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Abstract

Traditional collaborative Machine Learning
model collects private datasets from multiple
clients at central location for analysis, raising
privacy concerns and risks of data breaches.
Methods like differential privacy, secure mul-
tiparty computation(SMC) and anonymization
mitigate these risks. SMC entails significant
computational and communication overhead,
Differential Privacy often introduces a privacy-
utility trade-off, requiring noisy or perturbed
data and anonymization involves high risk of
re-identification attacks. The proposed work
encrypts frequent mining from multiple clients
in FL using Homomorphic encryption. The ap-
proach allows computations to be performed
on encrypted datasets, eliminating communi-
cation overhead, privacy-utility trade-offs etc.
Experiments conducted on three different trans-
actional datasets, employing metrics like en-
tropy, mutual information, and KL divergence,
concluded that encryption maintained data in-
tegrity, indicating no significant alteration in
global model post-encryption, ensuring privacy
preservation.

1 Introduction

Advancements in networking, storage and process-
ing technology have enabled creation of ultra-large
databases capable of capturing and storing unprece-
dented amount of information from diverse users.
Artificial Intelligence (AI) and Machine Learning
(ML) relies heavily on this huge data to efficiently
learn, generalize patterns, make accurate predic-
tions, and perform complex tasks. With increased
data volume, ML algorithms gains deeper insights
into underlying structures of problems, leading
to improvement in their performance and reliabil-
ity. Conventional centralized ML model requires
sharing private client data with central server for
model training, raising significant privacy concerns
(Sushama et al., 2021) due to the sensitive informa-
tion (Agrawal and Srikant, 2000). Thus, centralized

approach raises significant privacy concerns as sen-
sitive information is directly exposed to server. To
address this, Google in 2016 (Konečnỳ et al., 2016)
introduced Federated learning (FL) that enables
collaborative training of a global model among mul-
tiple nodes without sharing their raw private data.
Instead, only the model parameters are shared to
ensure privacy. Figure 1 illustrates the fundamental
workflow of federated learning. However, despite

Figure 1: Federated learning.

these advancements, federated learning still poses
privacy risks and challenges (Nasr et al., 2019).
One significant challenge involves ensuring the se-
curity and privacy of local model parameters when
they are shared with the central server for analysis.
Additionally, federated learning requires frequent
communication between central server and client
devices, resulting in increased communication over-
head, particularly when large number of clients are
participating. Moreover, sharing of local model
parameters by clients can attract eavesdroppers or
adversaries, potentially intercepting and analyzing
the data transmitted between clients and the server.

To address aforementioned challenges, various
measures have been effectively employed, includ-
ing anonymization, perturbation, differential pri-
vacy and blockchain based methods. In this paper,
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we leverage the property of Homomorphic encryp-
tion (Gentry, 2009) within the context of federated
market basket analysis, which enables computa-
tions to be performed on encrypted data without
decryption. The contribution of our study are:

1. We have utilized the Apriori and FP-Growth
algorithms to individually find frequent items
and rules by each client in federated learning.
The advantage of extracting rules and items
in federated learning lies in preserving the pri-
vacy of each client’s data while still allowing
for collective learning across multiple clients.

2. To address privacy preservation, we have ap-
plied Homomorphic Encryption to the fre-
quent items and rules mined by each client,
ensuring that privacy is maintained throughout
the federated learning market basket analysis.

3. To experimentally validate our proposed work,
we have assessed it on three transactional
datasets. We utilized entropy, mutual informa-
tion, and Kullback–Leibler (KL) divergence
metrics to evaluate the integrity of the en-
crypted data, while also examining the exe-
cution time involved in whole process.

2 Literature review

To protect private data and ensure robust privacy
in federated learning, researchers have developed
several techniques including Anonymization (Li
et al., 2019), Differential privacy (Abadi et al.,
2016) (Wei et al., 2020), Secure multiparty com-
putations(Mugunthan et al., 2019) and Blockchain-
based methods (Zhao et al., 2020).

