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Preface

The workshop series on Natural Language Processing (NLP) for Computer-Assisted Language
Learning (NLP4CALL) is a meeting place for researchers working on the integration of Natural
Language Processing and Speech Technologies in CALL systems and exploring the theoretical
and methodological issues arising in this connection. The latter includes, among others, the
integration of insights from Second Language Acquisition (SLA) research, and the promotion of
“Computational SLA” through setting up Second Language research infrastructures.

The intersection of Natural Language Processing (or Language Technology / Computational
Linguistics) and Speech Technology with Computer-Assisted Language Learning (CALL) brings
“understanding” of language to CALL tools, thus making CALL intelligent. This fact has given
the name for this area of research –Intelligent CALL, or for short, ICALL. As the definition
suggests, apart from having excellent knowledge of Natural Language Processing and/or Speech
Technology, ICALL researchers need good insights into second language acquisition theories and
practices, as well as knowledge of second language pedagogy and didactics. This workshop there-
fore invites a wide range of ICALL-relevant research, including studies where NLP-enriched tools
are used for testing SLA and pedagogical theories, and vice versa, where SLA theories, peda-
gogical practices or empirical data and modeled in ICALL tools. The NLP4CALL workshop
series is aimed at bringing together competences from these areas for sharing experiences and
brainstorming around the future of the field.

We invited submissions:

• that describe research directly aimed at ICALL

• that demonstrate actual or discuss the potential use of existing Language and Speech
Technologies or resources for language learning

• that describe the ongoing development of resources and tools with potential usage in
ICALL, either directly in interactive applications, or indirectly in materials, application,
or curriculum development, e.g. Large Language Model exploitation, learning material
generation, assessment of learner texts and responses, individualized learning solutions,
provision of feedback

• that discuss challenges and/or research agenda for ICALL

• that describe empirical studies on language learner data

In this edition of the workshop a special focus was given to systems relying on AI trained
for ICALL tasks. This included, but not only, fine tuning Large Language Models (LLMs)
and supervised-learning methods based on learning analytics. Issues related to data in SLA
and learner corpus such as collection and feature extraction were also welcome. We encouraged
paper presentations and software demonstrations describing the above-mentioned themes for all
languages.

Invited speakers

This year, we had the pleasure to welcome two invited speakers: Helen Yannakoudakis (King’s
College London) and Kristopher Kyle (University of Oregon).

Helen Yannakoudakis is an Assistant Professor at King’s College London and Affiliated
Staff at the University of Cambridge. She is also a Turing Fellow and a Fellow of the Higher
Education Academy. Helen is working on machine learning for natural language processing
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with a focus on few-shot learning, lifelong learning, multilingual NLP, and societal and health
applications. Helen’s work has been deployed under the Cambridge brand (Write & Improve),
and has been published in leading venues in the field such as NeurIPS and ACL. She has received
funding awards from industry and academia, has served as a keynote speaker and a panelist, and
has won international competitions such as the NeurIPS 2020 Hateful Memes Challenge. Among
others, she has been invited for spotlight interviews (e.g., DrivenData) and comments by media
channels such as Reuters and TechCrunch.Recently, she was invited to stay at Windsor Castle
to talk about AI in a two-day consultation on threats and opportunities.

In her talk, Helen Yannakoudakis focused on the potential for integrating large language mod-
els (LLMs) into AI-powered language teaching and assessment systems. She explored various
research areas including content creation, automated grading, and grammatical error correc-
tion, while also addressing the risks and ethical concerns surrounding the use of generative AI
in language learning technology. Further, she highlighted the need for further research to bet-
ter understand the strengths and limitations of LLMs and to address foreseeable risks such as
misinformation and harmful bias, and explored several directions for future work.

Kristopher Kyle is an Associate Professor of Linguistics and Director of the Learner Cor-
pus Research and Applied Data Science Lab. His research interests include natural language
processing, corpus linguistics, second language writing, second language assessment, and second
language development. (Norwegian Computing Center).

In his talk, Kristopher Kyle provided a brief overview of the use of natural language processing
in research related to language learning and assessment over the past 50 years, culminating in
the advent of large language models (LLMs). He then briefly discussed some recent (mis)uses of
LLMs in language learning and assessment research. He argued that while some black-box LLM-
based systems can achieve results with reasonable metrics, such systems tend to have particularly
weak validity arguments. He then argued for the development and use of LLM-based systems
that increase the construct validity of common CALL applications such as automated evaluation
and feedback systems and introduced some working examples of these systems.

