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Abstract

Predicting software vulnerabilities effectively
is crucial for enhancing cybersecurity measures
in an increasingly digital world. Traditional
forecasting models often struggle with the com-
plexity and dynamics of software vulnerability
data, necessitating more advanced methodolo-
gies. This paper introduces a novel approach us-
ing Multi-Recurrent Neural Networks (MRN),
which integrates multiple memory mechanisms
and offers a balanced complexity suitable for
time-series data. We compare MRNs against
traditional models like ARIMA, Feedforward
Multilayer Perceptrons (FFMLP), Simple Re-
current Networks (SRN), and Long Short-Term
Memory (LSTM) networks. Our results demon-
strate that MRNs consistently outperform these
models, especially in settings with limited data
or shorter forecasting horizons. MRNs show a
remarkable ability to handle complex patterns
and long-term dependencies more efficiently
than other models, highlighting their potential
for broader applications beyond cybersecurity.
The findings suggest that MRNs can signifi-
cantly improve the accuracy and efficiency of
predictive analytics in cybersecurity, paving
the way for their adoption in practical applica-
tions and further exploration in other predictive
tasks.

1 Introduction

In the digital age, cybersecurity threats have
emerged as a formidable challenge, posing signif-
icant risks to organizational data and information
systems. The rapid evolution of cyber-attack tech-
niques, ranging from malware dissemination to so-
phisticated phishing campaigns, underscores the
urgent need for advanced predictive models capa-
ble of preempting these threats (Sharafaldin et al.,
2018; Apruzzese et al., 2021). Traditional methods
in cybersecurity threat prediction, while effective
to a degree, fall short in addressing the complex-
ity and dynamism of modern cyber-attacks. This

gap necessitates the exploration of innovative ap-
proaches that can adapt to the evolving landscape
of cyber threats. Recent advancements in artifi-
cial intelligence (AI) and machine learning (ML)
have opened new avenues for cybersecurity, offer-
ing promising tools for enhancing threat prediction
and response mechanisms. Among these, Recur-
rent Neural Networks (RNNs) have shown poten-
tial in processing time-series data, which is pivotal
in understanding and predicting cybersecurity inci-
dents. However, RNNs are not without limitations,
particularly in handling long-term dependencies
and the vanishing gradient problem, which signifi-
cantly hampers their predictive performance (Ben-
gio et al., 1994; Pascanu et al., 2013; Orojo, 2021).

This paper introduces the Multi-Recurrent Neu-
ral Network (MRN) as a novel approach to over-
come the limitations of traditional RNNs in cyber-
security threat prediction. The MRN model inte-
grates the strengths of various RNN architectures,
incorporating enhanced memory mechanisms and
a balanced complexity that allows for effective pro-
cessing of time-series data without the overfitting
risks associated with more complex models like
LSTMs and GRUs. By applying the MRN model
to a diverse set of datasets derived from recent
cybersecurity incidents, this study aims to demon-
strate the superior predictive capabilities of MRNs
in identifying potential cyber threats (Orojo, 2021;
Lipton et al., 2015; Greff et al., 2017).

1.1 Motivation and objectives

The motivation behind this research is twofold.
First, to address the pressing need for more accu-
rate and timely prediction of cybersecurity threats,
which is critical for preemptive security measures.
Second, to explore the capabilities of MRNs in cap-
turing the nuances of cyber-attack patterns through
time-series analysis, thereby contributing to the
development of more resilient cybersecurity frame-
works.
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The primary objective of this paper is to evaluate
the effectiveness of MRNs in predicting cyberse-
curity threats across various datasets, comparing
their performance against traditional RNN and sta-
tistical models. This comparative analysis seeks
to highlight the advantages of MRNs in handling
long-term dependencies and complex time-series
data, ultimately enhancing the predictive accuracy
of cybersecurity threat models.

1.2 Contributions

This paper makes the following contributions to the
field of cybersecurity and AI:

• It introduces a comprehensive framework for
cybersecurity threat prediction using MRNs,
showcasing its applicability across different
datasets.

• It presents a detailed comparative analysis of
MRNs and traditional RNNs, highlighting the
enhanced predictive performance of MRNs in
the context of cybersecurity.

• It offers insights into the potential of MRNs
for broader applications in time-series analy-
sis, beyond the scope of cybersecurity threat
prediction.