Association rule mining (Modi and Patil, 2016),
based on Diffie-Hellman problem along with el-
liptic curve and digital signature was proposed to
improve trustworthiness of data exchange between
clients eliminating the trusted third party. However,
it faces scalability issue and computational cost for
large number of participating clients. Two Asso-
ciation rule mining (Chahar et al., 2017) was pro-
posed for horizontally partitioned database. First
scheme utilizes Elliptic curve cryptosystem that
secure the site information and second scheme re-
lies on Shamir secret sharing method that effec-
tively addresses the vulnerability against collusion
attacks. Nevertheless first scheme was susceptible
to collusion attack and second was having higher
computational cost. SVSM (Wang et al., 2018) ad-
dress the challenge of frequent itemset mining in

transactional data using local differential privacy.
However, scalability issues persist.

A centralized FL framework (Molina et al.,
2021) was designed for mining association rules
from electronic healthcare records, ensuring
global accuracy while reducing computational cost.
FedFPM (Wang et al., 2022) is a local differen-
tial privacy based approach for mining frequent
items efficiently with privacy. PPDMF (Wu et al.,
2023) proposed for joint venture industrial collabo-
ration for mining of high utility itemsets from mul-
tiple datasets without directly sharing the private
data. The proposed method results displayed that
approach is having high accuracy while preserv-
ing privacy. FedFIM (Chen et al., 2023) and Fed-
FIM_AES uses AES encryption to rapidly mine fre-
quent items along with adding noise in the fed_avg.
FL based mining algorithm (Hong et al., 2023) con-
sidered client server method where clients possess
large and diverse datasets, and the server aggre-
gates results from each client.

While above techniques aim to protect privacy,
they still have some limitations. Secure Multiparty
Computation (SMC) often involves high commu-
nication overhead and intricate key sharing mech-
anisms. Differential privacy presents challenges
in selecting an appropriate epsilon value (Lee and
Clifton, 2011), impacting the accuracy of mining re-
sults. Anonymization, although effective, may not
always guarantee complete privacy and Blockchain
in privacy-preserving federated learning (FL) suf-
fers from scalability issues. However, Homomor-
phic encryption offers a promising solution by en-
abling computations directly on encrypted data
without decryption. This minimizes communica-
tion overhead, eliminates the need for extensive key
sharing, and provides a more efficient and secure
approach to privacy-preserving data mining.

3 Preliminaries
3.1 Frequent mining algorithms

Frequent item mining and Market Basket analy-
sis identify frequent items and association rules
from transactional datasets. Consider a transac-
tional dataset, I={A, B, C,..F}, where A, B are
items in the dataset and each client’s data includes
a subset of items from I and a pattern p, represent-
ing an item or combination of items. A pattern p is
frequent if it appears in a sufficient proportion of
client data, exceeding a threshold f. The support
of p determines its frequency by measuring the
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proportion of transactions containing p, guiding
tasks like generating association rules or recom-
mending items. Classical algorithms for frequent
item mining are Apriori (Agrawal et al., 1993) and
FP-Growth (Han et al., 2000). Both algorithms
utilize a minimum support threshold to identify fre-
quent itemsets, with Apriori employing an iterative
candidate generation and pruning approach, while
FP-Growth constructs a compact tree structure to
efficiently mine frequent itemsets without explicit
candidate generation.

3.2 Homomorphic encryption

Homomorphic encryption (HE) (Rivest et al., 1978)
allows computations to be performed directly on en-
crypted data. Various researchers have used HE in
various applications. In cloud environments (Fahsi
et al., 2015) HE framework is used for private infor-
mation retrieval to keep users safe against unautho-
rized access of private data. (Brakerski et al., 2014)
HE yields cipher texts using specific calculations
that create encrypted output but with a prerequi-
site for reverse computation techniques to yield
plain text back. Homomorphic encryption has the
property that allows operations to be performed on
encrypted texts. Given E= Encryption, D= Decryp-
tion, σ= Security parameter, A= Homomorphic
property, Ke= Encryption Key, ciphertexts (c1, c2)
encrypted on messages (m1,m2), a new cipher-
text c3 such that ∀m1,m2 ∈ M holds only when
m3 = m1 +m2,
c1 = E(σ, (Ke,m1)), and
c2 = E(σ, (Ke,m2)) such that:
Prob[D(A(σ,Ke, c1, c2)) ̸= m3] is negligible.

