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Abstract
Human experiences are complex and subjective. This subjectivity is reflected in the way people label images for
machine vision models. While annotation tasks are often assumed to deliver objective results, this assumption
does not allow for the subjectivity of human experience. This paper examines the implications of subjective human
judgments in the behavioral task of labeling images used to train machine vision models. We identify three primary
sources of ambiguity: (1) depictions of labels in the images can be simply ambiguous, (2) raters’ backgrounds and
experiences can influence their judgments and (3) the way the labeling task is defined can also influence raters’
judgments. By taking steps to address these sources of ambiguity, we can create more robust and reliable machine

vision models.
Keywords: Disagreements, Ambiguity, Machine vision

1. Introduction

Computer vision models rely on human annota-
tions, and the default assumption when creating
training and evaluation datasets is often that there
is a single correct answer about what concepts or
objects are present in an image. Though there
is growing acceptance that human disagreements
are common with respect to inherently ambiguous
data Kairam and Heer (2016), the role of human
disagreements as a general property of any anno-
tation task is much less accepted. In image anno-
tation, even the annotation of concrete concepts
(e.g., bird) in clear, high quality, unobscured im-
agery can lead to disagreement between raters
that we should seek to understand. The interplay
of annotator, concept, and image characteristics
in labeling tasks should inform how we analyze
human ratings, leverage disagreement insights to
train and evaluate models, and translate findings
into best practices.

To understand individual human behavior in im-
age annotation, we focus on large label space mod-
els for computer vision. Large label space models
are machine vision models that predict the proba-
bilities of many entities in an image, in contrast to
binary classification models that predict the pres-
ence or the absence of a single entity and seg-
mentation models that identify pixels corresponding
to an entity. Most image models require labeled
training data to learn to classify accurately (e.g.,
Ji et al. (2019)). This requirement typically con-
sists of a training set of images labeled with their
contents, usually by human annotators. For ex-
ample, to learn to classify birds in images, a large
label space model would need to see many (usu-
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ally at least tens of thousands) of images of birds,
depicted in a range of different environments and
positions with the inclusion of rare species. Human
annotators are employed to label each image, pro-
viding the "ground truth" needed to train the model.

We know, however, that human raters disagree.
Bird experts may disagree on which species of
bird an image belongs to. Non-experts may be un-
sure about taxonomic classifications of certain bird
species. People can disagree whether the concept
of “bird” applies in a given case (e.g., pictures of
birds). Some reasons, like poor image quality, can
indicate problems with a specific image. However,
many cases of human disagreements are due to
ambiguity in the label or the labeling task. Label
ambiguity can arise from many factors, including
similar-looking labels (birds and bats look similar),
regional naming differences (robin in the US, vs.
redbreast in the UK), and different understandings
of the task. Label ambiguity is a challenge for ma-
chine vision models because it can lead to inaccu-
rate predictions. For example, if a machine vision
model is trained on a dataset of bird images with
ambiguous labels, it may not be able to accurately
identify birds in new images (see (Karimi et al.,
2020) for an analysis of the impact of label noise
on medical image analysis models).

In order to better understand the human factors
that influence label ambiguity on large label space
model performance, we developed an open data
challenge to crowdsource adversarial image-labels
pairs for machine vision models. In this online chal-
lenge, participants competed to identify edge case
images that state-of-the-art machine vision mod-
els might incorrectly classify. The goal was to un-
derstand systematic failures of these models, with
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an eye towards augmenting the data used to train
these models to better cover such failure cases.Our
challenge included 2 tasks. In Task 1, annotators
were asked whether a given label applied to each
image-label pair. In Task 2, image-label pairs col-
lected during the challenge were tested against
multiple state-of-the-art classification models and
surfaced (i) pairs with clear human-machine dis-
agreements and (ii) pairs where multiple human an-
notators couldn’t reach clear agreement. This chal-
lenge required a data analysis strategy designed
to identify patterns in the misclassified images to
better understand the human factors that contribute
to label ambiguity and to develop new mitigation
methods to improve machine classification accu-
racy. The adversarial data from this challenge and
the resulting analysis have the potential to make a
significant contribution to the development of more
robust and reliable large label space models. In
this paper, we present the results of the public ad-
versarial data challenge, analyze the ambiguities
in the resulting data, and organize them into a the-
oretical framework to provide recommendations for
human annotation and data collection policies that
best address the types of ambiguities we observed.

2. CATS4ML challenge

The CATS4ML (Crowdsourcing Adverse Test Sets
for Machine Learning) challenge ran online for four
months, under the CrowdCamp umbrella of the
HCOMP 2021. The challenge used the Open Im-
age Dataset' (OID V4; Krasin, 2017) as source
material. It contains ~9M images annotated with
20k possible image-level labels, object bounding
boxes and segmentation masks. Importantly, the
labels, bounding boxes, and segmentation masks
are provided by a machine, with only a small por-
tion verified by humans. The challenge was de-
signed on the premise that, likely, the machine
labeler makes mistakes, these mistakes are sys-
tematic, and studying systematic machine failures
can improve machine labelers in the future. In this
challenge, we aimed to identify adversarial image-
label pairs in OID V4 that would yield human-model
disagreement.

