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Abstract
This paper explores the correlation between linguistic diversity, sentiment analysis and transformer model
architectures. We aim to investigate how different English variations impact transformer-based models for irony
detection. To conduct our study, we used the EPIC corpus to extract five diverse English variation-specific datasets
and applied the KEN pruning algorithm on five different architectures. Our results reveal several similarities between
optimal subnetworks, which provide insights into the linguistic variations that share strong resemblances and those
that exhibit greater dissimilarities. We discovered that optimal subnetworks across models share at least 60% of their
parameters, emphasizing the significance of parameter values in capturing and interpreting linguistic variations. This
study highlights the inherent structural similarities between models trained on different variants of the same language
and also the critical role of parameter values in capturing these nuances.
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1. Introduction

Sentiment analysis datasets, particularly those an-
notated on crowdsourcing platforms, may contain
biases due to the lack of information about the cul-
tural backgrounds of the annotators. This can lead
to machine learning models trained on this data am-
plifying these biases, affecting how people perceive
and label sentiment. Although these models can
capture general sentiment, they often fail to capture
the nuances experienced by different groups.

This paper examines the impact of linguistic di-
versity on transformer models designed for irony
detection. Using the EPIC corpus (Frenda et al.,
2023), we created five subsets tailored to different
variations of English. We trained different trans-
former models and used the KEN pruning algorithm
(Mastromattei and Zanzotto, 2024) to extract the
minimum subset of optimal parameters that main-
tain the original performance of the model. We
conducted this experimental process across five
transformer architectures, revealing a minimum pa-
rameter overlap of 60% among resulting subnet-
works. We then performed a comprehensive anal-
ysis to identify subnetworks with the highest and
lowest similarity. Additionally, we used KENviz for
a visual examination of pattern similarities. Our
results show that the linguistic variation is closely
related to the individual values of each parameter
within the models. This suggests that the diversity
among linguistic variation is not just a structural
aspect, but is deeply rooted in the specific values
contained in the model. These insights can help
create models that better capture the richness of
linguistic variation and address bias effectively.

2. Background and related work

Artificial intelligence (AI) models impact our daily
lives in many ways. Some applications go beyond
just processing data and strive to understand the in-
tricate human elements and cultural nuances of our
world. For instance, sentiment analysis requires a
deeper understanding of implicit phrases and cul-
tural differences to accurately interpret emotions
(Tourimpampa et al., 2018; Sun et al., 2022). This is
why rigorous studies are essential before deploying
data and models in real-world settings. When creat-
ing data, it is crucial to incorporate different perspec-
tives evaluation standards, such as "golden stan-
dards" (Basile et al., 2021), incorporating criteria for
evaluating annotators (Miłkowski et al., 2021; Aber-
crombie et al., 2023; Mieleszczenko-Kowszewicz
et al., 2023), grouping them according to potential
bias factors (Fell et al., 2021) or using text visual-
ization techniques to analyze annotated datasets
(Havens et al., 2022). On the model level, ex-
plainable AI (XAI) techniques (Samek et al., 2017;
Samek and Müller, 2019; Vilone and Longo, 2021)
are being used to demystify complex models and
ensure transparency. Many neural interpretability
models rely on attention-based techniques (Bodria
et al., 2020), utilizing auxiliary tasks (De Sousa Sil-
veira et al., 2019), or external knowledge integration
(Zhao and Yu, 2021). Moreover, attention-based
models exhibit a grasp of the syntactic structure of
analyzed sentences (Manning et al., 2020). Conse-
quently, the role of syntax in model interpretation is
being extensively studied across various domains,
including irony (Cignarella et al., 2020) and hate
speech (Mastromattei et al., 2022b,a). This multi-
faceted exploration contributes to a richer under-
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Figure 1: Workflow overview. Specific language variations are selected from the EPIC corpus (1). For
each unique language subset, a dedicated transformer model is trained (2). This ensures that each model
specializes in the intricacies of its assigned language variation. Finally, the KEN pruning algorithm is
applied to optimize the trained models (3). This involves efficient and lightweight architectures for each
language variant (4).

standing of the interplay between language, culture
and model interpretability to achieve increasingly
inclusive AI models.

