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Abstract

Source code summaries give developers and
maintainers vital information about source code
methods. These summaries aid with the secu-
rity of software systems as they can be used to
improve developer and maintainer understand-
ing of code, with the aim of reducing the num-
ber of bugs and vulnerabilities. However writ-
ing these summaries takes up the developers’
time and these summaries are often missing, in-
complete, or outdated. Neural source code sum-
marisation solves these issues by summarising
source code automatically. Current solutions
use Transformer neural networks to achieve
this. We present CodeSumBART - a BARTp s
model for neural source code summarisation,
pretrained on a dataset of Java source code
methods and English method summaries. We
present a new approach to training Transform-
ers for neural source code summarisation by
using epoch validation results to optimise the
performance of the model. We found that in our
approach, using larger n-gram precision BLEU
metrics for epoch validation, such as BLEU-4,
produces better performing models than other
common NLG metrics.

1 Introduction

Software documentation, such as method sum-
maries, aids developers and maintainers in under-
standing how a software system works. Venigalla
and Chimalakonda (2021) report that “Software
documentation aids better project comprehension
and plays a major role in improving the popularity
of the repository and also in increasing contribu-
tions to the repository. Software documentation is
capable of aiding various phases of software de-
velopment, and maintenance”. Lin et al. (2021)
note the importance of code comments for program
comprehension for software maintenance.

The use of method summaries and other forms
of code comment in reviewing code is vital for un-
derstanding that code. This review process can be
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used to find bugs and potential vulnerabilities in a
codebase before they affect users. The United King-
dom’s National Cyber Security Centre recommends
both peer review as well as documenting and com-
menting code clearly as part of their recommended
actions for secure development (National Cyber Se-
curity Centre, 2020). However, Rauf et al. (2021)
note that “Secure code development requires cog-
nitive effort, and under constraints of time and re-
sources developers struggle to keep security at the
top of their priority list”, meaning that practices re-
lating to secure development are often not a primary
concern, even for security-conscious developers.

Neural Source Code Summarisation (NSCS)
aims to reduce his cognitive load on developers
by summarising source code methods without de-
veloper interaction, using neural network models.
NSCS models require extensive training on large
datasets of source code and related summaries to
produce outputs with often low similarity to human-
written summaries. Our training produces a model
which produces better outputs while requiring no
more training than other, similar-sized models.
NSCS has grown in recent years with the develop-
ment of new task-specific models, many of which
build on Vaswani et al. (2017)’s Transformer ar-
chitecture, such as NeuralCodeSum (Ahmad et al.,
2020) and CodeBERT (Feng et al., 2020).

When training Transformer models for summari-
sation tasks, each epoch of training can be validated
against a Natural Language Generation (NLG) met-
ric. NLG metrics are often calculated alongside
a loss metric or loss function, which is used to
optimise the model during epoch validation. Our
training method takes a different approach by re-
moving the reliance on loss for validating a training
epoch. As is usual in model training, we use Cross
Entropy Loss during each training step to adjust
model weights, but we opt not to use this in our
epoch validation for early stopping, or for check-
pointing. Validation with loss or NLG metrics al-
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lows for “checkpointing” where the improvement
in outputs from each epoch of training can be com-
pared to previous epochs and the training can be
stopped early if the training is no longer improv-
ing. The use of early stopping and checkpointing
prevents overfitting to a given dataset by ensuring
the outputs remain generic. While loss is still used
to generate model weights, our method only uses
an NLG metric for validating each training epoch.

We train a BART Transformer model (Lewis
et al., 2020) on a source code summarisation task
using a variety of validation metrics. We present
a method of optimising pretraining to provide bet-
ter results by monitoring the validation metric
used, and checkpointing the best performing epoch.
When an epoch fails to improve, the model weights
are reverted to the best performing epoch, and the
training continues. After 5 training epochs have
failed to improve and a minimum of 20 training
epochs have taken place, training stops. We discuss
this in detail in Section 3.

1.1 Research questions

RQ.1 Does pretraining on English language data
improve model effectiveness for source code
summarisation?

To answer this question, we fine-tune two pre-

trained transformer models commonly used for

English summarisation tasks on our source code

summarisation task. We then evaluate these against

a suite of NLG metrics. Following this, we pre-

train the same two models with randomly initialised

weights on our source code summarisation task.

RQ.2 Does validating a model on LLM-based met-
rics improve the model’s predictions over
validating it on traditional, n-gram-based
NLG metrics?

To answer this question, we compare the over-
all metric results of those models validated using
n-gram-based metrics to those using BERTScore
(Zhang et al., 2019) and FrugalScore (Kamal Ed-
dine et al., 2022) to see if there is an improvement
in model training provided by using LLM-based
metrics. A measurable improvement caused by us-
ing LLM-based metrics for validation, rather than
n-gram-based metrics shows that LLM-based met-
rics’ improved ability to capture semantics allow
them to aid in generating better models for auto-
matic source code summarisation.

RQ.3 Does validating on a common NLG metric
from Table 2 cause the model to perform
better on NSCS?