Challenge participants examined the machine-
labeled subset of OID V4 images, focusing on
a selected set of 23 entities - Bird, Canoe, Lip-
stick, Chopsticks, Muffin, Pizza, Croissant, Child,
Smile, Selfie, American football, Athlete, Physician,
Nurse, Teacher, Chef, Firefighter, Coach, Construc-
tion Worker, Bus driver, Funeral, Thanksgiving, or
Graduation - and submit image-label pairs where
they thought the image classification machine algo-
rithm was wrong. Limiting the label set to 23 was

1https://storage.googleapis.Com/
openimages/web/factsfigures_v4.html

necessary to make the scope of the competition
tractable—human participants were unlikely to be
able to examine all 20k labels in the OID. These 23
labels were selected to represent a neutral (non-
controversial, non-sensitive) set of topics across
different types: 8 objects, 3 events, 9 roles and pro-
fessions, and 3 abstract concepts. Another criteria
for selection was to have a good representation of
different levels of ambiguity of the label, e.g. “child”
is a broad concept and could be interpreted in dif-
ferent ways; “athlete” could mean different things
for different cultures; “physician” and “nurse” could
have ambiguous visual representations.

Ten individuals submitted image-label pairs to
the challenge, submitting more than 14,000 image-
label pairs. Of these, 13,683 image-label pairs
were “valid” (i.e., the pairs were drawn from OID V4
and used one of the 23 challenge labels). After re-
moving duplicate submissions, 10,668 unique pairs
remained. Participants could choose for which la-
bels of the 23 to submit and how many images.
The 10,668 unique image-label pairs were further
validated by engaging two globally-diverse crowds
of human annotators in three different locales and
two in-house experts (described the Methods sec-
tion). The image-label pairs were also submitted
to six machine vision models to examine how hu-
man judgements aligned with state of the art model
judgements and to identify cases of human-model
disagreements. The challenge data is already avail-
able publicly on github;? additional human annota-
tions collected for this study will be made available
via the same resource.

3. Methods

Here, we provide a detailed description of the ma-
terials (datasets and models) used, annotation task
procedures, task annotators, and data analysis and
score computation decisions that we made in arriv-
ing at the results, all summarized in Figure 1.

3.1.

Dataset description. As described above, the
CATS4ML dataset was composed of 10,668 unique
submissions made by challenge participants. Ap-
pendix Figure 5 shows the distribution of images
across all 23 target labels - most images were sub-
mitted for the label ‘bird’ (26% of the data) with an
exponential long-tail distribution across all other
labels (e.g., seven labels with between 500-1100
images per label, nine with between 140-350 im-
ages per label and six labels with 100 or fewer
images per label).

Materials

?https://github.com/
google-research-datasets/catsd4ml-dataset
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Figure 1: Adversarial data collection from the CATS4ML challenge and the follow-up annotation
tasks. First, challenge participants used a subset of the OID V4 dataset to discover image-label pairs and
submit them to the challenge. After cleaning the data to remove duplicates and invalid submissions, we
labeled the data with state-of-the-art machine vision models and human annotators from three different
locales. From their labels, we constructed a machine error dataset that consisted only of the image-label
pairs with human-model disagreements. Two members of the research team qualitatively analyzed 20%
of this dataset to create a taxonomy of reasons for the machine errors, which was then used by human
annotators from two different locales to annotate the entire machine error dataset.

Vision models. To provide machine labels of
each CATS4ML dataset image, we used an en-
semble of six machine vision models, each of
which were state-of-the-art when they were re-
leased. These models are all non-public variants of
the InceptionV2-based image classifier (loffe and
Szegedy, 2015) developed in the period of 2015-
2022 (including models used in OID-V4 and OID-V3
(Krasin, 2017), publicly available through Open Im-
ages Dataset).

Model error dataset. Based on human annota-
tion Task 1 and qualitative validation by experts,
we constructed a subset of 8,326 image-label pairs
to have labeled by humans in Task 2. Image-label
pairs included in Task 2 met at least one of the
following criteria: (i) at least one vision model dis-
agreed with the human majority vote from Task 1, or
(i) there was significant disagreement among the
human annotators in Task 1. This smaller dataset

allows for a targeted qualitative analysis of the rea-
sons for human-model disagreements.

3.2. Annotation task procedure

Human annotation task 1—Label verification.
In Task 1, annotators indicated whether a given
label applied to an image for each image-label pair
in the CATS4ML dataset. No specific training was
provided to annotators before beginning the task,
as the task was injected into a general purpose
image-label validation system used by a profes-
sional rater pool to perform a variety of tasks other
than this one. For each example, 19 annotators
viewed a single image and selected one of three
answer options indicating whether a given label
applies to that image, does not apply, or they are
unsure (Appendix Figure 3).