Previous workshops

This workshop follows a series of workshops on NLP4CALL organized by the NEALT Special In-
terest Group on Intelligent Computer-Assisted Language Learning (SIG-ICALL1). The workshop
series has previously been financed by the Center for Language Technology at the University of
Gothenburg, the SweLL project2,the Swedish Research Council’s conference grant, Spr̊akbanken
Text3, L2 profiling project4, itec5, the CENTAL6 and the Analytics for Language Learning
(A4LL) project7 at LIDILE - Univ Rennes.

Submissions to the thirteen workshop editions have targeted a wide range of languages,
ranging from well-resourced languages (Chinese, German, English, French, Portuguese, Russian,
Spanish) to lesser-resourced languages (Erzya, Arabic, Estonian, Irish, Komi-Zyrian, Meadow
Mari, Saami, Udmurt, Võro). Among these, several Nordic languages have been targeted, namely
Danish, Estonian, Finnish, Icelandic, Norwegian, Saami, Swedish and Võro. The wide scope of
the workshop is also evident in the affiliations of the participating authors as illustrated in Table
1.

1https://spraakbanken.gu.se/en/research/themes/icall/sig-icall
2https://spraakbanken.gu.se/en/projects/swell
3https://spraakbanken.gu.se
4https://spraakbanken.gu.se/en/projects/l2profiles
5https://itec.kuleuven-kulak.be
6https://cental.uclouvain.be
7https://sites-recherche.univ-rennes2.fr/lidile/articles/a4all/
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Country Count Country Count

Algeria 1 Japan 7
Australia 2 Lithuania 1
Belgium 18 Netherlands 4
Canada 4 Norway 16
Cyprus 3 Portugal 6
Czech Republic 1 Romania 1
Denmark 5 Russia 10
Egypt 1 Slovakia 1
Estonia 3 Spain 5
Finland 15 Sweden 82
France 29 Switzerland 13
Germany 130 UK 23
Iceland 6 Uruguay 5
Ireland 5 US 14
Israel 1 Vietnam 3
Italy 15

Table 1: NLP4CALL speakers’ and co-authors’ affiliations, 2012–2024

Workshop year Submitted Accepted Acceptance rate

2012 12 8 67%
2013 8 4 50%
2014 13 13 77%
2015 9 6 67%
2016 14 10 72%
2017 13 7 54%
2018 16 11 69%
2019 16 10 63%
2020 7 4 57%
2021 11 6 54%
2022 23 13 56%
2023 18 12 67%
2024 23 19 82%

Table 2: Submissions and acceptance rates, 2012-2024
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The acceptance rate has varied between 50% and 82%, the average being 65% (see Table 2).
Although the acceptance rate is rather high, the reviewing process has always been very rigorous
with two to three double-blind reviews per submission. This indicates that submissions to the
workshop have usually been of high quality.

Program committee

We would like to thank our Program Committee for providing detailed feedback for the reviewed
papers:

• Alfter David - University of Gothenburg (Sweden)

• Ar Rouz David - Université Rennes 2 (France)

• Ballier Nicolas - Université Paris Cité (France)

• Balvet Antonio - Université de Lille (France)

• Belan Sophie - Université de Nantes (France)

• Bexte Marie - FernUniversität in Hagen (Germany)

• Bibauw Serge - Université catholique de Louvain (Belgium)

• Caines Andrew - University of Cambridge (United Kingdom)

• Cornillie Frederik - Katholieke Universiteit Leuven (Belgium)

• De Kuthy Kordula - University of Tübingen (Germany)

• Drouet Griselda - Université Rennes 2 (France)

• El Ayari Sarra - CNRS (France)

• Evain Christine - Université Rennes 2 (France)

• Gaillat Thomas - Université Rennes 2 (France)

• Graën Johannes - Universität Zürich (Switzerland)

• Hamilton Clive - Université Paris Cité (France)

• Horbach Andrea - FernUniversität in Hagen (Germany)

• Jönsson Arne - Linköping University (Sweden)

• Laarmann-Quante Ronja - Ruhr-Universität Bochum (Germany)

• Lange Herbert - University of Gothenburg (Sweden)

• Ljunglöf Peter - University of Gothenburg (Sweden)

• Mallart Cyriel - Université Rennes 2 (France)