18

We report whether any one metric is better for val-
idation (producing a model that gives more accu-
rate outputs) than others. Models such as Neu-
ralCodeSum (Ahmad et al., 2020) use Smoothed
BLEU-4 by default, but there is a wide variety of
available metrics which can be used. A measurable
improvement in the quality of outputs when the
model is evaluated against a series of metrics means
that this technique has the potential to be used in
generating better models for automatic source code
summarisation.

1.2 Contributions

We propose a new approach to the training and
validation of Transformer models for NSCS tasks,
which improves the quality of outputs, when com-
pared to similar models, without a significant in-
crease in the size or training time of a model. We
present CodeSumBART, a BARTg sz model, util-
ising this training approach to automatically sum-
marise Java source code.

2 Dataset

In order to train, validate, and evaluate the models,
we use the filtered version of LeClair and McMil-
lan (2019)’s Funcom dataset of Java source code
method - English language summary pairs, as done
in previous works by Mahmud et al. (2021) and
Phillips et al. (2022). We clean the dataset follow-
ing Phillips et al. (2022)’s approach, using their
Java implementation of the dataset cleaning tool'.

Phillips et al. (2022)’s method cleans the dataset
using the matched pairs of Java source code and
JavaDoc comments. The cleaning method uses
JavaParser (van Bruggen et al., 2020) to select
only compilable Java code and remove inline code
comments. It then finds the method summaries
from the JavaDoc by extracting the first line of
text with more than eight characters. We then fol-
low Phillips et al. (2022)’s steps: remove HTML
and special characters (characters which are not
alphanumeric, full-stops, apostrophes, or white
space) from the summary and lowercase it. Re-
peated method-summary pairs are then removed
from the dataset, which is trimmed from 1.2 mil-
lion pairs to roughly 500,000 pairs and split ran-
domly into 80% training, 10% validation, and 10%
evaluation datasets. This is the same split used by
Ahmad et al. (2020), Mahmud et al. (2021), and

"Phillips et al. (2022)’s dataset cleaning tool is found at
github.com/phillijm/JavaDatasetCleaner


https://github.com/phillijm/JavaDatasetCleaner

Phillips et al. (2022).

Training Validation Evaluation
399,999 49,999 49,999
80% 10% 10%

Table 1: Split of methods in the dataset.

Our dataset contains 499,997 method-summary
pairs from multiple projects, split randomly into
training, validation, and evaluation, as per Table 1.

3 Research methodology

We began by selecting the metrics we would use for
validating models during training and evaluating
models. The metrics chosen are as shown in Table
2: We selected BLEU-1 and BLEU-4, as well as
Smoothed BLEU-4. BLEU-1 is a metric frequently
used for evaluating summarisation, and Smoothed
BLEU-4 is the metric employed for epoch vali-
dation by previous work by Ahmad et al. (2020)
and Feng et al. (2020). METEOR can also be used
used to evaluate source code summarisation, and
is reported by Ahmad et al. (2020), Mahmud et al.
(2021), and Phillips et al. (2022).

In addition to these common summarisation met-
rics, we measure FrugalScore and BERTScore,
which utilise LLMs to compare if the meaning
of a machine-generated text matches the mean-
ing of a human-written one, rather than whether
the language used matches. LLM-based metrics
achieve this by capturing contextual embeddings.
The forward step of the model training remains un-

Metric

BLEU-1 & 4 & SMOOTHED BLEU-4
METEOR

FrugalScore

BERTScore

Table 2: Metrics used.

changed from the base model; during which Cross
Entropy Loss is calculated and used in creating
Model weights. During our model training, we val-
idate each epoch of training on a given NLG metric
from Table 2. We use this metric to better optimise
the performance of our model to the task by check-
pointing the best epoch and reverting epochs that
did not show improvement. When an epoch shows
improvement in the metric, it is checkpointed as the
best model; when an epoch fails to show improve-
ment in the metric, the model weights are reverted
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to the weights of the best performing epoch from
these checkpoints before continuing training. We
also use checkpoints for early stopping the model
training. When a minimum threshold of 20 training
epochs have taken place, if five consecutive epochs
fail to provide any improvement to the model, we
stop training in order to prevent overfitting. In this
experiment, we also implemented a maximum of
200 training epochs for the same purpose, but did
not reach this limit in any of our training.