3. Methods and Data

This section introduces the core components of
our research: the EPIC corpus and the KEN prun-
ing algorithm. Sec. 3.1 provides an in-depth ex-
ploration of the EPIC corpus, explaining its com-
position and the diverse language varieties it en-
compasses. Sec. 3.2 analyzes the KEN pruning
algorithm, emphasizing its key role in transformer
model optimization.

3.1. EPIC Corpus
The EPIC (Frenda et al., 2023) corpus consists of
3,000 conversations from social media platforms.
It covers five different varieties of English, including
Australian (AU), British (GB), Irish (IE), Indian (IN)
and American (US). The corpus offers valuable in-
sights into how cultural and linguistic factors shape
the perception of irony, giving a comprehensive
analysis of it from different perspectives.

To ensure the authenticity of the data, EPIC
sources its content from Twitter and Reddit, cap-
turing informal communication across different re-
gions and demographic areas. Rigorous data cu-
ration guarantees the inclusion of potential ironies
while maintaining a balanced distribution across
language varieties, mitigating selection bias. Na-
tive speakers from each country independently la-

bel instances as ironic or non-ironic, using a multi-
perspective annotation process. This ensures a
robust and nuanced understanding of cultural hu-
mor. Annotators possess robust language skills
and familiarity with online communication styles,
reinforcing the reliability of their judgments. The
inclusive approach in both data collection and an-
notation facilitates the development of perspective-
aware models (Akhtar et al., 2021) that account for
cultural and linguistic variations.

3.2. KEN algorithm

KEN (Kernel density Estimator for Neural network
compression) (Mastromattei and Zanzotto, 2024),
is a pruning algorithm designed to extract the most
essential subnetwork from transformer models. It
exploits the winning ticket lottery hypothesis (Fran-
kle and Carbin, 2018), according to which an opti-
mal subset of fine-tuned parameters maintains the
same performance as the original one.

KEN leverages Kernel Density Estimations
(KDEs) to generalize point distributions for each
row of a transformer matrix, resulting in a stream-
lined version of the original fine-tuned model. By
pinpointing the k most representative parameters
within each distribution, KEN effectively prunes the
network, preserving them while reverting the re-
maining parameters to their pre-trained state. KEN
archives minimum parameter reduction between
25% and 60% for specific models, maintaining
equivalent or better performance than their un-
pruned counterparts. The resultant subnetwork
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Model AU GB IE IN US
Bert 47.54 58.03 58.03 58.03 58.03
DistilBert 56.26 34.39 50.79 50.79 56.26
DeBerta 44.88 55.91 55.91 55.91 55.91
Ernie 58.03 47.54 58.03 58.03 58.03
Electra 91.18 91.18 64.75 91.18 82.37

(a) Pertentage of parameter reset after the KEN pruning step
for all the models on each language variation subsets analyzed.
The percentage indicates the number of parameters reset to
their pre-trained value in the entire model

Model AU GB IE IN US
Bert +2.0 +2.1 +5.5 +4.6 +0.0
DistilBert +0.6 +0.0 +3.5 +2.4 +0.0
DeBerta +1.3 +2.9 +7.2 +1.4 +0.0
Ernie +0.0 +0.0 +0.0 +13.5 +0.0
Electra +5.2 +0.7 +1.5 +0.1 +2.1

(b) Variation of the F1-weighted measure across all the
language variation subsets after the KEN pruning step.
Positive values indicate a score improvement compared
to the unpruned version

Table 1: Result obtained during our experiment: Tab. 1a shows the percentage of parameter reset of each
model in all language variation subsets analyzed while Tab. 1b presents per F1-weighted performance
variation obtained.

can be seamlessly archived and reintegrated into
its pre-trained configuration for diverse downstream
applications. This approach not only significantly
reduces model size but also enhances efficiency
and flexibility across various tasks.