Figure 1: Multi-recurrent neural network architecture

2 Related work

2.1 AI techniques for cybersecurity threat
prediction

The advent of AI and ML models has significantly
contributed to advancements in cybersecurity threat
prediction. Studies such as (Samia, 2023) demon-
strate the implementation of AI to predict global
cyber threats with an innovative framework that
integrates real-time data analytics for enhanced
forecast accuracy. Similarly, (Werner et al., 2017)
delves into time series models to understand and

predict the intensity of cyber threats, emphasiz-
ing the importance of capturing temporal patterns
in cyber attack behaviors. Furthermore, (Kaloupt-
soglou et al., 2022) provides a comparative analy-
sis of statistical versus deep learning approaches
in forecasting software vulnerabilities, showcasing
the strengths and limitations of each in predicting
future vulnerabilities. These studies collectively
underscore the efficacy of AI-driven approaches
in cybersecurity, advocating for a shift towards
more sophisticated, data-driven methodologies to
improve the accuracy and timeliness of threat pre-
dictions.

2.2 Challenges with current predictive models
Despite advances in AI and ML for cybersecurity
threat prediction, current methods face significant
challenges. (Samia, 2023) recognizes the diffi-
culty in accurately forecasting cyber threats due
to rapidly changing cyber activities and limited
data collection frameworks . Similarly, (Werner
et al., 2017) highlights the problems with capturing
precise attack timing, as traditional models fail to
adequately reflect variations in attack intensity over
time. Additionally, (Kalouptsoglou et al., 2022)
discusses the challenges in applying statistical and
deep learning models to software vulnerabilities
forecasting, particularly the inability of these mod-
els to effectively generalize from historical data to
predict future vulnerabilities.

2.3 Advancements with multi-recurrent
neural networks

The Multi-Recurrent Neural Networks (MRNs)
concept, significantly advancing the neural net-
work’s capability, (Bengio et al., 1994; Pascanu
et al., 2013). Originating from Claudia Ulbricht’s
work on traffic forecasting (Ulbricht, Year of Publi-
cation), MRNs integrate enhanced memory mecha-
nisms and computational efficiency, making them
exceptionally suited for complex time-series fore-
casting. MRNs employ innovative pruning tech-
niques to refine memory quality, reducing the
search space for optimal configurations and en-
hancing the network’s overall performance (Orojo,
2021). This advancement not only addresses the
computational challenges associated with tradi-
tional neural networks but also significantly im-
proves the predictive accuracy and reliability of
time-series forecasting models. By overcoming the
inherent limitations of RNNs and leveraging mem-
ory mechanisms, MRNs present a robust frame-
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work for the effective forecasting of cybersecu-
rity threats, underscoring a paradigm shift towards
more autonomous and efficient neural network
models for complex data analysis.

3 Methodology

3.1 Dataset description and data collection

Figure 2: Monthly vulnerability for google chrome

Figure 3: Monthly vulnerability for macos

In this study, we assess the effectiveness of
Multi-Recurrent Neural Networks (MRNs) for
predicting cybersecurity threats by utilizing data
from the National Vulnerability Database (NVD).
Our analysis centers on two prominent software
projects: Google Chrome & Apple macOS. These
were selected based on their widespread use and
previous work from (Kalouptsoglou et al., 2022),
We compiled the vulnerability data for these soft-
ware entities from their initial release up to the end
of February 2024, organizing it into monthly inter-
vals to track and forecast the evolution of software
vulnerabilities effectively.

Dataset Total
MacOS 1998 - 2024 2626
Google Chrome 2007 - 2024 3398

Table 1: Dataset summary

3.2 Multi-recurrent neural network
3.2.1 Architecture and memory banks
The MRN is designed with a unique architecture
that includes multiple memory banks, each tailored
to capture and store historical data at different time
scales. The architecture comprises three main lay-
ers: input, hidden, and output, each enhanced with
layer-specific recurrent connections to facilitate
complex temporal pattern recognition.

Equations (1) and (2) demonstrate the computa-
tion of memory states for hidden and output layers,
respectively, highlighting the integration of layer-
level and self-recurrency within MRNs:
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)
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(
1− 1
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)
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)
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)
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where nh and no represent the number of mem-
ory banks for the hidden and output layers, respec-
tively. The dynamic memory of MRNs allows for
effective capturing and processing of long-term de-
pendencies in time-series data, a critical factor in
forecasting cybersecurity threats.

3.2.2 Sliding Window technique
For data preparation, a sliding window approach is
employed to transform the time-series data into a
format suitable for MRN training. This technique
involves creating overlapping segments of the data,
enabling the model to learn from sequential pat-
terns effectively.

