inference
Opinion generation

Review text

Film x Critic matrix

Entries: Review text, Rating
Review text

Rating, Film, Critic

Text classification
Item-response theory

Multi-scale text regression
Text generation
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Plots of label distributions for different critics, illustrating varying behaviours of critics across

an out-of-5 scale with half-star granularity (left) and a long letter scale (right)

2019). Although this backbone is no longer state-
of-the-art, the main aim of these experiments is to
establish baselines for this task. Since this dataset
is derived from a publicly available website, it is
of particular importance that this model has only
been trained on Wikipedia and BookCorpus, and
not on large scale web text, which would run the
risk that the backbone has been exposed to the
MS-RottenTomatoes test set during pretraining.

4.1.

The Classifier-Per-Scale (CPS) system consists of
a single linear predictor followed by another linear
layer per (critic, rating scale) pair. Following soft-
max, the multinomial vector can be aggregated
to get a single prediction. In preliminary experi-

Classifier-Per-Scale
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ments, the mode provided the best accuracy, while
the median gave the lowest MAE, so both are pre-
sented in Table 3, as CPSmoge and CPSmegian, re-
spectively.

4.2. Affine-Per-Scale

Affine-Per-Scale (APS) learns an affine transfor-
mation of a common linear scale per (critic, rat-
ing scale) grouping. In order to initialise the la-
tent scale and heads, 8 pilot batches of the training
set are run, and the pre-latent linear initialised so
its output has a mean of 0 and a standard devi-
ation of 1. The heads are then initialised based
on the mean and standard deviation of their critics’
labels on their rating scale according to the train-
ing dataset. So a fair comparison can be made
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Figure 2: Schematic diagrams of the architectures of the baseline systems considered here. Dotted
areas are referred to as heads and are repeated for each scale. Red arrows indicate the shared latent
scale. L is the number of labels while K = L — 1 is the number of class boundaries. §, = P(Y > k+ 1)

between regression and classification approaches,
the output is rounded to the nearest integer with
the function:

1
P
2

round(z)

Lz + 5]

4.3. Ordinal regression

Following Cao et al. (2020), we apply an affine
transformation composed with a sigmoid transfor-
mation element-wise to get a vector modelling
P(Y > k+1). This vector can be processed to ob-
tain a multinomial vector and the mode or median
applied to obtain a single prediction, denoted as
Ord.mode @and Ord.median, respectively, in Table 3.

5. Results

The main metric used here is a multi-scale variant
of Mean Absolute Error (MAE), normalised to the
range of the relevant scale:

n ~
lyi — il

MAEys = —
M (i) — scale-min(s)

n ; scale-max
This metric attempts to give even weight to errors
from different scales. It is invariant to the scale
transformation of the normalisation procedure of
Section 3.2. MAE is the chosen base metric here
since it has a straightforward interpretation and
lends itself easily to this multi-scale adaption.
Since the objective for the latent models is to
learn a good latent scale, evaluation metrics are
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always taken after refitting the heads. This con-
sists of first performing a full evaluation-mode
pass over the training set, followed by refitting
the heads task-at-a-time using convex optimisa-
tion procedures. The Affine-Per-Scale system is
fitted using ordinary least squares as implemented
in scikit-learn (Pedregosa et al., 2011) and
the ordinal regression system is fitted using the
vGaM (Yee, 2010) R package, which uses iter-
atively reweighted least squares, wrapped using
rpy?2. In both cases, no regularisation is used. No
refitting is performed for the classification model.

All experiments were run using HuggingFace
Transformers (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019). The hyperparameters, which
are common to all baselines are summarised in Ta-
ble 4.

All experiments used early stopping with a pa-
tience of 3 validation cycles, with a validation cycle
run every 1000 steps.

The results in Table 3 show that the ordinal re-
gression system performs quite poorly. It exhib-
ited noisy validation metrics and loss curves dur-
ing training. It was the only system for which early
stopping was applied, after 4000/17000 steps. We
speculate that a specialised training procedure
may be needed to fit these kinds of models in this
setting.



Table 3: Evaluation results for the three baseline architectures, alongside a Most Frequent Class (MFC)
baseline. Lower MAE is better. Higher acc. = accuracy is better. MAE,s and accuracy are given in %.