Different versions of Homomorphic encryption,
full homomorphic encryption (FHE), partial ho-
momorphic (PHE) and somewhat homomorphic
encryption (SHE)(Fan and Vercauteren, 2012) ex-
ists. Figure 2 shows the comparison of PHE, FHE
and SHE.

Figure 2: Comparison of FHE, PHE and SHE.

Pailler encryption (Paillier, 1999) is a type of

public key based partial Homomorphic encryption
that enables computations on encrypted data (either
addition or multiplication) (Guo et al., 2024). It
consist of four main steps:

• Key generation: From two large prime num-
bers p and q, generation of public key pk
and private key sk is performed. Compute
N = pq and λ = lcm(p − 1, q − 1), where
lcm(·) denotes the least common multiple
function. Random number g is selected so
λ = gcd(L(gλ mod N2), N) = 1, where
gcd(·) signifies the greatest common divisor
function and L(x) = x−1

N with x ∈ ZN2 and
x ≡ 1 (mod N). It generates public key as
pk = {N, g} and private key as sk = λ.

• Encryption: Message m in ZN selects a ran-
dom number r in ZN2 and computes c =
[m]pk = gmr · rN mod N2.

• Decryption: For c, m and private key λ, as
m = L(cλ mod N2)

L(gλ mod N2)
mod N .

• Addition:Two ciphertexts [m1]pk and [m2]pk
we have [m1]pk · [m2]pk = [m1 +m2]pk
Because:
[m1]pk · [m2]pk = gm1rN1 mod N2 · gm2rN2
mod N2

= g(m1+m2) · r1 · rN2 mod N2

=[m1 +m2]pk
for multiplication:([m1]pk)

2 = [m1 ·m2]pk

3.3 Problem statement

We consider a cooperative scenario of homoge-
neous and horizontal partitioned dataset where p
parties are semi-honest and aims to collaboratively
find globally frequent itemsets without disclosing
their identities. The parties uses classical min-
ing algorithms like Apriori or FP-growth to dis-
cover frequent items and association rules. Our re-
search approach focuses on privacy preservation in
the federated learning setting, considering existing
methodology limitations and leveraging Homomor-
phic encryption for privacy.

4 Proposed methodology

4.1 Limitation of existing work

Centralized methods for collaborative learning,
while straightforward in implementation, present
significant privacy concerns. In these methods, all
raw data is collected and stored on a central server,



112

making it vulnerable to data breaches and unau-
thorized access (Liu et al., 2024) (Drainakis et al.,
2023). The lack of data privacy can lead to the ex-
posure of sensitive information. Additionally, this
often faces scalability issues as the volume of data
increases. As a solution federated learning envi-
ronment is used (Rodríguez-Barroso et al., 2023)
where there is no need to share the whole dataset
to the server for analysis.

Differential privacy (DP) techniques add noise
to the data to protect individual entries. Despite
their effectiveness in preserving privacy, they have
some limitations (Zhao et al., 2019). There is a
utility-privacy trade-off, where higher privacy of-
ten means more noise, degrading result quality and
accuracy. DP may also require extra communica-
tion rounds to ensure the noise added is effective,
leading to increased overhead in FL settings. In
contrast, Homomorphic encryption enables direct
computations on encrypted data, eliminating the
need for additional rounds of communication. This
reduces communication overhead while preserving
utility, accuracy, and ensuring strong privacy.

4.2 Proposed work

In federated learning settings, concerns about data
privacy and security arise when data from multi-
ple clients is aggregated at the server for model
training. Particularly in Market Basket Analysis,
where insights into consumer behavior are gleaned
from transactional data, preserving the confiden-
tiality of sensitive information is paramount. After
mining frequent items and association rules, the
data is being shared with the server for updating
the global model. After the data is shared with
the server, there’s a potential risk of adversaries
gaining access to private information or even re-
constructing datasets from the shared rules and
frequent items. This highlights the critical need for
robust privacy-preserving techniques in federated
learning settings.