Window definition:

Wt = [xt−n+1, xt−n+2, . . . , xt]
(3)

3.2.3 Forecast horizon
The forecast horizon specifies the number of time
steps into the future for which the model makes
predictions.

Forecast output: ŷt+h = f(Wt) (4)

4 Results and discussion

In this section, we present the results from us-
ing various predictive models, including ARIMA,
Feedforward Multilayer Perceptrons (FFMLP),
Simple Recurrent Network (SRN), Long Short-
Term Memory (LSTM), and Multirecurrent Neural
Network (MRN) for the task of software vulner-
ability volume prediction. Various combinations
of parameters and hyperparameters were tested to
optimize the performance of each model.
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4.1 Autoregressive integrated moving average
(ARIMA)

The ARIMA model served as our benchmark and
forecasts future values based on historical data. Pa-
rameters were optimized using the auto_arima
function from the pmdarima library, which utilizes
the Akaike Information Criterion (AIC) to mini-
mize information loss while determining the opti-
mal parameters.

4.2 Feedforward multilayer perceptrons
(FFMLP)

The FFMLP model processes time series data by
mapping time onto space, presenting a fixed num-
ber of data points per feature variable simultane-
ously to the network. All FFMLP models utilized
500 hidden units and employed the Adam Opti-
mizer.

4.3 Simple recurrent network (SRN)

The SRN model uses the previous hidden state
along with the current observation as inputs at any
given time. Each SRN model featured 50 hidden
units, an initial learning rate of 0.01, and a high
momentum of 0.9999.

4.4 Long short term memory (LSTM)

The Long Short-Term Memory (LSTM) network
was chosen for its capability to handle long-term
dependencies in sequential data, The LSTM model
was constructed an architecture that of 50 units and
a Dropout rate of 0.7.

4.5 Multirecurrent neural network (MRN)

Similar to SRN, the MRN integrates recurrency in
both the hidden and output layers. MRN models
were configured with 50 hidden units, an initial
learning rate of 0.01, and a momentum of 0.9999
and memory architecture of [2, 4, 0].

4.6 Comparative analysis

Prediction accuracy for all models was assessed
across four different time horizons (H) (1, 3, 6,
12 months) and three different window sizes (WS)
(60, 120, 240 data points), where data was avail-
able. The results are summarized in the tables
below, which display the Root Mean Squared Er-
rors (RMSE) for each model configuration. The
best-performing model for each prediction horizon
is highlighted in red, providing a clear visual rep-
resentation of which models and settings achieved

the most accurate forecasts. See Tables 2 - 10 for
results.

The analysis revealed that the Multirecurrent
Neural Network (MRN) and Long Short-Term
Memory (LSTM) models consistently showed su-
perior performance across several metrics and time
horizons. Specifically, the MRN model excelled no-
tably at shorter window sizes (WS=120), achieving
the lowest RMSE values across all time horizons
when compared to other models. This suggests that
MRN models are highly effective in contexts where
data points are relatively few but require precise,
short-term forecasting.

On the other hand, LSTM models performed ex-
ceptionally well at larger window sizes (WS=240),
indicating their strength in leveraging larger
datasets to capture and utilize long-term depen-
dencies within the data. This is particularly evident
in the LSTM model’s performance in the 6 and
12-month predictions, where its ability to remem-
ber information over longer periods significantly
reduces prediction error.

Interestingly, traditional models, while gener-
ally not achieving the lowest RMSE, still provided
competitive results, especially in longer window
sizes. This underscores the relevance of tradi-
tional machine learning models in certain contexts
of software vulnerability prediction, particularly
when dealing with large, consistent datasets over
extended periods.

This comparative analysis underscores the im-
portance of selecting the appropriate model based
on specific dataset characteristics and prediction
needs. The variability in performance across differ-
ent models and settings also highlights the poten-
tial benefits of model ensembles where strengths
of individual models can be combined to improve
overall predictive accuracy.

4.7 Limitations

This study, while providing substantial insights
into the comparative performance of various predic-
tive models, encompasses several limitations that
must be acknowledged. Firstly, the variability in
model tuning is significant; the diversity in archi-
tecture and complexity of tuning parameters can
lead to inconsistencies in performance across dif-
ferent datasets or scenarios. This variability affects
the generalizability of the results, potentially lim-
iting the applicability of findings to other data or
contexts (Orojo, 2021). Secondly, external factors
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such as sudden changes in data trends or anomalies
are not consistently captured by the models, which
could undermine the robustness and reliability of
the predictions. This is particularly critical in real-
world applications where unexpected data shifts
are common (Orojo, 2021).