Our training and validation process is shown
in Figure 1. Our training dataset split of 399,999
method-summary pairs is used in the training step.
As we validate our model, we use a validation
split of 49,999 pairs. We use this data to calculate
an NLG metric, then compare the average metric
result to previous validation steps. If the model
has improved in the last 5 epochs (early-stopping
mechanism, x in Figure 1) and the model produced
the highest average metric score this epoch, these
model weights are saved as a checkpoint, and the
next epoch of training begins unless the maximum
number of training epochs (n in Figure 1) has been
reached. If the model has shown improvement in
the past 5 epochs, but has not improved in this
training epoch, the model weights are reverted to
the best scoring checkpoint. When this takes place,
a small amount of noise is added to the weights
in order to better prevent overfitting to the dataset
and to prevent the model from generating the same
model weights as the previous attempt. For this
purpose, we added Gaussian noise multiplied by
0.001 to each of the model weights individually. If
the model has not improved in the last 5 epochs,
the early stopping mechanism is called. When the
early stopping mechanism is called, or the maxi-
mum number of training epochs has been reached,
we evaluate the model against all of the metrics,
using the evaluation dataset split of 49,999 method-
summary pairs. To ensure reliable results, we set a
minimum of 20 training epochs. The results of our
evaluation can be found in Tables 4, 5, and 6.

3.1 Methodology for RQ.1

We selected two transformer models commonly
used for summarisation tasks: T5 (Raffel et al.,
2020) and BART (Lewis et al., 2020). We selected
these models due to their popularity, with each
model having a high number of citations on Google
Scholar and a high number of downloads on Hug-
gingFace, and the availability of low resource usage
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Repeat for n epochs

Train model
|

¥

Calculate NLG metric

Model improved in last z epochs?

Model improved this epoch?

Save model weights
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Add noise to model weights
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n

Max. epochs reached?

Evaluate model

Figure 1: Epoch-based training with NLG metric orientation and early stopping

versions of the model, TS5gyar, and BARTRagE, al-
lowing us to train on machines which are commer-
cially available with a low environmental impact.

The TS5syar pretrained model is trained on the
Colossal Clean Crawled Corpus (C4), proposed in
the same paper as the T5 model (Raffel et al., 2020).
C4 is a large English dataset, containing roughly
800GB of data extracted from the Common Crawl?
archive of text mined by crawling the web. The
BARTg,s¢ pretrained model is trained on a variety
of tasks across several popular English datasets.

We fine-tuned these two pretrained models on
our source code summarisation task as described in
Section 3 and shown in Figure 1. We also trained
models of the same model architecture, without
English language pretraining and with randomly
initialised weights, on the same task. We trained
the models on a machine using an Intel Xeon
E5-2650 v4 CPU, 94GB RAM, and 4 NVIDIA Tesla
P100@ GPUs running Python 3.9.16 with the Open
Cognitive Environment on Ubuntu 22.04.2 LTS.
For RQ.1, we used BLEU-1 as our validation met-
ric, due to its simplicity. We then compare these
models to ascertain whether either model architec-
ture is better for source code summarisation, and to
observe the effect of English language pretraining
on a model’s ability to summarise source code.

3.2 Methodology for RQ.2

We selected the best performing model from the
model training described in Section 3.1 (BARTg s,
with randomly initialised weights). Following the

2commoncrawl.org
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training method described previously, we trained a
series of BARTgAsg models, each one validated on
a different metric from Table 2. Once the models
were trained, we evaluated each of them against
the evaluation dataset split on our full list of NLG
metrics in order to establish what effect, if any, the
validation metric has had on our model.

In order to establish a baseline to compare our
validation and training method against, we also
trained the same BARTg,sg model on our dataset,
but without any metric used for validation. In this
baseline model, loss is calculated during the vali-
dation stage and used for checkpointing and early-
stopping of the training, but model weights are not
reverted based on the outcome of this loss. We
again used a maximum of 200 training epochs, and
a minimum of 20, with early stopping after 5 un-
successful training epochs. The difference between
this baseline training method and our own is the
lack of adjusting model weights after validation to
match those of the most successful training epoch.

We then compared the results of evaluating all
of our models, highlighting the best results from
our findings in Table 5. We sought to identify
any patterns in the effect that the choice of vali-
dation metric had on our training method, as well
as to identify whether using Large Language Model
(LLM)-based NLG metrics in our approach is able
to outperform traditional N-gram-based metrics.

3.3 Methodology for RQ.3

Following on from our findings in Section 4.2 re-
lating to RQ.2, we identified any validation metric
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which caused the model to outperform the mod-
els validated on other metrics by evaluating each
model on the evaluation dataset split, using all
metrics listed in Table 2. We present our best-
performing model, compared to other popular mod-
els for NSCS to show the improvement our model
presents compared to other solutions, in Table 6.

Training Validation Evaluation
164,775 5175 10,948
91% 3% 6%

Table 3: Split of methods in the CodeSearchNet dataset.

To test for overfitting to our dataset, We then
compared our model to other models on a differ-
ent dataset, CodeSearchNet (Husain et al., 2019).
We cleaned the CodeSearchNet dataset, following
the method Phillips et al. (2022) used for Funcom
(LeClair and McMillan, 2019). We trimmed the
dataset to valid Java methods only, then removed
repeat entries. We then stripped HTML data from
source code comments and extracted the method
summaries from them. We then lowercased and
removed special characters from the summaries
and stripped out newline characters (“\n”") from
both methods and summaries. As the dataset is pre-
split into testing, validation, and evaluation splits,
we maintained these splits. The size of dataset
splits for CodeSearchNet can be found in Table
3. We used the evaluation split of 10,948 method-
summary pairs in our evaluation of the models.