Figure 3 depicts proposed methodology where
clients individually train their local models using
Apriori or FP-Growth algorithms to discover fre-
quent items and associations rules. Subsequently,
each client shares their results with server for
global model aggregation in encrypted form. For
encryption, we employ partial Homomorphic en-
cryption supplemented by scaling and hashing tech-
niques. The support values are in floating-point for-
mat, hence appropriately scaled before encryption

Figure 3: Proposed methodology.

using the Pailler Homomorphic encryption scheme.
To secure specific item names and their support
values, a secure hashing function, namely SHA-
256, is utilized in conjunction with a dictionary.
Upon receiving the encrypted results, the server per-
forms aggregation (summing the values of support
and confidence for respective frequent items and
rules) on the encrypted data, followed by decryp-
tion, rescalling to their original values and dividing
it by the number of clients. A comprehensive un-
derstanding of the systematic review methodology
can be gained by referring to Algorithm 1 and Al-
gorithm 2.

Our main concern lies in mitigating the risk of
sensitive information leakage during transmission
from clients to the server. In contrast to existing
schemes, our proposed method circumvents high
computational costs while exchanging frequent in-
formation between clients and server. Furthermore,
the encryption process does not introduce any ad-
ditional random noise or values to original support
values. We have conducted experimental evalua-
tions of the proposed method using metrics such as
Mutual Information, Entropy and Kullback-Leibler
(KL) divergence.

The product recommendation algorithm recom-
mends products to clients after updating the global
model from the server. It begins by filtering fre-
quent items and association rules based on the
items of interest and then sorts these rules using
a chosen metric like support for frequent itemsets
and confidence or lift for association rules. The
filtered and sorted items and rules are then used to
generate recommendations. The process involves
determining the support, confidence, and lift of
association rules, where support indicates the fre-
quency of occurrence, confidence signifies the like-
lihood of purchasing one item given another, and
lift measures the strength of association compared
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Algorithm 1 Federated Market Basket with Homo-
morphic Encryption: FedMBHE
Data: Di as transactional dataset for client i.
Input: min_supp as minimum support threshold.

Notations:
Fi:set of frequent itemsets for client i.
Ri:set of association rules for client i.
Enc(x):Paillier encryption function for plaintext x.
Dec(c):Paillier decryption function for ciphertext c.
Hash(x):SHA256 hashing function for input x.
Scale(x):scaling function converting support to integers.

procedure LOCALMODELTRAINING(Di)
for each client i do

Fi = MiningAlgorithm(Di,min_supp))
Ri = AssociationRuleGeneration(Fi,min_supp)
Enc(Fi) = Encrypt(Fi)
Enc(Ri) = Encrypt(Ri)
HashedXi = Hash(Fi)
ScaledSi = Scale(SupportV alues(Fi))

end for
end procedure

procedure GLOBALMODELUPDATION(EncFi, EncRi)
Enc(F) =Union(EncFi)
Enc(R) =Union(EncRi)
(F) =Decrypt(EncF )
(R) =Decrypt(EncR)
GFItem = ExtractFrequentItemsets(F,min_supp)
GRules = ExtractAssociationRules(R,min_confi)
DivideByNumberOfClients(GFItem,GRules)
ShareResultsWithClients(GFItem,GRules)

end procedure

to random chance. By filtering and sorting the rules
based on client interests and chosen metrics, the
algorithm tailors recommendations to individual
preferences, ultimately enhancing the user experi-
ence and promoting relevant product engagement.

5 Results
5.1 Experimental setup

5.1.1 Dataset & implementation
The proposed methodology uses Homomorphic en-
cryption to provide privacy preservation in FL Mar-
ket Basket Analysis. We tested the proposed work
on three transactional datasets mainly Grocery1,
Telecom2, and Retail3 datasets available at kaggle.

Table 1 presents the sample transactional data for
each dataset and Table 2 shows the characteristic of
the experimental datasets. The proposed method-
ology was implemented in Python, considering 5
clients for our experiment. We evenly distributed
the datasets among the clients horizontally. Each
client in the grocery dataset comprises 1967 total

1Kaggle - Grocery dataset
2Kaggle - Telecom dataset
3Kaggle - Retail Transactions Dataset

Algorithm 2 Product Recommendation
Input: All available items (I), Interested items (Iinterest),

Global frequent items (GFItem) and Global association rules
(GRules).