Human annotation task 2—Model error verifica-
tion. In Task 2, annotators examined the model
error dataset (8,326 image-label pairs from the
CATS4ML dataset with human and machine label-
ers disagreement from Task 1). For each example,
14 annotators saw a machine label produced for
an image, and they indicated whether the model
was correct or not (Appendix figure 4.A). Guidelines
(presented to annotators before starting) included
definitions of seven categories of model error that
were identified by experts in a qualitative analysis of
a subset of the model error dataset (see § 3.5). An-
notators answered two questions about each item:
(i) whether the machine prediction indicated cor-
rectly whether the label was present in the image
or not (Appendix figure 4.B), and (i) in the case of
model error, select one out of seven possible error
types (Appendix figure 4.C). Annotators could se-
lect an additional model error type if it was needed.
At any time, annotators could return to previous
items and change their responses as needed. An-
notators were not given any information on how the
“machine prediction” was constructed in order to
avoid biasing them towards agreeing or disagree-
ing with the machine prediction.

3.3. Annotators

Data submitted by challenge participants was vali-
dated three times—twice by paid annotators and
once by members of the research team. The paid
annotators were recruited from professional rater
pools and had prior experience in data annotation
tasks. To ensure that the annotations on the image-
label pairs reflected a range of human perspec-
tives, particularly because we expected that the
examples would be especially challenging, we re-
cruited raters from different geographic locales (US,
Canada, and India). We selected these locales be-
cause they have English as a dominant language
and are common locales for recruiting annotators.
We did not collect demographic information aside
from locale for these annotators. There was no
overlap between the raters in Task 1 and Task 2.
We summarize the unique number of annotators
and the total size of the annotator pools in each
task in Table 1.

The annotators in Task 1 consisted of 41 unique
raters. Table 1 (left side) shows the number of
raters from each locale. We gathered 19 ratings
per image-label pair (7 from raters in the US, 7 from
raters in India, 5 from raters in Canada), as shown
in the right side of Table 1. Each rater labeled an
average of 4726 image-label pairs (median 4088).
However, 4 annotators (3 from the US, 1 from India)
chose to end the task early, providing fewer than
100 annotations each, so the total number of ratings
provided by individual raters ranged from 3 to 9932.
We ensured that each image-label pair was rated

by the same number of unique annotators from the
same locale distributions to ensure that the image-
label-pair-level ratings were not imbalanced. Task
1 raters were compensated monetarily in alignment
with local norms of the region in which they were
working.

Subsequently, two members of the research
team performed a qualitative analysis (see § 3.5
for details) to classify the causes of model error in
a sample of about 20% (2,035 image-label pairs)
of the dataset from Task 1. This validation was
performed in order to identify possible model error
types (detailed in Appendix Table 9), and qualita-
tively categorize them for Task 2, described next.
The experts each had in-depth experience with ma-
chine vision models.

The annotators in Task 2 consisted of 56 raters
from two different locales: US and India. Table 1
shows the number of raters from each locale. As in
Task 1, example-level annotations were balanced
across the locales, as we gathered 14 annotations
per image label pair (7 from raters in the US, 7
from raters in India). Each annotator labeled an
average of 2080 image-label pairs (median 1652),
with the total number of ratings provided by raters
ranging from 368 to 8325. Task 2 annotators were
compensated monetarily in alignment with local
norms of the region in which they were working.

3.4. Scoring

Merging Task 1 and Task 2 human labels.
Tasks 1 and 2 both required annotators to assess if
a label was in a given image. In Task 1, this ques-
tion was direct (“is the label in the image?”); in Task
2, it was indirect (“a machine predicted X, is the
machine correct?”). Thus we end up with labels
that are not directly comparable, and we need to
infer the intent of the annotator’s judgment with re-
spect to whether the label is in the image in Task 2.
To analyze and directly compare the combined an-
notations from both tasks, we transformed Task 2
responses to reflect the annotator’s judgment about
whether the label was in the image (e.g., if the ma-
chine label was “no,” and the annotator marked that
“no, that the machine was not correct,” we transform
that annotation to “yes, the label is in the image”
for comparison with the interpretation of the Task
1 label where the annotators were directly asked
if the label is in the image). In cases where the
annotator rated an image-label pair “unsure,” we
maintain the “unsure” label.

Aggregation of human labels to supermajority
vote. Machine vision datasets often carry only
positive or negative annotations for image-label
pairs. Though we have a high replication of annota-
tions in the dataset that allows for working with soft-



Size of the total rater pool Unique raters per example
us IN CA Total us IN CA Total
raters raters raters| raters raters raters raters| raters

Task 1: Is label in image?

Annotated 10,668 image-label pairs 23 13 41 / / 5 19
Model error categorization 5 experts 5 experts
Annotated 2,035 image-label pairs P P

Task 2: Confirm model error

Annotated 8,326 image-label pairs 22 34 S 7 7 - 14

Table 1: For each annotation task, (i) the size of rater pools, and (ii) the number of unique raters for each

task example.

label distributions, we consider majority vote for
comparison with standard machine vision datasets
and to assess sources of disagreement that emerge
when considering standard majority-vote aggrega-
tions. We classify image-label pairs along three di-
mensions: (i) “clear yes” (positive examples) where
at least 66% of annotators indicated the label was
in the image, (ii) “clear no” (negative examples)
where at least 66% of annotators indicated that the
label was not in the image, and (iii) “ambiguous,”
for all other examples that did not meet either of
the previous two criteria. Image-label pairs may fall
into the ambiguous category due to either a high
degree of disagreement in terms of “yes”/“no” votes,
or because of a high rate of “unsure” answers.