The source code used to train each of our mod-
els can be found on GitHub®. Each model took
between 2 - 4 days to run on one NVIDIA Tesla
P100 GPU, with the exception of the model trained
using METEOR, which took approximately a week,
being constrained by file read/write speeds due to
the nature of the script used to interface with the
METEOR metric.

Once we had completed this evaluation, and
compared our model to others within the domain
of Neural Source Code Summarisation, we trained
our model on the WMT 2016 DE-EN machine
translation task (Bojar et al., 2016), and evaluated
it against the same selection of metrics to gain
insight into the generalisability of these methods
when training models for tasks other than NSCS.
For this task, we used the original split of data of
4,548,884 training pairs, 2168 validation pairs, and
2998 evaluation pairs as provided by the dataset,

3GitHub: github.com/phillijm/CodeSumBART
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with results shown in Table 7.

4 Result analysis

4.1 Results relating to RQ.1

As shown in Table 4, BARTg s consistently outper-
forms T5syarr, for our source code summarisation
task. In answer to RQ.1: for BART, the model with
randomly initialised weights outperformed the one
with pretraining on a corpus of English data when
trained and evaluated on our source code summari-
sation task. T5 showed improvement caused by pre-
training with English language data, where BART
showed improvement by not doing so - although
both of these differences are small in comparison to
the difference between the two model architectures.
We suspect this is due to a mixture of three fac-
tors. First: the nature of the language used to sum-
marise source code, as technical and detailed lan-
guage, which differs from much of the language
used in pretraining, being news and conversational
language. Also, the source code summarisation
task requires the model to produce English outputs
from a Java input text, whereas pretraining tasks
on English language corpora require the model
to produce English outputs from English inputs.
Our results show that while English and Java share
many words, the syntax and grammar of the lan-
guage differ enough that pretraining models on
English data does not aid models in understand-
ing Java. Finally, the architecture of the models
themselves: TS5gya . makes use of 60 million pa-
rameters, whereas BARTg s uses 140 million.

4.2 Results relating to RQ.2

After training and validation were complete, we
evaluated each of the models on our evaluation
dataset split against the ten metrics. We found,
from our evaluation results in Table 5, that training
the model using BLEU-4 and Smoothed BLEU-4
provides the best-performing models on our dataset.
The model trained using BLEU-1 in validation per-
forms less well than the non-unigram BLEU met-
rics. Models trained using METEOR perform simi-
larly, marginally outperforming BLEU-1.

Our results show that training models using
BERTScore or FrugalScore as a validation metric
in our training outperforms training without vali-
dation and optimisation, but does not perform as
well as training using traditional non-unigram n-
gram-based metrics for validation. Further work
is yet to be done to ascertain why this appears to
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A A AN o cove cot®
N\Ode\ B‘)\aﬂ %\330 Q- By N\gﬁ@ v (\)%‘&\S g@?js
Pretrained TS5syarr 50.23 24.69 24.98 21.76 71.77 68.75
TSsmarL™ 49.39 23.48 23.78 50.95 71.21 67.97
Pretrained BARTR sk 51.87 26.22 26.50 23.28 72.50 70.23
BARTBAse™ 52.74 27.33 27.59 23.84 73.12 70.75
* Models with weights randomly initialised
Table 4: Effects of English Pretraining
C A A XJQO’A‘ o% \Scoie Sco(e
NC R W g pest
None (Baseline)* 41.77 12.71 13.15 16.62 64.25 62.09
BLEU-1 52.74 27.33 27.59 23.84 73.12 70.75
BLEU-4 53.58 30.41 30.66 24.96 73.59 71.70
Smoothed BLEU-4 54.24 31.23 31.47 25.27 73.48 71.20
METEOR 53.29 29.35 29.61 24.59 73.42 71.15
FrugalScore 47.63 20.13 20.45 20.27 69.86 67.53
BERTScore 52.80 27.49 27.76 23.90 73.14 71.14

* loss is calculated during validation and used for early stopping, but model weights are not reverted.

Table 5: Comparison of Evaluation Metrics

be the case. We suspect that due to these metrics
reliance on embeddings, rather than matching n-
grams, key words and phrases may be neglected
in generating summaries, leading to less accurate
summaries being generated.

4.3 Results relating to RQ.3

We note, from Table 5, that validation using the
BLEU-4 metric provides the best results on LLM-
based metrics, while Smoothed BLEU-4 performs
similarly and performs best on n-gram based met-
rics. From our testing, larger n-gram BLEU metrics
in validation appear to produce more accurate re-
sults, however, further work is needed to determine
the point at which this is no-longer the case.

In our evaluation, the model trained using ME-
TEOR in validation outperformed models trained
using BERTScore and FrugalScore, but was simi-
larly outperformed by BLEU-4.