Validation

Micro Macro
MAEys MAE AcC. MAEys MAE Acc.
MFC 16.5 2.11 27.3 16.7 2.16 27.5
CPSmedian 10.5 1.38 37.4 11.2 150 35.7
CPSmode 10.7 1.41 39.3 114 155 37.9
APS 9.6 1.23 34.6 9.7 1.28 34.4
Ord. median 18.7 2.36 16.3 19.1 2.44 16.1
Ord.mode 30.0 3.99 7.8 30.6 4.15 7.9

Test

Micro Macro
MAEys MAE Acc. MAEys MAE Acc.
MFC 16.5 2.12 27.1 16.6 2.16 27.5
CPSmedian 10.5 1.39 37.3 11.2 150 35.8
CPSmode 10.7 1.42 39.2 11.3 1.54 38.0
APS 96 125 34.6 9.8 1.28 345
Ord. median 17.8 227 17.2 18.1 234 17.0
Ord.mode 302 405 7.9 30.8 4.22 7.9

Table 4: Hyperparameters used for the baselines

Backbone BERT-base
Optimisation routine AdamW
Batch size 32
Learningrate 1le—5
Schedule Linear
Warmup 10%
Training time 17000 steps

(= 2.87 epochs)

Validation metric  MAEys
Validation Every 1000 steps
Early stopping patience 3 validations

6. Experiments

This section demonstrates the need for alterna-
tives to APS, before motivating further work in the
direction of latent variable models by demonstrat-
ing their potential with regards to explainability and
model interpretation using the APS model.

6.1. Model fit

One of the aims of releasing this dataset is to
help spur interest in combining non-standard re-
gression methods with NLP. In order to show the
inadequacy of treating ratings as real numbers, we
diagnose the model fit of the heads of the APS fi-
nal model by running a pass over the training data
and refitting a linear model of the form 22 + z + ¢
where z is the latent scale. The fit was performed

Table 5: Counts and proportions of refit APS heads
with significant 22 parameters according to differ-
ent p-values

p-value Correction count %
0.05 None 101 38
0.01 None 77 29
0.05 Bonferroni 33 12
0.01 Bonferroni 24 9

with statsmodels (Seabold and Perktold, 2010)
with the default settings: nonrobust regression and
two-tailed parameter significance testing based on
the Student’s t-distribution. The results in Table 5
give strong evidence that at least 9% of the heads
are not fitted well by a linear relationship.

This poor fit of the heads suggests the outcomes
modelled by some heads do not have a linear
relationship with the latent variable, while others
perhaps do. This poor fit will result in the back-
bone systematically receiving poor gradients dur-
ing training.

6.2. Gradient-based attribution

Gradient-based attribution methods are an explain-
able machine learning technique which work by
looking at how gradients at different network in-
puts change according to perturbations in the
outputs of the network. For each review in
the validation set, we use layer integrated gradi-
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Figure 3: The results of integrated gradi-
ents as applied to three example review texts.

Warmer colours are associated with increases in

the rating, while colder colours are associated
with decreases in the rating. Words found in Sen-
tiwordNet are annotated with their corresponding
classes.

ents (Sundararajan et al., 2017) as implemented
in Captum (Kokhlikyan et al., 2020) with 50 steps
to find subtokens associated with higher and lower
ratings. For each token, we reconstruct the word
it is part of and look up the first sense in Senti-
WordNet (Esuli and Sebastiani, 2006), classifying
it as positive if the positive score is greater than
the negative score, neutral if they are the same
and negative otherwise. Both sources of informa-
tion are overlaid onto example review summaries
in Figure 3, while the resulting cross-tabulation ta-
ble is shown in Table 6.

We can now calculate two association mea-
sures: mutual information and the G statistic. We
calculate these between the most negatively and
most positively associated token according to in-
tegrated gradients and their classification accord-
ing to the negative/positive classes of SentiWord-
Net. The resulting mutual information calculated
using the plug-in estimator gives a moderate value
of 0.21 bits. Calculating the G-statistic results in
a value of 16796 (rounded) which results in a P-
value for association equal to 0 when calculated
using double floating point precision, i.e. there is
close to zero chance we would see these results
without an association between the two.

6.3. Interpretation of model fit

Given a text regression model, we can apply linear
modelling diagnostics to each head’s linear model
on the training set to answer questions about the
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Table 6: Cross tabulation of words with the
strongest high (hi) and low (lo) token rating attribu-
tion against negative, positive, neutral, or unknown
sentiment in SentiWordNet. The top half gives raw
counts and the bottom half gives % of reviews in
the validation set.

SentiWordNet
Neg. Pos. Neu. Unk.
Cnt Lo 19541 6978 2964 6998
T Hi 6485 24441 28514 3717
% Lo 31 11 47 11
°  Hi 10 39 45

level to which the heads are able to model the rela-
tion between the true rating and the latent variable
derived from the deep learning prediction model.
Critics with poor fit may be “film impression sum-
marisers® who use a rating to give an overall im-
pression of the film, sometimes contrary to the re-
view text, while critics with a good fit may be “re-
view summarisers”, whose review rating agrees
with the text. If we look at the MAE, for all crit-
ics, we see that Philip Martin is the biggest review
summariser with an MAEs of 2%, and Walter Chaw
is the biggest film impression summariser with an
MAEys Of 17%. However, the poor model fit of
some linear heads shown in Section 6.1 means
it is not entirely clear whether these metrics truly
reflect critic behaviour, or whether they result from
a non-linear relationship between the latent rating
prediction and this rater’s scores.