3.5. Data analysis

Annotator agreement metrics: We measure
both inter-rater reliability (IRR, Krippendorf’s alpha)
and cross-replication reliability (xRR; Wong et al.,
2021) to assess the agreement patterns of anno-
tators. We measure Krippendorf’s alpha because
this metric is robust to imbalanced data, where
different sets of annotators rate different sets of
examples. Higher values of alpha indicate greater
agreement among annotators. xRR is based on
Cohen’s Kappa, and is used to compare different
groups of annotators to determine if the agreement
between the two annotation distributions is more
similar than would be expected by chance. xRR
values are interpreted on the same scale as IRR,
and higher values indicate greater similarity in re-
sponses across the two groups.

Linear modeling: Linear mixed effects models
can be used to simultaneously account for random
effects related to individual annotators and items,
while also taking into account complex interactions
between experimental conditions. We construct a
null model predicting whether the rater indicated
that the label is in the image or not (i.e., “yes” or
“not yes”, which collapses together “no” and “un-
sure” ratings), with random intercepts for raters and

items. We compare this null model to three single-
predictor models that add fixed effects of (i) rater
locale, (i) label id, and (iii) task type, and also two
models that consider all three fixed effects as (i)
additive, (ii) interactive predictors, and we perform
model comparisons using ANOVA to compare the
three single-predictor models to the null model, and
to compare the additive and interactive models to
ensure that we are making matched comparisons.

Qualitative analysis: Two members of the re-
search team provided expert annotations for a quali-
tative analysis of the reasons for model errors. They
assessed a 20% sample of the model error dataset,
visually comparing the image and the model pre-
dictions for the target label on that image. The two
experts proposed a taxonomy of error reasons that
were then discussed with the larger research team
and adapted to be used by human annotators in
Task 2 to label a larger dataset. We provide exam-
ples of each error reason, with images labeled as
that reason, in Appendix Table 9.

4. Results

We classify the image-label pairs from the chal-
lenge as either positive or negative examples of
the submitted label. We use supermajority vote of
human scores to identify which image-label pairs
are positive examples (“clear yes”), negative exam-
ples (“clear no”), or could not be reliably classified
due to rater disagreements or high rates of “unsure”
ratings (“ambiguous”). Using the aggregated Task
1 and 2 results, we find 4300 positive examples
(40.3%), 2264 negative examples (21.2%), and
4104 ambiguous examples (38.5%); Appendix ta-
ble 8 breaks down these aggregate values by the
target labels.

Model performance and image adversariality.
As over one third of image-label pairs from the chal-
lenge were ambiguous to human raters, we investi-
gate whether these examples were also ambiguous
to machine vision models. To do this, we quantify



the adversariality of the image-label pairs using the
61.5% of the dataset (6564 image-label pairs) on
which we can compute a high-agreement human
label (the “clear yes” and “clear no” examples in
Table 8). Adversariality is computed as the number
of human-model disagreements observed across
the models tested. We identify 710 (10.8%) highly
adversarial image-label pairs that none of the 6
models got correct (where “correct” means “agrees
with the human consensus”). This method allows
us to rank the adversariality of individual images
(Table 2), based on how many models made in-
correct judgements. We find that 72.8% of images
were adversarial to at least one of the state-of-the-
art models.

Adversariality N. image- Percent
strength: number of | label pairs of 6564
models fooled dataset

0 (not adversarial) 1784 27.2

1 1207 18.4

2 1426 21.7

3 578 8.8

4 472 2.7

5 387 5.9

6 (very adversarial) | 710 10.8

Table 2: Image-label pair adversariality across the
dataset. To accurately reflect human-model agree-
ment patterns, we exclude items with no human
supermajority vote.

Reasons for adversariality. We break down this
measure of adversariality by using the qualitative
labels assigned by annotators in Task 2 to identify
which model error reasons are most associated
with high adversariality (Table 3). We observe that
visual similarity between the label and the image
(e.g., the label is “bird” and the image shows a bat)
is the most frequently identified reason for model er-
rors and is most associated with highly adversarial
image-label pairs, with 55% of the 710 most ad-
versarial images falling into the category of visual
similarity. Annotators also identified misleading
background context and atypical depictions of the
label as primary causes of model failures, cover-
ing 30% and 33% of the most adversarial images,
respectively.

Factors in human disagreements. We investi-
gate potential reasons for the disagreement be-
tween humans that we observed in the 38% of
image-label pairs with no supermajority agreement.
For this, we consider the full CATS4ML dataset,
and we assess ambiguity from three perspectives:
(1) disagreements due to rater characteristics, (2)
disagreements due to characteristics of image-label
pairs, and (3) disagreements due to characteristics

of rating task. These three perspectives have previ-
ously been identified as relevant to understanding
crowd labels and rater disagreements (Aroyo and
Welty, 2014). We use a linear mixed effects model
(see § 3.5), and we compare three single-predictor
models to the null model using an ANOVA. Table 4
shows that each of these three models is a signif-
icantly better fit for the data compared to the null
model, indicating that rater characteristics (as in-
dexed by locale), label name, and task framing all
explain a significant amount of variance in the data.
To determine whether these three factors interact
with each other, we construct both an additive and
an interactive model using all three predictors; the
interactive model is a significantly better fit for the
data compared to the additive model (p < 0.001).