We then evaluated our model validated us-
ing BLEU-4 against BARTg,sz and two Neural-
CodeSum models; one pretrained following Ahmad
et al. (2020)’s methodology, and one pretrained
following Phillips et al. (2022)’s methodology, as
well as CodeBERT (Feng et al., 2020) and Graph-
CodeBERT (Guo et al., 2021). We evaluated it
against two NSCS tasks: our task, derived from
the Funcom Dataset (LeClair and McMillan, 2019),
and the evaluation task from Husain et al. (2019)’s
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CodeSearchNet dataset.

On our task, our model significantly outper-
formed both NeuralCodeSum models as well
as CodeBERT, GraphCodeBERT, and BARTE sk
across all evaluation metrics.

We then processed the Evaluation split of the
Java dataset from Husain et al. (2019)’s Code-
SearchNet task. We processed this using Phillips
et al. (2022)’s dataset cleaning tool. Evaluat-
ing these models against the CodeSearchNet task,
we found our model consistently outperforms
the NeuralCodeSum models and BARTg g (With
the exception of NeuralCodeSum evaluated on
BERTScore), and outperforms all models tested
when evaluated on BLEU-4, with CodeBERT scor-
ing highest on 4 metrics and GraphCodeBERT out-
performing other models when evaluated on BLEU-
1. These results can be seen in Table 6.

Our model-generated outputs have a high mean
Word Error Rate (WER) (Popovi¢ and Ney, 2007)
of approximately 56.6, despite a high BLEU-4. A
high WER, (in turn, derived from Levenshtein dis-
tance) (Levenshtein et al., 1966), shows that while
BLEU shows our model has generated key 4-gram
phrases which match the human-written summaries
of a method, the structuring of the sentence is
unique. Previous work by El-Haj et al. (2014) used
WER as a metric to compare pairs of texts as a
measure of similarity between two texts. We use



Evaluated against Funcom (LeClair and McMillan, 2019)

A

- e
O 66\ . ¢V A Bu @V A g 3\;@0 N\?ﬁeo"* _— %‘A\SGO‘ %?)“,‘SCOYG
CodeSumBART 53.58 30.41 30.66 24.96 73.59 71.70
BARTRAsE 3.16 0.07 0.28 4.83 43.80 31.60
NeuralCodeSum 24.07 2.67 2.67 8.75 53.28 59.95
NeuralCodeSum* 33.71 20.30 20.30 19.11 64.66 69.02
CodeBERT 23.06 1.93 19.33 15.72 60.86 67.30
GraphCodeBERT 24.04 1.89 19.35 13.84 60.75 66.78

Evaluated against CodeSearchNet (Husain et al., 2019)

A e
W0t v v,ua\ﬁ‘b‘ S B N\QWOY‘ m%a\Sco‘ gemSGO‘e
CodeSumBART 27.52 5.02 5.71 10.85 60.20 56.97
BARTRAsE 3.08 0.09 0.23 5.14 47.65 30.18
NeuralCodeSum 19.96 2.02 2.02 7.64 52.83 58.98
NeuralCodeSum* 2.49 0.71 0.71 5.71 50.73 52.79
CodeBERT 24.30 3.94 17.96 12.55 62.23 68.37
GraphCodeBERT 38.42 3.22 17.50 12.31 62.19 68.15

* A NeuralCodeSum model pretrained following Phillips et al. (2022)’s methodology.

Table 6: Comparison of Source Code Summarisation Models Using two Datasets

WER to compare prediction and reference texts
for source code summaries. Example outputs and
WERs can be seen in Appendix A.

Metric Result
BLEU-1 66.67
BLEU-4 36.57
Smoothed BLEU-4  36.66
METEOR 35.82
FrugalScore 83.37
BERTScore 80.10

Table 7: CodeSumBART trained on WMT 2016 DE-EN
dataset

When we trained our model on the WMT 2016
DE-EN translation task (Bojar et al., 2016), we
found that our model provided results (seen in Ta-
ble 7) which are similar to our model when trained
and evaluated on our NSCS task. These results
suggest that our methods can be applied to model
training in other domains, outside of NSCS.

4.4 Statistical correlation of results

Using the evaluation metrics from Table 2, we
evaluated each output our model produced on the
evaluation split from our dataset. We then used
Spearman’s Rank Correlation Coefficient, p, to
check the correlation between each metric. We
found a strong, positive correlation between all
metrics even when the sample size is reduced to a
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1% random sample of the data. The lowest value
of Spearman’s rank correlation coefficient was 0.71
between BERTScore and BLEU-4, this pair also pro-
vided our largest p-value: 8.87%107 71 - suggesting
a statistically significant result. These results can
be seen in Appendix B. The high correlation shows
agreement between the metrics; predictions rated
highly by one metric are rated highly by the oth-
ers, suggesting that these metrics are approximately
equally capable of evaluating NSCS tasks.

5 Related work

In 2021, Rauf et al. (2021) analysed ten years of
research into developer behaviour regarding secure
coding practices, with regards to developer psy-
chology, discovering barriers developers face to
secure coding. Later, Khan et al. (2022) identify an
extensive list of security risks in practice, including
a lack of secure development or coding.