Output: Set of Recommended products(Rproduct).
Notations:
S(X → Y ): support of association rule X → Y ,
C(X → Y ): confidence of association rule X → Y ,
L(X → Y ): lift of association rule X → Y ,
Frules = { Filtered rules} and Srules = { Sorted rules}.
Begin
// Generate product recommendation after Filtering and
sorting rules based on items of interest and chosen metric
(confidence, support, or lift)
Frules = FilterRules(I, Iinterest)
Srules = SortRules(GRules, ChosenMetric)
Rproduct = GenerateRecommendations(Srules,GFItem)
end

transactions, while in the telecom dataset, they pos-
sess 1500 entries, and in the retail dataset, each
client is associated with 6000 transactional entries.
The min_support threshold for Apriori and FP-
Growth algorithm was set to 0.3% for telecom and
grocery dataset, and at 0.03% for retail dataset. As-
sociation rules were evaluated using the lift metric,
with thresholds of 0.01 and 0.1. From the lightphe
library of Python Pailler encryption scheme and for
Hashing SHA256 was used.

5.1.2 Evaluation metrics
The encrypted and original values of support were
tested by metrics such as:
Entropy: It measures uncertainty or randomness
in a probability or data distribution. For a discrete
random variable with probability mass function
p(x):

H(X) = −
∑

x p(x) log p(x) (1)

For a continuous random variable with probability
density function f(x):

H(X) = −
∫∞
−∞ f(x) log f(x) dx (2)

Mutual information: It measures the amount of
information shared between two data variables.

I(X;Y ) =
∑

x,y p(x, y) log
p(x)p(y)
p(x,y) (3)

Kullback-Leibler (KL) divergence: It measures
the difference between two data distributions.
For discrete:

DKL(P ||Q) =
∑

x P (x) log Q(x)
P (x) (4)

For continuous:

DKL(P ||Q) =
∫∞
−∞ P (x) log Q(x)

P (x) dx (5)

https://www.kaggle.com/datasets/gustavotg/grocery-store-data
https://www.kaggle.com/datasets/thedevastator/customer-purchasing-patterns-with-market-basket
https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
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Tid Items
{1} a,b,a,c
{2} b,c,f
{3} a,e
{4} c,f,e,b

Tid Items
{1} a,b,f
{2} d,e
{3} a,b,c
{4} c,a,b,e,f

Table 1: Sample transactional dataset.

Dataset Trans Item Avg_Len Density%
Grocery 9835 2201 4 20.03
Telecom 7500 1268 4 30.87
Retail 30000 116626 13 1.09

Table 2: Characteristics of experimental datasets.

5.2 Performance evaluation

5.2.1 Mining process analysis
The Apriori and FP-growth mining algorithm were
applied to three transactional datasets to mine fre-
quent items and association rules for all clients
individually. Table 3 shows the number of frequent
items mined at different support thresholds for all
transactional datasets. Table 4 and 5 show the num-
ber of association rules mined at different lift and
confidence thresholds respectively, for all trans-
actional datasets, for a fixed min_support value.
After this, each client encrypts them using Pailler
Homomorphic encryption.

5.2.2 Privacy analysis
The encrypted and without encrypted support val-
ues for all three dataset for frequent items min-
ing were tested to measure the privacy and in-
tegrity of the resulted averaged frequent items. Fig-
ure 4 shows the Entropy comparison for available
datasets for the Apriori and FP-Growth with and
without Encryption. Figure 5 shows Mutual Infor-
mation comparison and KL divergence comparison

Dataset Client 0.1% 0.5% 1% 5% 10%

Groceries

1 108012 1330 383 32 8
2 66423 1097 340 27 8
3 54849 1358 413 33 10
4 30766 912 281 28 8
5 53297 1177 364 32 8

Telecom

1 45595 842 293 29 7
2 17149 939 331 28 7
3 12081 823 296 29 9
4 12252 795 294 29 7
5 7886 567 219 24 7

Retail

1 2344 81 81 1 0
2 2351 81 81 1 0
3 2333 81 81 1 0
4 2384 81 81 1 0
5 2387 81 81 1 0

Table 3: No of Frequent items found for all datasets
using apriori and fp-growth at different support thresh-
olds.