Variance Partitioning
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Figure 2: Variance partitioning on a linear addi-
tive model. First, rater id was regressed out by
fitting these features to a multi-class logistic regres-
sion model with 12 penalty with raters’ judgments
(yes, no, unsure) as the dependent variable. Using
log loss as the unit deviance or residuals, we then
fit several additive models on those residuals using
a combination of locale, label, and task features
as independent variables. The figure above shows
the shared and unique variance of these different
submodels. We observe that the submodels with
task followed by label and locale have the highest
unique variance.

We used variance partitioning analysis to iden-
tify which of the three factors (rater locale, label
name, task type) had the greatest impact on raters’
judgments. Variance explained by rater id was ac-
counted for first, and then an additive model was
fitted to the residuals using features from the three
factors (R? = 0.159). To understand the shared
and independent variance of each set of features,
several submodels were fitted to these residuals.
Figure 2 shows that task type (R;,,,;, = 0.079) fol-

lowed by label (R? . = 0.057) and rater locale

uniq



Advers- | Total Ambig-  Artistic Quality Back- Visual Out of Atypical Otherer-

ariality pairs uous depic- issue ground similar-  context  depic- ror rea-
label tion context ity tion son

1 1137 7 6 1 10 45 0 15 13

2 1404 36 21 22 570 207 6 832 549

3 562 16 7 5 216 102 0 308 156

4 471 18 5 6 172 144 4 228 107

5 387 14 5 1 114 196 2 151 85

6 710 26 15 10 212 389 0 234 125

TOTAL | 4671 | 117 59 45 1294 1083 12 1768 1035

Table 3: Total image-label pairs for which a given error reason was indicated by at least 25% of raters in
the Task 2 qualitative labeling task. Totals are different from Table 2 because only a subset of the full
CATS4ML dataset was rated in Task 2. “Total pairs” represents the total number of image-label pairs
rated in Task 2. Totals across rows may be different than the “total pairs,” as examples can have more
than one error reason, and examples can have no error reasons achieving at least the 25% threshold or

annotators selecting that reason.

Model description | Model definition AIC BIC Fit compared
to null model
Null (baseline) Rating ~ 1 + (1|rater_id) + (1]item_id) 289711.9 2897544 N/A
Rater locale Rating ~ Locale + (1|rater_id) + (1]item_id) 289677.0 289740.7 p < 0.001
Task type Rating ~ Task_type + (1|rater_id) + (1|item_id) 289669.7 289722.8 p < 0.001
Label name Rating ~ Label_name + (1|rater_id) + (1|item_id) | 282069.8 282324.5 p < 0.001
Additive model Rating ~ Locale + Label name + Task_type + | 282007.2 282293.8 p < 0.001
(all predictors) (1lrater_id) + (1|item_id)
Interactive model | Rating ~ Locale x Label_name * Task _type + | 271579.6 272725.9 p < 0.001
(all predictors) (1]rater_id) + (1|item_id)
Table 4: Mixed effect model definitions and fit statistics.
(RZ,;, = 0.010) have the highest amount of ex- Metric  Rater locale Agreement
p!amed unique variance, with th_ese features’ com- OVERALL 0.4737
bined unique variance accounting for 91.57% of India 0.5739
observed variance in the original additive model. IRR USA 05739
Shared variance across these features did not im- Canada 0.3794
pact raters _Judgements as much as each |r1d|V|duaI India x USA 0.5429
factor. While these analyses are useful in under- .
tanding how th factors int t and tribut xRR India & Canada 0.4653
standing how these factors interact and contribute USA & Canada  0.5088

to raters’ judgments, we seek to further understand
sources of disagreement within each factor by in-
vestigating these factors independently in our qual-
itative analyses.

Understanding disagreements due to rater
characteristics. For both Tasks 1 and 2, we in-
vestigate rater agreement with Krippendorf’s alpha
(inter-rater reliability; IRR) and cross-replication re-
liability (xRR). Overall agreement was only moder-
ate in both tasks.In Task 1, IRR was higher within
locale for US and Indian raters than the overall
IRR; xRR revealed that the Indian and American
raters agreed with each other more than did In-
dian & Canadian raters or Canadian & American
raters (Table 5). In Task 2, agreement was even
lower than in Task 1.Taken together, these results
show that human labelers did not tend to agree with
each other on label judgments, and that a rater’s

Table 5: Task 1 IRR & xRR scores, by locale.

Metric Rater locale  Agreement
OVERALL 0.1982

IRR India 0.3624
USA 0.1299

xRR India & USA  0.1846

Table 6: Task 2 IRR & xRR scores by locale.

locale impacted how that rater labeled images. Ap-
pendix table 10 provides example images where
different locales reached different consensus la-
bels. In panel (a), US raters affirmed the label
“bird,” Canadian raters rejected the label “bird,” and



Indian raters unanimously indicated “unsure;” in
(b), 92% of American raters affirmed that the label
“bird” while 86% of Indian raters were unsure. Both
examples are artistic depictions of a “bird"—they
are drawings that represent a bird (or just the bird’s
skeleton), and the different response patterns from
raters in different locales highlights the way that a
person’s cultural context may influence their judg-
ments in what many would consider an objective
labeling task.