Moreover, despite the demonstrated efficacy of
simpler models such as the MRN, their intrin-
sic limitations become evident when dealing with
highly complex or noisy datasets. These models
may not effectively manage long-term dependen-
cies or non-linear relationships present in more
challenging data sets (Orojo, 2021). Finally, the
handling of high-dimensionality in data remains a
challenge for MRNs. Efficient techniques to man-
age this, such as sophisticated dimensionality re-
duction methods or advanced regularization strate-
gies, require further development to enhance the
performance of MRNs across a broader range of
applications with complex, high-dimensional data
(Orojo, 2021).

5 Conclusion

This paper has presented a comprehensive analysis
of the application of Multi-Recurrent Neural Net-
works (MRN) for the prediction of software vulner-
abilities, demonstrating significant advancements
over traditional Recurrent Neural Network (RNN)
models and other machine learning approaches.
Through meticulous experiments and evaluations,
we have established that MRNs not only consis-
tently outperform established models like LSTMs
and SRNs across various metrics and settings but
also offer substantial improvements in handling
complex time-series data efficiently. The perfor-
mance of MRNs, particularly in shorter time win-
dows and with fewer data points, underscores their
potential in applications requiring quick, accurate
forecasts with limited historical data. This is rele-
vant in the rapidly evolving field of cybersecurity,
where the ability to predict and respond to threats
swiftly can drastically enhance protective measures.
Furthermore, the ability of MRNs to perform with
fewer parameters compared to more complex mod-
els like LSTMs implies a lower computational de-
mand, making them suitable for deployment in en-
vironments with limited computational resources.
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6.1 Tables
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Model Platform RMSE
ARIMA(3,0,3) MacOS 54.07447
ARIMA(3,0,3) Google Chrome 25.58836

Table 2: ARIMA model RMSE values for different
platforms

H / WS t + 1 t + 3 t + 6 t + 12
60 0.40336 0.43422 0.53392 0.73032
120 0.44657 0.49573 0.49588 0.60113
240 0.42006 0.43383 0.46002 0.57298

RMSE Average 0.42333 0.45459 0.49660 0.63481

Table 3: FFMLP RMSE for macos

H / WS t + 1 t + 3 t + 6 t + 12
60 0.31397 0.33528 0.32541 0.31656
120 0.28952 0.27212 0.31372 0.39398
240 0.29760 0.27874 0.28957 0.33560

RMSE AVG 0.30036 0.29538 0.30957 0.34871

Table 4: SRN RMSE for macos

H / WS t + 1 t + 3 t + 6 t + 12
60 0.21716 0.25819 0.30493 0.26870
120 0.24409 0.27300 0.24903 0.27651
240 0.16732 0.17508 0.18613 0.19833

RMSE AVG 0.20952 0.23543 0.24670 0.24785

Table 5: LSTM RMSE for macos

H / WS t + 1 t + 3 t + 6 t + 12
60 0.01807 0.02489 0.02013 0.01902
120 0.00941 0.00803 0.00505 0.00570
240 0.14571 0.09890 0.02127 0.02815

RMSE AVG 0.05773 0.04394 0.01548 0.01763

Table 6: MRN RMSE for macos

H / WS t + 1 t + 3 t + 6 t + 12
60 0.25870 0.24368 0.26848 0.31967
120 0.27080 0.25844 0.29180 0.27403

RMSE AVG 0.26475 0.25106 0.28014 0.29685

Table 7: MLP RMSE for google chrome

H / WS t + 1 t + 3 t + 6 t + 12
60 0.23157 0.25067 0.24441 0.22767
120 0.17548 0.20764 0.24820 0.23612

RMSE AVG 0.20352 0.22916 0.24631 0.23190

Table 8: SRN RMSE for google chrome

H / WS t + 1 t + 3 t + 6 t + 12
60 0.20461 0.20982 0.21128 0.21762
120 0.13460 0.13705 0.13880 0.11176

RMSE AVG 0.16961 0.17343 0.17504 0.16469

Table 9: LSTM RMSE for google chrome

H / WS t + 1 t + 3 t + 6 t + 12
60 0.16779 0.17252 0.16196 0.15946
120 0.12160 0.13700 0.12153 0.12568

RMSE AVG 0.144694 0.1470615 0.14948 0.14049

Table 10: MRN RMSE for google chrome