• Mieskes Margot - Darmstadt University of Applied Sciences / Hochschule Darmstadt (Ger-
many)

• Moreau Fabienne - Université Rennes 2 (France)
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• Munoz Garcia Margarita - Université Rennes 2 (France)

• Muñoz Sánchez Ricardo - University of Gothenburg (Sweden)

• Nicolas Lionel - Eurac Research (Italy)

• Pado Ulrike - Hochschule für Technik Stuttgart / University of Applied Sciences of Stuttgart
(Germany)

• Paquot Magali - Université catholique de Louvain (Belgium)

• Sarré Cédric - Sorbonne Université (France)

• Stemle Egon - Eurac Research (Italy)

• Vajjala Balakrishna Sowmya - University of Tübingen (Germany)

• Valdez Cristian - Université Paris Cité (France)

• Volodina Elena - University of Gothenburg (Sweden)

• Zesch Torsten - FernUniversität in Hagen (Germany)

We intend to continue this workshop series, which so far has been the only ICALL-related
recurring event based in the Nordic countries, Belgium and France. Our intention is to co-locate
the workshop series with the two major LT events in Scandinavia, the Swedish Language Technol-
ogy Conference (SLTC) and the Nordic Conference on Computational Linguistics (NoDaLiDa),
thus making this workshop an annual event. Through this workshop, we intend to profile ICALL
research in Nordic countries as well as beyond, and we aim at providing a dissemination venue
for researchers active in this area.

Workshop website

https://nlp4call.github.io/current/past_editions.html

Workshop organizers

Université Rennes 2, France

Thomas Gaillat, Cyriel Mallart, Fabienne Moreau, Jen-Yu Li, Griselda Drouet - Linguistique
Ingénierie et Didactique des Langues (LIDILE)

University of Gothenburg, Sweden

David Alfter, Gothenburg Research Infrastructure in Digital Humanities (GRIDH)
Elena Volodina, Spr̊akbanken Text

Linköping University, Sweden

Arne Jönsson
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Out-of-the-Box Graded Vocabulary Lists with
Generative Language Models: Fact or Fiction?

David Alfter
Gothenburg Research Infrastructure in Digital Humanities (GRIDH)

University of Gothenburg, Sweden
first.last@gu.se

Abstract

In this paper, we explore the zero-shot classi-
fication potential of generative language mod-
els for the task of grading vocabulary and gen-
erating graded vocabulary lists. We expand
upon prior research by testing five different
language model families on five different lan-
guages. Our results indicate that generative
models can grade vocabulary across different
languages with moderate but stable success,
but producing vocabulary in a language other
than English seems problematic and often leads
to the generation of non-words, or words in a
language other than the target language.

1 Introduction

Vocabulary lists have long been a cornerstone in
language learning, offering learners a structured
approach to building their vocabulary and improv-
ing reading comprehension (Laufer, 2006; Webb
and Nation, 2017; Miralpeix and Muñoz, 2018).
Resources like the Academic Word List (AWL;
Coxhead 1998) and the New General Service List
(NGSL; Brezina and Gablasova 2015) have proven
useful for both learners and teachers.

Graded vocabulary lists are a subset of vocab-
ulary lists that include a grade for each vocabu-
lary item, indicating its difficulty level for learners.
This information empowers learners to understand
words at their current level, build their vocabulary
progressively, and improve their reading skills. For
teachers and curriculum developers, graded lists
are essential tools for lesson planning and textbook
creation, ensuring learners encounter vocabulary
appropriate for their proficiency level (Kilgarriff
et al., 2014). The importance of graded vocabu-
lary lists is especially clear in the second language
learning (L2) context. They are used in language
assessment tests (Coxhead, 2011), as vocabulary
learning strategies (LaBontee, 2019), in automated
essay grading systems (Pilán et al., 2016; Wilkens

et al., 2022), in text simplification systems (Tack
et al., 2016; Yancey and Lepage, 2018), for auto-
matic exercise generation (Alfter et al., 2019; Alfter
and Graën, 2019), to search for appropriate read-
ing materials (Lee and Yeung, 2018; Ehara et al.,
2018), or in intelligent tutoring systems (Avdiu
et al., 2019).

While graded vocabulary lists have undeniable
value, they also come with some limitations. Static
vocabulary lists can become outdated as language
evolves, and they cannot dynamically adjust to in-
dividual learner needs. Furthermore, compiling
graded vocabulary lists often requires access to spe-
cific textbooks or learning materials, which may
not always be readily available or affordable.