Understanding disagreements due to the im-
age-label pairs. To identify image-label pairs
that are inherently ambiguous, we identify exam-
ples where a high number of raters responded that
they were “unsure” if the label was in the image.
As many image labeling tasks are presented to an-
notators with only binary labels available (“yes” or
“no”), we expect that examples in which the major-
ity vote label is “unsure” would lead to disagree-
ments in a binary task set up. In 2039 examples
(21.5% of all image-label pairs), the “unsure” la-
bel was the most frequently selected label across
Task 1 raters. Appendix Table 11 shows two illustra-
tive examples. In the first case, where the label is
“Thanksgiving,” it is genuinely ambiguous whether
the meal is a Thanksgiving dinner; in the second
it is ambiguous whether the people wearing white
coats are “physicians,” as opposed to any other
profession that wears a lab coat. In both cases, the
label is potentially consistent with the image, but
crucially disambiguating background information
about the image’s setting, date, or participants is
unavailable to the raters. The labels in this study
spread across a range of different types of con-
cepts: concrete, abstract, events, roles, and pro-
fessions. Some of these categories are inherently
more difficult to identify in an image-labeling task.
Professions and roles (two of the more inherently
ambiguous labels in the challenge) can be strongly
context-dependent, and identification relies on cul-
tural knowledge and assumptions about the people
and event being depicted. Events can be difficult
to determine from a single image as well, as many
types of events include multiple sub-parts to the
whole (e.g., is “Thanksgiving” just a nicely-dressed
turkey?). However, we also observe that concrete
object labels (e.g., “bird”) can lead to consistent
unsure annotations; for example when the image is
a painting of a bird, a bird mascot for a sports team,
or a whole roasted chicken, annotators disagree on
or are unsure about whether the label “bird” should

apply.

Understanding disagreements due to the rat-
ing task. To identify cases where the task may
have affected rater judgments, we analyze exam-
ples for which the supermajority vote label on a

given example changes between the two tasks In
Table 7, we show a cross-task comparison with the
number of examples that fall into each of the nine
possible combinations of labels from Task 1 and
Task 2.. We observe that 35.8% of the image-label
pairs switch supermajority vote labels between
Tasks 1 and 2. Most flips involve the “ambiguous”
label, indicating relatively few cases where raters
truly change their vote from “yes” to “no” (or vice
versa). We describe observations from these cases
in Appendix G and show randomly selected image-
label pairs from each of the six different kinds of
label flips observed to illustrate these cases.

5. Discussion & recommendations

In this paper, we are concerned with label ambigu-
ity in large label space models, which is typically
deleterious to model performance. We identified
three key factors contributing to label ambiguity:
rater background, label characteristics, and task
design. These factors influence whether humans
tend to disagree with both model predictions and
each other. We demonstrated that it is, in fact, chal-
lenging for human raters and machines to agree on
label ground truth, even for relatively concrete con-
cepts such as “bird.” We further demonstrated that
the geographical location in which a human rater
is situated can have an impact on their answers
in a labeling task. Finally, we demonstrated that
small changes to the way a labeling task is framed
can have an impact on how the task is performed.
Given these potential complications to performing
the bedrock task of machine vision model training
(assigning ground truth to images), we conclude
with our recommendations as to how developers,
annotation guidelines and policymakers can best
address label ambiguity.

e Take a community-driven approach to data
labeling. Make sure that the people doing the
labeling are from the communities that are go-
ing to be impacted by the model deployment.

e Assume variance, ambiguity, and subjec-
tivity are always present in any data label-
ing task, regardless of how simple it may
seem. There is not, and cannot be, one sin-
gular “gold standard.” To the extent possible,
identify and explore potential sources of am-
biguity in any data set, and understand how
these sources of ambiguity might be related to
the communities impacted by the model.

¢ Define and deploy metrics to measure am-
biguity in data. For example, if data is labeled
in different sessions, on different interfaces, or
by different pools raters, measure and track dif-
ferences between data subsets. Measure and



Supermajority vote label Number of Percent of

Task 1: Task 2: examples total
Is label in image? Is machine correct?

Yes Yes 2714 32.6
Yes No 6 0.1
Yes Ambiguous 464 5.8
No Yes 9 0.1
No No 845 10.2
No Ambiguous 614 7.4
Ambiguous Yes 1561 18.8
Ambiguous No 325 3.9
Ambiguous Ambiguous 1787 21.5

Table 7: Cross Task comparison. In bold are rows representing image-label pairs that had consistent
supermajority labels across tasks. All other rows represent image-label pairs that had inconsistent
supermajority labels across tasks. The label for Task 2 represents the transformed label to make it

comparable in interpretation to Task 1.

track any differences across data subset by
demographic properties of the community that
will be impacted by the data (e.g., geographic
location, gender, age, ability).