Similarly, Rindell et al. (2021) conducted a study
of security practices in agile development. They
found that while security is implemented in vari-
ous ways in agile environments, models such as
SSDLC for ensuring secure development are rarely
implemented in their entirety. They also note a
positive correlation between increased agility and
increased security engineering practices.

The Transformer neural network model was in-
troduced by Vaswani et al. (2017) as a general-



purpose neural network. Since then, the Trans-
former has become a ubiquitous model for many
NLP tasks. Much work has been done to advance
the Transformer model; BART (Lewis et al., 2020)
uses an architecture which combines both bidirec-
tional and auto-regressive transformers to build a
model. Raffel et al. (2020) introduced T5, a sim-
ple transformer model, which treats all tasks as
text-to-text problems, using transfer learning.

Optimising model training by optimising a
model’s parameters with respect to evaluation met-
rics is a concept initially developed by Shen et al.
(2016) in the form of Minimum Risk Training
(MRT). MRT aims to optimise model parameters
by minimising loss in terms of evaluation metrics.
Norouzi et al. (2016) present an alternative algo-
rithm, Reward Augmented Maximum Likelihood
(RML). RML builds on maximum likelihood esti-
mation, adding a step where log-likelihood is opti-
mised on rewards for possible outputs.

Recent works have applied the Transformer
model architecture to NSCS. CodeBERT (Feng
et al., 2020) and NeuralCodeSum (Ahmad et al.,
2020) use Transformer-based models to summarise
source code, with CodeBERT being a bidirectional
Transformer model. Mahmud et al. (2021) com-
pare these two Transformer models, as well as
Code2Seq (Alon et al.,, 2018) on the Funcom
dataset (LeClair and McMillan, 2019). Phillips
et al. (2022) establishes a method of cleaning Fun-
com to allow for better training and evaluation of a
NeuralCodeSum model, as well as introducing the
use of an LLM-based metric for evaluating NSCS.
Recent work by Haque et al. (2023) focuses on al-
tering the training process to produce better models
for NSCS tasks by using label smoothing. Zhou
et al. (2023) propose an alternative improved train-
ing approach for models for NSCS tasks by using
“meta-learning” to transform the training process
into a few-shot deep learning task. Mastropaolo
et al. (2024) propose a model, STUNT, built on
TS5smarr, for NSCS tasks. STUNT’s training re-
lies on a comment classification model, SALOON,
for generating training data as it is trained on snip-
pets of code and related summaries found in code
comments, not methods and method summaries.

Taviss et al. (2023)’s Asm2Seq model is de-
signed to generate natural language summaries of
x86 and AMDG64 assembly code for the purpose of
aiding in vulnerability analysis.

Stapleton et al. (2020) take a human approach
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to evaluating source code summarisation. Staple-
ton et al. (2020) found that “data suggests that
participants did not see a clear difference in qual-
ity between human-written and machine generated
comments”’; finding developers’ ratings to be an
unreliable predictor of how much a summary helps
them - and that developer intuition may be poor at
assessing the relevancy of information.

Large Language Models have increasingly
been used to generate metrics for NLG tasks.
BERTScore (Zhang et al., 2019) and MoverScore
(Zhao et al., 2019) being two examples of these met-
rics. These are large models, with a sizeable envi-
ronmental impact when implemented at large scale.
Kamal Eddine et al. (2022)’s FrugalScore seeks to
solve this by reducing the number of parameters
used while retaining accuracy. FrugalScore learns
from the internal mapping of LLMs to produce a
smaller language model with similar accuracy.

6 Conclusion

We present CodeSumBART, an improved Trans-
former model for automatic source code summari-
sation. Our model uses a new training method to
achieve a high degree of accuracy by validating
the results of each training epoch against an NLG
metric and using that validation performance to re-
vert model weights from under-performing training
epochs to those from the best-performing epoch.

Our findings show that our training provides
an improved method of training transformer mod-
els for automatic source code summarisation.
CodeSumBART outperforms state-of-the-art mod-
els in evaluation across several metrics and pro-
duces outputs comparable to human-written sum-
maries to within a high degree of accuracy in two
Java source code summarisation tasks. This model
can be applied to Java source code methods to aid
in the secure development process by reducing the
cognitive load on developers. The model and train-
ing method we have created could be used to enable
more secure software development through integra-
tion into developer tools to summarise new source
code methods as they are written, and summarise
legacy code methods for easier maintenance.

Following this work, we intend to continue to
investigate the role that NSCS models can play in
cybersecurity, focussing on the potential applica-
tion of NSCS on bug and vulnerability patch data,
using human evaluation alongside NLG metrics.



7 Limitations

In this paper, we have only used a dataset for the
summarisation of Java source code in English. Fur-
ther research is required to establish the validity of
our results in the setting of other languages, particu-
larly our findings for RQ.1, with respect to whether
transformer models pretrained on English data per-
form better or worse on tasks summarising source
code in different languages.