4. Experiments

This section provides a detailed explanation of
the entire process we followed during our experi-
ment. The process began with the variant-specific
datasets extraction to the optimal subnetworks
search and the transformer architecture tested.

The EPIC corpus contains approximately 3,000
sentences annotated by multiple annotators, re-
sulting in 14,172 records. To create language-
variant-specific datasets, we distilled unique sen-
tences from the corpus and applied majority voting
based on annotations, with ties resolved by labeling
records as "irony." This meticulous process yielded
well-balanced datasets, each comprising approxi-
mately 600 records.

Five models, each specializing in a single lan-
guage variant, were trained using the same trans-
former architecture. After fine-tuning, we used the
KEN pruning algorithm to extract the smallest and
most efficient subnetwork in each model. This pro-
cess involves incrementally increasing the number
of fine-tuning parameters retained and decreasing
those restored to pre-training values, starting from
a minimal subset of parameters and expanding it
until the pruned model performance matches or
exceeds its unpruned counterpart. Using these
optimized subnetworks, we analyzed the internal
structures of the models and measured the simi-
larities between the optimized subnetworks across
different language variants. For each layer, we ex-
tracted the corresponding matrices and conducted
a meticulous analysis of the positions of the optimal
parameters within each optimal subnetwork. This
involved an "in-breadth" analysis, which identified
the parameters present in all optimal models exam-
ined and pairwise comparisons between models to

identify the language variants with the greatest and
least similarity, regardless of the model architecture.
We conducted these analyses for each architecture
under examination on the layers that constitute the
attention mechanism or similar structures, as these
layers concentrate most of the arithmetic operations
of the model and are a strength of the transformer
model core structure.

We replicate this experiment across five distinct
transformer model architectures, including Bert (De-
vlin et al., 2018), DistilBERT (Sanh et al., 2019),
DeBERTa (He et al., 2020), Ernie (Sun et al., 2020)
and Electra (Clark et al., 2020). The provided Fig.
1 visually depicts the entire workflow, starting with
language variety subset extraction to the resulting
optimized subnetworks obtained.

5. Results

The KEN algorithm is an effective method for se-
lecting the best model parameters for each lan-
guage variation. The rate at which these parame-
ters are reset varies across different architectures,
as shown in Tab. 1a. However, this resetting rate
consistently exceeds 50% on average. Surprisingly,
despite the substantial resetting, performance ac-
tually improves in most cases, as demonstrated by
the F1-weighted scores in Tab. 1b. Notably, these
results were achieved through tuning steps on rel-
atively small data sets, with only 600 examples
per variation. It is essential to note that our primary
goal was not to establish new state-of-the-art (SoTa)
models, but rather to investigate the impact of lan-
guage variations on model parameters within each
architecture examined. From this perspective, the
results are encouraging and demonstrate a positive
impact. Additionally, the varying percentages of pa-
rameter resets among linguistic variations using the
same architecture contribute to a more nuanced
understanding of the optimal subnetworks and their
comparison.

After examining subnetwork structures, it was
discovered that two optimal subnetworks share at
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Figure 2: Comparison of the optimal subnetworks of two DeBERTa models (layer 0, attention output
matrix) trained on British (GB) and Irish (IE) linguistic variation, respectively. The matrix on the left shows
the number of common parameters between the two matrices (subnetwork overlap), while the middle
one shows the location of the optimal parameters of the GB subnetwork not present in IE, and on the
right the exact opposite. Blank values refer to the values not belonging to the optimal network and thus
the collection of points that the KEN algorithm has reset to their pre-training value. Additional results are
shown in Apx. A

least 60% of their parameters. This percentage,
however, does not take into account parameters
reset by KEN, which could significantly impact the
final result. Tab. 2 indicates that Indian (IN) and
American (US) variations have the highest overlap,
with more than 90% in three out of five models.
British (GB) and Irish (IE) also have considerable
overlap across all models, which is highly desir-
able. Despite extensive analysis, identifying the
most distinct variants remains challenging, as the
percentage difference between pairs of language
variations across all models is relatively small.