Dataset Client 1% 5% 10% 50% 100%

Grocery

1 20612 20612 20612 20606 20248
2 12816 12816 12816 12808 12564
3 16778 16778 16778 16766 16388
4 8932 8932 8932 8928 8622
5 13830 13830 13830 13826 13506

Telecom

1 7904 7904 7904 7898 7588
2 9966 9966 9966 9958 9692
3 7104 7104 7104 7096 6798
4 7274 7274 7274 7266 6906
5 3898 3898 3898 3598 2812

Retail

1 15172 15172 15172 14506 11008
2 15384 15384 15384 14712 11258
3 15646 15646 15646 14994 11490
4 15678 15678 15678 15004 11580
5 15762 15762 15762 15122 11658

Table 4: No of association rules found for datasets using
apriori and fp-growth with min_supp=0.3% (for retail:
min_supp=0.03%) and metric=lift.

Dataset Client 1% 5% 10% 50% 100%

Grocery

1 20612 15539 11647 2334 118
2 12816 9430 6870 1084 35
3 16778 12094 8956 1532 33
4 8932 6464 4681 606 13
5 13830 10100 7323 1034 26

Telecom

1 7904 5814 4272 566 27
2 9966 7389 5519 880 40
3 7104 5116 3818 494 18
4 7274 5336 3917 540 29
5 3898 2787 1967 162 7

Retail

1 11597 4959 4375 198 42
2 11652 5054 4497 204 52
3 11712 5201 4625 217 49
4 11627 5217 4650 209 58
5 11651 5268 4681 202 49

Table 5: No of association rules found for datasets using
apriori and fp-growth with min_supp=0.3% (for retail:
min_supp=0.03%) and metric=confidence.

for available datasets on the Apriori and FP-Growth
algorithms.

The Entropy values of original support indicate
significant diversity or variability in the frequency
of items, suggesting a higher level of uncertainty
or randomness. Conversely, the entropy values for
the encrypted support values show a slightly lower
level of uncertainty, possibly due to the regulariza-
tion or compression introduced during encryption
process. Mutual information value quantifies the
shared information between the original and en-
crypted distributions, with higher values indicating
a stronger relationship or dependency between the
distributions. Regarding KL divergence, which
measures the difference between distributions, a
value close to 0 suggests a smaller difference be-
tween original and encrypted distributions, imply-
ing a higher degree of similarity. Table 6 gives the
summary of evaluation metric parameters tested on
all three datasets.
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Dataset Algo O_Ent E_Ent MI KL_Div

Grocery Apriori 8.36 8.40 2.74 0.16
FPGr 8.36 8.40 2.74 0.16

Telecom Apriori 7.74 7.70 2.82 0.16
FPGr 7.74 7.68 2.84 0.16

Retail Apriori 7.53 7.52 2.01 0.37
FPGr 7.53 7.65 1.83 0.38

Table 6: Original entropy, encrypted entropy, mutual
information and kullback leibler (KL) divergence for all
datasets for apriori & fp-growth algorithm.

Figure 4: Entropy comparison for available datasets for apriori
and fp-growth with and without encryption.

Figure 5: Mutual information & kullback-leibler divergence
comparison for available datasets for apriori and fp-growth.

5.2.3 Execution time analysis

Across all datasets, execution time was measured
for both regular computation and computation
with Homomorphic encryption applied for privacy
preservation. Figures 6 and 7 depict the execu-
tion time and encryption time associated with min-
ing frequent items across all datasets, respectively.
The time differences between encryption and non-
encryption scenarios varied depending on the algo-
rithm used. For FP-growth, the time was greater
without encryption and less with encryption across
all datasets. This can be attributed to the nature
of algorithm, which constructs a compact data
structure (FP-tree) during the initial pass over the
dataset, making subsequent frequent itemset min-
ing more efficient. When encryption is applied, the
compact structure aids in reducing computational
overhead associated with encryption operations, re-
sulting in shorter execution time. Conversely, for

Apriori, time with encryption was slightly greater
than without encryption for all datasets.