Our work also only focused on small Trans-
former models. While our models can be run on
most commercially available workstations with lit-
tle environmental impact, larger scale Transform-
ers and LLMs present exciting opportunities for
source code summarisation, which we have not
investigated as part of this paper.

We also chose to evaluate our results against a
suite of traditional and LLM-based NLG metrics.
While these metrics are all designed with the aim
of complementing and being comparable to human
expert evaluation, future work could be done to
compare these metrics to human evaluation in the
domain of source code summarisation.

8 Ethics statement

The first ethical consideration of our research is
the environmental impact of our research. We have
taken steps to minimize this impact by choosing to
training small models on commercially available
workstation machines. Any future research into
whether larger models are capable of outperform-
ing the results we have achieved will have a larger
environmental impact.

We also considered the dataset we have used.
The data itself is comprised of publicly available
Java source code, and the primary dataset we
have used was compiled by LeClair and McMillan
(2019). We also used data from the CodeSearch-
Net dataset (Husain et al., 2019), which is derived
from open source projects on GitHub with licenses
which permit the re-distribution of parts of code.
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A  CodeSumBART example predictions

Selected Summaries (5 longest, 5 shortest, 5 mean.)

Shortest Summaries longer than 2 tokens:

Source: public hashtable get hash ( ) { return attributes ; }

Prediction: returns the entireable of contains guaranteed to filter the
attribute. this

Reference: returns the hashtable that is used to store the attributes of
this object

WER: ©.615

Source: public void close ( ) { disconnect ( ) ; }

Prediction: closeoses the connectionagramrovider.

chatacle thread.

creates connection

the

Reference: closes the dataprovider and the connection to the oracle database

WER: 0.7

Source: public responses get addressing responses ( ) { return addressing
responses ; 1}

Prediction: getss value of addressing to to addressing

Reference: return the type of responses required by addressing.

WER: ©.875

Source: public int get colon pos ( ) { return colon pos

Prediction: gets position of code token token token
present

Reference: returns position of code token or 1

WER: 0.4

Source: public chord node get successor ( ) { return this

Prediction: returns the successor of this chord.
Reference: returns the successor of this peer.
WER: ©0.167

N

or 1 if not

if not present.

successor ; %}

Longest Summaries:

Source: public void test clg@d7 ( ) throws exception { assert equals ( 0 ,
test utilities . bool search ( " ( cccc cc cecen ) ..n.oc ", "
ccccce ccen " ) ) ; assert equals ( @ , test utilities bool search (
" (cl cccce cc ccecen ) ..n . ¢ ", " ccccc ccen " ) ) ; assert
equals ( 1 , test utilities . bool search ( " ( cccc cc ) ( cccn )

n.c" , " ccccc ccen " ) ) ; assert equals ( @ , test utilities
bool search ( " ( cc br ccn ) ( occ ) " , " br ccccc ccen occc "
) ) ; assert equals ( 1 , test utilities bool search ( " ( cc br )
( ccn ) ( occ ) " , " br ccccc ccen occc " ) ) ; assert equals (1
, test utilities bool search ( " ( cc [ br , cl 1) ( ccn ) ( occ
> " , " br ccccc ccen occc " ) ) ; }

Prediction: finds the virtualpoint for the reference reference the reference

reference to

Reference: returns a virtual point on the line between the point closest
geographically to

WER: ©.769

Source: public void test clg@d7 ( ) throws exception { assert equals ( 0 ,
test utilities . bool search ( " ( cccc cc ccen ) ..ono.oc "o, "
ccccce ccen " ) ) ; assert equals ( @ , test utilities . bool search (
" (cl cccce cc cceen ) ..n .oc ", ccccce ccen " ) ) ; assert
equals ( 1 , test utilities . bool search ( " ( cccc cc ) ( cccn )

n.c" , " ccccc ccen " ) ) ; assert equals ( @ , test utilities
bool search ( " ( cc br cecn ) ( occ ) " " br ccccc ccen occc "
) ) ; assert equals ( 1 , test utilities bool search ( " ( cc br )
( ccn ) ( occ ) " , " br ccccc ccen occc " ) ) ; assert equals (1
, test utilities bool search (" ( cc [ br , cl 1) ( ccn ) ( occ
> " , " br ccccc ccen occc " ) ) ; }

Prediction: sets the the check the the class is not if that the

Reference: set how to compare to this conditionfactor.
match for

WER: ©.923
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value is true implies



Source: public void test clg@7 ( ) throws exception { assert equals ( @
test utilities . bool search ( " ( cccc . cc . cccn) .. n . c " "
ccccec . cccn " ) ) ; assert equals ( @ , test utilities . bool search (
" (cl . cccc . cc . cccen) .on . c ", " ccccc . ccen ") ) ; assert
equals ( 1 , test utilities . bool search ( " ( cccc . cc ) . ( cccn )

n.c" , " ccccc . ccen " ) ) ; assert equals ( @ , test utilities
bool search ( " ( cc br . cen ) . ( occ ) " , " br ccccc . cccn . occc "
) ) ; assert equals ( 1 , test utilities . bool search ( " ( cc br )
(cen ) . (occ ) " , " br ccccc . ccen . occc " ) ) ; assert equals (1
, test utilities . bool search (" ( cc [ br , c1 1) . ( ccn ) . ( occ
> " , " br ccccc . ccen . occc " ) ) ; }