Subnet A Subnet B BERT DeBERTa DistilBERT Ernie Electra
AU GB 69.73 69.94 61.69 69.81 89.49
AU IE 69.79 69.94 75.22 82.72 23.15
AU IN 69.73 69.94 75.17 83.22 87.6
AU US 69.73 69.94 83.42 83.22 29.09
GB IE 83.02 82.74 69.38 69.76 23.15
GB IN 82.59 82.71 69.38 69.81 86.95
GB US 82.59 82.71 61.66 69.81 29.06
IE IN 82.6 82.86 85.85 82.39 23.15
IE US 82.6 82.86 75.17 82.39 69.68
IN US >90.0 >90.0 76.22 >90.0 29.45

Table 2: Similarity percentages between subnet-
works specific to language variation. Percentages
are obtained by comparing for each model the num-
ber of non-reset parameters within each attention
(or similarity) layers

In addition to tabular descriptions, we have graph-
ically presented the results obtained. Through
KENviz, three different types of results are visual-
ized: (1) the subnetwork overlap of two language
variations within the same selected matrix layer,
(2) fine-tuned parameters chosen for the linguistic
variation A but not for B and (3) the reverse. Fig. 2
showcases one of the obtained results, while Apx.
A provides more case studies by analyzing results
across all models in their last attention layer for

specific linguistic variations. These graphical repre-
sentations offer insights into the precise placement
of optimal parameters and the shared or differing
structures between models.

6. Conclusion

This study conducted a thorough analysis of dif-
ferent transformer models to discover their diver-
gences in detecting irony when trained on different
linguistic variants. We uesd the EPIC corpus and
created language-variant-specific datasets for five
English variations (American, British, Indian, Irish
and Australian). Using the KEN pruning algorithm,
we extracted optimal subnetworks from five trans-
former architectures (BERT, DistilBERT, DeBERTa,
Ernie and Electra) tailored to each language varia-
tion. Our study revealed that different linguistic vari-
ations share a remarkable number of parameters,
regardless of the architecture used. We provided
insights into the similarity of each pair of optimized
subnetwork linguistic variations by reporting the
percentage of common parameters. However, we
found it challenging to rank the dissimilarity since
the shared parameter percentage remained consis-
tently high in all cases. To enhance our understand-
ing of how linguistic diversity manifests in the mod-
els, we used KENviz to provide a graphical view
of the specific locations of shared and distinct pa-
rameters across models and language variations.

Although there are limitations such as the size
of the dataset, our study demonstrates that train-
ing transformer models and adapting them to lin-
guistic variations yield highly similar output models
demonstrating how their difference is intrinsic to
their parameter values.
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A. KENviz outputs

In this appendix, we present some graphical results
obtained using KENviz by analyzing the output of
attention matrices in the last levels for each model
analyzed. We selected several pairs of linguistic
variations for each model that showed the most
interesting results based on the findings in Tab.2.
These visual results highlight the commonalities
found within the optimal subnetworks and show
the difficulty of finding differences between them.
However, we can observe that in some cases, pa-
rameter selection focuses more on certain areas
than others.
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A.1. Results in DeBerta model

(a) q_proj matrices

(b) pos_proj matrices

(c) in_proj matrices

(d) Output matrices

Figure 3: Layer 12

A.2. Results on Ernie model

(a) Key matrices

(b) Query matrices

(c) Value matrices

(d) Output matrices

Figure 4: Layer 11
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A.3. Results on BERT model

(a) Key matrices

(b) Query matrices

(c) Value matrices

Figure 5: Layer 12

A.4. Results on DistilBERT model

(a) k_lin matrices

(b) q_lin matrices

(c) v_lin matrices

Figure 6: Layer 5

A.5. Results on Electra model

(a) Key matrices

(b) Query matrices

(c) Value matrices

Figure 7: Layer 12
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