7. Related work

A number of NLP datasets deriving from review
data have been published openly and used in the
literature. Maas et al. (2011, §4.3.2) introduced a
fairly popular example. Their dataset consists of
50 000 user reviews from IMDB processed to cre-
ate, as is often the case, a binary positive/negative
review dataset by thresholding a negative class
from scores < 4/10, and a positive class from
scores 2 7/10.

Pang and Lee (2005) released a dataset of 5006
reviews from 4 authors, with ratings normalised to
a single 4-point scale. This results in quantisation
error, and discards scale information. Although
they noted the subproblem of using a single model
for multiple authors would require some degree of
calibration, this was not explored further.

It is worth noting that while early work in sen-
timent analysis treated review ratings as a proxy
for sentiment as a pragmatic way to create a
dataset quickly, both sentiment and review anal-
ysis has developed quite significantly since. On



the one hand, sentiment analysis has given way
to datasets which model emotions expressed in
text, such as that of Ohman et al. (2020) who
take a multi-label setting and tag subtitles with
zero or more emotions from the eight emotions in
Plutchik’s Wheel of Emotions. On the other hand,
the desire to produce more detailed analyses of re-
view texts has led to aspect-based sentiment anal-
ysis tasks, such as that of Pontiki et al. (2014),
where certain aspects of opinions expressed in re-
views are to be extracted from the text, and then
individually given sentiment tags.

8. Conclusion

We have presented a dataset for multi-scale film
rating inference based on reviews. The dataset
preserves data useful for downstream tasks, such
as the original rating scales and entity identi-
fiers. In this sense it has fewer data quality prob-
lems when compared to comparable review rating
datasets. Critics and grading scale types are in-
cluded in the dataset, allowing for critic behaviour
against particular scales to be modelled.

Baseline experiments show that the Affine-Per-
Scale (APS) and Classifier-Per-Scale (CPS) sys-
tems were able to fit the dataset. The ordinal re-
gression -based approach outlined here, on the
other hand, did not manage to beat a Most Fre-
quent Class (MFC) baseline. While the model is a
largely analogous to the model of Cao et al. (2020),
we speculate that it failed to converge here due
to the multi-scale setting and noisy dataset. As
we saw in Table 2, different critics show different
behaviours in response to different rating scales.
Since ordinal regression directly models the rela-
tionship between rating scale thresholds and the
latent scale, it appears to be the correct tool to han-
dle such non interval scale data.

Furthermore, since ordinal regression induces a
latent scale, as APS does, it lends itself to the in-
terpretation experiments of Section 6.2 & 6.3, how-
ever, it would mitigate the problems of the APS sys-
tem. In particular, 1. systematic error in the gradi-
ents to the backbone due to poor model fit of lin-
ear heads as outlined in Section 6.1, and 2. this
same systemic error making interpretation of the
values of these heads difficult, as outlined in Sec-
tion 6.3 . Thus, a clear future direction for this work
is to adapt the training procedure of the ordinal
regression system so that it is able to make sta-
ble progress when fine-tuning a language model to
tackle a noisy multi-scale task like the one posed
by this paper.

Another line of future work is to consider differ-
ent perspectives and tasks related to the dataset
as outlined in Table 2. Particularly promising is
the possibility of applying item-response theory in
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order to better understand different styles of us-
ing grading scales. After all, perspectives are
expressed via ratings given on a variety of grad-
ing scales across a variety of domains including
Education and Psychometrics. Thus this dataset
holds promise for deepening understanding of rat-
ing based preferences when combined with text
into these fields also.

9. Ethical considerations

Critics are named in this dataset, however, we do
not believe that releasing this dataset including the
names constitutes a violation of privacy. The re-
views have been created by professional critics
as part of their public persona. In terms of reg-
ulations, the EU General Data Protection Regula-
tion makes such an exemption in Article 9(2)(e) for
cases where data has been made “manifestly pub-
lic” by the data subject. Furthermore, from the less
strictly legalistic perspective of seeking to avoid
harm to those named, since the reviews have been
submitted for aggregation, there is no reasonable
expectation of relative privacy (as can be the case
with social media) and no reason to believe that ag-
gregation as part of this dataset will cause the crit-
ics to come under disproportionate public scrutiny.

Rights and regulations regarding text mining
vary widely between jurisdictions. While the EU
has specific exceptions for text mining, the US has
wider reaching fair and transformative usage ex-
ceptions. Thus, users of the dataset are advised
that they have the same rights to it as if they had
created it themselves. Depending on jurisdiction,
this may vary according to whether the usage is
commercial or done in the service of the public in-
terest as in the case of publicly disseminated re-
search.
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