Prediction: constructbometricometric cumulative chart cumulative option

Reference: hypergeometric bar chart with cumulative option

WER: 0.5

’

Source: public void test clg@d7 ( ) throws exception { assert equals ( @
test utilities . bool search (" ( cccc . cc . cccn ) .. n . c " , "
ccccec . ccen " ) ) ; assert equals ( @ , test utilities . bool search (
" (cl . cccc . cc . cccen ) .on . c ", " ccccc . ccecn ") ) ; assert
equals ( 1 , test utilities . bool search ( " ( cccc . cc ) . ( cccn )

n.c" , " ccccc . ccen " ) ) ; assert equals ( @ , test utilities
bool search ( " ( cc br . cecn ) . ( occ ) " , " br ccccc . cccn . occc "
) ) ; assert equals ( 1 , test utilities . bool search ( " ( cc br )
( cen ) . (occ ) " , " br ccccc . cccn . occc " ) ) ; assert equals ( 1
, test utilities . bool search (" ( cc [ br , c1 1) . ( ccn ) . ( occ
> " , " br ccccc . cccn . occc ") ) ; 3}

Prediction: test test checks fail a xpath elements returned returns fail x

Reference: this test will perform an xpath query which will return

WER: 0.9

)

Source: public void test clg@7 ( ) throws exception { assert equals ( 0 ,

test utilities . bool search ( " ( cccc . cc . ccecn ) .. n . c ",
ccccc . ccen " ) ) ; assert equals ( @ , test utilities . bool search (
" (¢l . cccc . cc . cccen) .n.c ", " ccccc . ccen ") ) ; assert
equals ( 1 , test utilities . bool search ( " ( cccc . cc ) . ( cccn )
n.c" , " ccccc . ccen " ) ) ; assert equals ( @ , test utilities
bool search ( " ( cc br . ccn ) . ( occ ) " , " br ccccc . cccn . occc "
) ) ; assert equals ( 1 , test utilities . bool search ( " ( cc br )
(cecn) . (occ ) "™ , " br ccccc . ccecn . occc " ) ) ; assert equals (1
, test utilities . bool search (" (cc [ br , c1 1) . ( cecn ) . ( occ

”

> " , " br ccccc . cccn . occc > ) ;%
Prediction: set the line. to draw origin shape.
Reference: sets the line used to label this series.
WER: ©.75

Mean Summaries:
Source: private void fire waypoints available ( gps unit event evt ) { for (
iterator it = _ listeners . iterator ( ) ; it . has next () ; ) { gps
unit event listener 1 = ( gps unit event listener ) it . next () ; 1
waypoints available ( evt ) ; } 3}
Prediction: resetets all properties to their. for the. requests
Reference: resets all fields to values valid for validation.

WER: ©.75

Source: public void test assign graph pool ( ) { o data manager . assign
graph pool ( ) ; assert true ( o data manager . o dex . is open ( ) & &
o data manager . o graph pool . is open ( ) ) ; o data manager . close
db () ;5 %}

Prediction: sets the bindings are not files types are be
Reference: whether internal bindings or and external binding should be used.
WER: 0.8

Source: public int get int ( string key ) { int i = @ ; try { i = integer
parse int ( props . get property ( key ) ) ; } catch ( throwable t ) {
logger . log ( level . warning , " could not parse integer value " |, t )

; Y return i ; 3}

Prediction: sets the audio renderer. use this of these

Reference: set the audio renderer to use. one of

WER: 0.75
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Source: public void work on ( assembly a ) { composite node new node = new
composite node ( name ) ; for ( int i = @ ; i < number nodes ; i + + ) {
component node node = ( component node ) a . pop ( ) ; new node
insert ( node ) ; } a . push ( new node ) ; }

Prediction: getss filterconfig. for this filter.
Reference: return the filter configuration object for this filter.
WER: 0.625

Source: public void set active ( final boolean active ) { if ( ( mode ! =
mode . server ) & & (! in applet ) ) { if ( active ) { status . set
sort mode ( sort mode . remote , " remote " ) ; } else { status . set
sort mode ( sort mode . no _ sort , " no sort " ) ; } } }

Prediction: inv be be called for

Reference: must not be called.

WER: 1.0

Mean Word Error Rate: 0.566

Mean Word Error Rate (Shortest 100 summaries): 0.520
Mean Word Error Rate (Mean 100 summaries): 0.521
Mean Word Error Rate (Longest 100 summaries): 0.562
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B Correlation for evaluation metrics
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Figure 2: Spearman’s Rank Correlation Coefficient, using 100% of the Evaluation Split
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Figure 3: Spearman’s Rank Correlation Coefficient, using 1% of the Evaluation Split
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