There has been little work that provides specific
recommendations for policies pertaining to large
label space models. Currently, content moder-
ation strategies recommend employing machine
safety filters that comprise several safety clas-
sification models (Hao et al., 2023). Although
our dataset does not include safety content, our
challenge shows that even for categories that are
non-controversial, there is ambiguity. Thus, for
more subjective labels that pertain to safety (e.g.,
porn, violence), these ambiguities may be amplified
(Homan et al., 2023), which can result in unreliable
safety classifications. Adopting these recommen-
dations will ensure that a deployed model has been
contributed to by the community it serves, that pos-
sible sources of model failure are understood and
tracked, and that the way the model is serving dif-
ferent subsets of the community is also tracked. A
model deployed under these conditions is on the
right track to responsibly serve its community.

Reproducibility Statement

The original CATS4ML data is available on github at
github.com/google-research—-datasets/
cats4ml-dataset. This dataset contains the
image-label pairs collected for the challenge along
with an aggregation of five human annotations
for each example. For the study described
in this paper, we collected additional human
annotations not part of the original repository;
those annotations will be made available as a
supplemental dataset, along with the code for the
analyses conducted in this paper (descriptive stats,

task score conversions, IRR, xRR, mixed-effects
modelling, variance partitioning). To accompany
the additional data release, we will also include a
datasheet (Gebru et al., 2018).
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A. Task Interfaces

Figures 3 and 4 show the interfaces that were
shown to human raters in the two annotation tasks
described in the main text.

B. Label distribution in the CATS4ML
dataset

In Figure 5, we show the distribution of raw counts
of each label that was submitted in the CATS4ML
challenge. Challenge participants were not re-
stricted in terms of which labels they chose in their
example submissions, and thus we could not en-
sure equal distribution across the labels. The skew
towards ‘bird’ labels is likely due to multiple fac-
tors, including the number of instances of ‘bird’ in
the source data, the ease of browsing images for
the target object, and participant familiarity with
the range of ways the label may be represented in
images.
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C. By-label supermajority vote
results

In Table 8, we show how many images from the
challenge were assigned each label (‘yes,” indicat-
ing the label is in the image, or ‘no,” indicating the
label is not in the image), and how many were clas-
sified as ‘ambiguous, indicating that neither the
‘yes’ or ‘no’ supermajority vote label could be ap-
plied.

D. AQualitative labels of model error
reasons

Table 9 (spanning three pages to ensure the images
are legible) shows an example of each of the quali-
tiative labels used in the Task 2 (“confirm model
error”). These labels are derived from expert vali-
dation of human-model disagreements from Task
1 (“is label in image”).

E. Examples of disagreements due
to the rater locale

Table 10 shows randomly selected examples where
raters from different locales gave systematically
different ratings on the same image-label pair.

F. Examples of disagreements due to
the image-label pair

Table 11 shows randomly selected examples where
raters consistently indicated that the image itself
was ambiguous with respect to the target label.

G. Examples of disagreements due
to the rating task

As reported in the main text, one third of image-
label pairs flip their label based on the task phras-
ing. Most of these flips involve the ‘ambiguous’
supermajority vote label, indicating that there are
relatively few cases where raters truly change their
vote from “yes” to “no” (or vice versa). To illustrate
these cases, we randomly select an image-label
pair from each of the six different kinds of label flips
observed, and show the examples along with the
raters’ labeling patterns in Tables 12, 13 and 14.
We observe patterns where the human superma-
jority vote label switches to align with the machine
label shown in Task 2 (12a, 13a, 14b) and to contra-
dict the machine label shown (14a). These images
are illustrative of the kinds of difficulties that anno-
tators had in assigning labels, and they show that
slight changes in the wording or presentation of the
task can lead to different results, even on a task
that appears straightforward.


https://github.com/openimages
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Figure 4. Sample interface for Task 2: Confirm model error.
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Figure 5: Histogram of valid image-label pair counts per label name.
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Target Label | clearyes clearno ambiguous | TOTAL

Bird 1305 43 1433 2781
Smile 721 53 261 1035
Lipstick 451 20 465 936
Canoe 63 488 382 933
Chopsticks 108 702 67 877
Athlete 630 14 123 767
Muffin 19 428 92 539
Child 387 29 88 504
Chef 32 214 138 384
Firefighter 69 70 160 299
Coach 9 19 187 215
Construction worker 49 60 101 210
American football 65 27 82 174
Pizza 87 12 65 164
Selfie 49 12 91 152
Funeral 24 23 98 145
Croissant 88 8 41 137
Bus driver 30 20 50 100
Thanksgiving 9 7 78 94
Physician 24 6 35 65
Teacher 13 3 41 57
Graduation 49 3 3 55
Nurse 19 3 23 45
TOTAL \ 4300 2264 4104 \ 10668

Table 8: Counts of how many image-label pairs for each label fell into each supermajority vote category
based on aggregated labels from raters in Tasks 1 and 2.
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Error reason Supermajority | Task 2 ma- | Percent of | Image
vote chine label raters
Artistic depic- | Task 1: No 78.6 Label: BIRD
tion of the label | Ambiguous :
Task 2: Yes
Machine over- | Task 1: No 85.7 Label: BIRD
relied on back- | Ambiguous
ground context
Task 2: Yes
Object is de- | Task 1: Yes No 35.7
picted out of
typical context | Task 2: Yes