Figure 6: Execution time comparison for all datasets using
apriori and fp-growth (frequent items).

Figure 7: Encryption time comparison for all datasets using
apriori and fp-growth (frequent items).

Figures 8, 9, and 10 gives execution time associ-
ated with all datasets for mining association rules.
In grocery and telecom datasets, without encryp-
tion, Apriori tends to take more time compared to
FP-Growth, reflecting its inherent computational
complexity in generating association rules. How-
ever, with encryption applied, both algorithms ex-
hibit almost similar time requirements. Conversely,
for the retail dataset, both with and without encryp-
tion, Apriori consistently requires slightly more
time compared to FP-Growth across all metrics -
support, lift, and confidence. Apriori’s iterative
nature and the need to repeatedly scan the dataset
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for candidate itemsets make it more computation-
ally intensive, especially with larger datasets like
retail. On the other hand, FP-Growth’s tree-based
approach allows for more efficient frequent itemset
mining, resulting in shorter Execution times. These
findings shows nuanced impact of encryption on
different algorithms and highlight the importance
of considering algorithmic characteristics when ap-
plying privacy-preserving techniques in FL.

Figure 8: Execution time for grocery dataset (association
rules).

Figure 9: Execution time for telecom dataset (association
rules).

For the frequent itemsets, decryption times are
relatively lower compared to those for association
rules. Decryption times for the grocery and retail
datasets tend to be higher compared to the tele-
com dataset, reflecting the larger size of association
rules generated with min_support and other metric
such as lift and confidence. The slightly higher de-
cryption times for Apriori compared to FP-Growth
across all datasets and metrics can be attributed to
the iterative nature of Apriori and the need for re-
peated decryption operations during candidate item-
set generation. In contrast, FP-Growth’s tree-based
approach requires fewer decryption operations, re-
sulting in slightly lower decryption times. Figure

11 depicts the decryption time for all datasets using
Apriori and FP-Growth algorithms in decryption of
frequent items and association rules.

Figure 10: Execution time for retail dataset (association rules).

Figure 11: Comparison of decryption time between apriori
and fp-growth methods across all datasets.

6 Conclusion and future work

The proposed methodology explores utilization of
Federated Learning combined with Homomorphic
encryption for market basket analysis, frequent
itemset mining, and product recommendation. By
employing the Apriori and FP-Growth algorithms
on transactional datasets, frequent itemsets, associ-
ation rules, and product recommendations were ef-
ficiently extracted. Homomorphic encryption was
then applied to ensure the confidentiality and in-
tegrity of client results during transmission to the
server for training the global model, thereby pre-
serving privacy. Additionally, analysis using met-
rics such as entropy, mutual information, and KL
divergence indicated that the data remained closely
aligned with the original after encryption, unlike
some other methods. Furthermore, the encryption
and decryption time were minimal, and computa-
tional complexities were reduced, as Homomorphic
encryption allows computations to be performed
without decryption and does not require excessive
data transmission from client to server. For future
work, exploring other variants of Homomorphic
encryption schemes on alternative frequent mining
algorithms could be beneficial.
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Limitations

In the context of large-scale federated learning, the
Paillier encryption scheme, while effective for data
privacy and security, presents challenges. Partic-
ularly with sizable datasets containing numerous
entries, the encryption process may become compu-
tationally demanding, leading to longer encryption
times. This could hinder the efficiency and scal-
ability of federated learning systems, especially
when managing numerous clients and extensive
datasets. Transmitting encrypted data from mul-
tiple clients to central server for aggregation can
incur high communication costs,if dataset and fre-
quency of updates are substantial. Ensuring ef-
ficient co-ordination and synchronization among
multiple clients can become crucial. Additionally,
the data distribution among clients, divided equally
from the same dataset, follows a non-IID pattern,
further complicating the scenario.
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