(e.g., no back-
ground)
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Error reason Supermajority | Task 2 ma- | Percent of | Image
vote chine label raters
Unexpected or | Task 1: No 71.4 Label: CHILD
atypical depic- | Ambiguous
tion of the label
Task 2:
Ambiguous
Ambiguous Task 1: Yes 35.7
meaning of the | Ambiguous
label (e.g. trig-
gers different | Task 2: No
interpretation)
Visually similar | Task 1: No Yes 85.7
shape of the la-
bel Task 2: No
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Error reason Supermajority | Task 2 ma- | Percent of | Image

vote chine label raters
Image has | Task 1: No Yes 64.3 Label: SELFIE
quality issue

Task 2: No
OTHER reason | Task 1: Yes No 64.3 Label: SMILE
for model error :1

Task 2: Yes

JUSTIGA
- ELENORAL

Table 9: All error reasons from Task 2. Percent of raters indicates the percentage of Task 2 raters who

indicated that the model was wrong for that particular error reason, either as the primary or secondary

reason for the model error.
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Label: BIRD Label: BIRD
Human majority: Unsure Human majority: Yes
\ | Yes % Unsure % No % | Yes % Unsure % No %
US raters | 67 17 17 92 0 8
CAraters | 20 20 60 40 60 0
IN raters 0 100 0 0 86 14

Table 10: Examples of images where the raters in different locales respond differently when asked if the

label is in the image.

Label: THANkSGIVIG
Human majority: Unsure

''''''

Label: PHYSICIAN
Human majority: Unsure

\ | Yes % Unsure % No % | Yes % Unsure % No %
US raters | 42 50 8 25 50 25
CAraters | 40 60 0 20 60 20
IN raters 25 75 0 29 57 14

Table 11: Examples of images where the majority of humans indicate they are UNSURE if the label is in

the image.
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| Label: LIPSTICK | Task 1: Is the label in the image? | Task 2: Is the model correct? \

| Machine Label: No
Participant responses (%)
Yes Unsure No
71.4 0.0 28.6
Participant responses (%) \ Transformed responses (%)
Yes Unsure No Yes Unsure No
68.4 0.0 31.6 28.6 0.0 71.4
\ Final human label: | LIPSTICK in image \ LIPSTICK not in image \
| Label: CHOPSTICKS | Task 1: Is the label in the image? | Task 2: Is the model correct? \
| Machine Label: No
Participant responses (%)
Yes Unsure No
35.7 0.0 64.3
Participant responses (%) \ Transformed responses (%)
Yes Unsure No Yes Unsure No
84.2 10.5 5.3 64.3 0.0 35.7
\ Final human label: | CHOPSTICKS in image | CHOPSTICKS ambiguous for image |

Table 12: Examples of images where the supermajority vote label was different between the two tasks,
focusing on examples that flipped an original ‘yes’ label in the Label-in-Image task. Note that score
transformation is needed when the ‘machine label’ is ‘no,” in order to align the interpretation of the human
label between tasks 1 and 2.

| Label: CANOE | Task 1: Is the label in the image? | Task 2: Is the model correct? \
% i ' | Machine Label: Yes
Participant responses (%)
Yes Unsure No
71.4 71 214
Participant responses (%) \ Transformed responses (%)
Yes Unsure No Yes Unsure No
15.8 10.5 73.7 71.4 7.1 21.4
\ Final human label: | CANOE not in image \ CANOE in image \
| Label: FIREFIGHTER | Task 1: Is the label in the image? | Task 2: Is the model correct? \
| Machine Label: Yes
Participant responses (%)
Yes Unsure No
50.0 14.2 35.7
Participant responses (%) \ Transformed responses (%)
Yes Unsure No Yes Unsure No
15.8 15.8 68.4 50.0 14.2 35.7
\ Final human label: | FIREFIGHTER notinimage | FIREFIGHTER ambiguous for image |

Table 13: Examples of images where the supermajority vote label was different between the two tasks,
focusing on examples that flipped an original ‘no’ label in the label-in-image task. Note that score
transformation is only needed when the ‘machine label’ is ‘no, in order to align the interpretation of the
human label between tasks 1 and 2. As the machine label was 'yes’ on both examples in this table, the
transformation did not alter the labels.
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| Label: BIRD

| Task 1: Is the label in the image? |

Task 2: Is the model correct?

Participant responses (%)
Yes Unsure No
31.6 63.2 5.3

Machine Label: Yes

Participant responses (%)

Yes Unsure No
92.9 0.0 71
Transformed responses (%)
Yes Unsure No
92.9 0.0 71

Final human label:

BIRD ambiguous for image

CANOE in image

| Label: SMILE

| Task 1: Is the label in the image? |

Task 2: Is the model correct?

Participant responses (%)
Yes Unsure No
0.0 52.6 47.6

Machine Label: No

Participant responses (%)

Yes Unsure No

92.9 0.0 71
Transformed responses (%)

Yes Unsure No

71 0.0 92.9

\ Final human label:

| SMILE ambiguous for image |

SMILE not in image

Table 14: Examples of images where the supermajority vote label was different between the two tasks,

focusing on examples that flipped an original ‘no’ label in the label-in-image task. Note that score
transformation is only needed when the ‘machine label’ is ‘no,” in order to align the interpretation of the
human label between tasks 1 and 2.
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