The emergence of Generative Language Models
(GLMs) presents a potential paradigm shift (Creely,
2024; Godwin-Jones, 2024). These models have
demonstrated impressive capabilities in tasks rel-
evant to the L2 context. For example, GLMs can
generate difficulty-adapted definitions for words
(Kong et al., 2022; Yuan et al., 2022), which helps
learners with unfamiliar words. ; simplify complex
texts and tailor the difficulty to the learners’ needs
(Baez and Saggion, 2023); assess essays and pro-
vide feedback (Bannò et al., 2024); and perhaps
most importantly, GLMs can generate new texts
specifically adapted to different difficulty levels
(Bezirhan and von Davier, 2023; Kianian et al.,
2024; Zualkernan and Shapsough, 2024).

While GLMs hold immense promise, approach-
ing or surpassing human-level performances in
some areas (for example in cloze tasks; Rego Lopes
et al. 2024), they are not without their drawbacks.
Some studies show that current models do not
yet outperform task-specific models (Kocoń et al.,
2023), that they struggle with vocabulary in an L2
setting (Farr, 2024; Żerkowska, 2024) and lexical
complexity prediction (Kelious et al., 2024). Ad-
ditionally, achieving optimal results with GLMs
often requires significant computational resources,
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potentially limiting their accessibility.
However, now that it is possible to train GLMs

on consumer GPUs without strategies such as of-
floading, model parallel, check-pointing (Zhao
et al., 2024), the question arises: In the age of
GLMs, do we still need graded vocabulary lists?
Can end users easily use GLMs for vocabulary
grading purposes, and if so, how well do these
models perform? In order to shed light on these
questions, we formulate and explore the following
hypothesis: GLMs are effective at grading vocabu-
lary.

Our contributions are:
1. We investigate the utility of generative lan-

guage models on the task of grading vocabu-
lary for language learners in a zero-shot set-
ting

2. We test five generative language model fami-
lies on five (European) languages

3. We show that all models show comparable yet
underwhelming performance across the five
languages

The rest of the paper is structured as follows:
Section 2 contextualizes our work and points to the
gaps in current research. Section 3 explains the
methodology, including data, experimental setup
and evaluation criteria. Section 4 presents and dis-
cusses the results. Sections 5 and 6 round off the
paper with conclusion and future work.

2 Related Work

There are two research strands that are closely con-
nected to this line of research: complex word iden-
tification (Paetzold and Specia, 2016) and lexical
complexity prediction (North et al., 2023b). Com-
plex word identification is concerned with identify-
ing complex words with downstream applications
such as lexical text simplification (Shardlow, 2013;
Maddela and Xu, 2018). It is a binary task (is a
word complex or not), and is not specifically target-
ing the L2 context.

Lexical complexity prediction emerged from
complex word identification and aims at classifying
the complexity of words on a graded scale (e.g.,
how complex is a word, on a scale from 1 to 4).
Lexical complexity prediction is also mainly used
for downstream tasks like text simplification (North
et al., 2023a; Shardlow et al., 2024b), and is not
specifically targeting the L2 context. However, as
demonstrated by the ongoing list of shared tasks on
the topic (Paetzold and Specia, 2016; Yimam et al.,

2018; Ortiz-Zambranoa and Montejo-Ráezb, 2020;
Shardlow et al., 2024a), it is still an active area of
research. The latest lexical complexity prediction
shared task was a sub-task of the BEA shared task
on multilingual text simplification (Shardlow et al.,
2024a).

Recent work on complex word identification and
lexical complexity prediction found that ChatGPT
only sometimes outperforms task-specific models,
mostly in cases when the contexts are dissimilar
enough to allow for the discovery of a difference;
task-specific models tend to perform better at dis-
criminating the complexity of words even with
smaller context variations (Kelious et al., 2024).
In the recent shared task on multilingual lexical
complexity prediction and lexical simplification,
the winning team of sub-task 1 (lexical complexity
prediction) used GPT4, with an average Pearson
correlation of 0.62 (Enomoto et al., 2024).

On the other hand, generative language mod-
els and their potential for on-the-fly generation
of learning material is increasingly being investi-
gated. However, the focus of these studies is mostly
on text passage generation (Attali et al., 2022;
Bezirhan and von Davier, 2023; Peng et al., 2023;
Boras et al., 2024) and personalization (Leong
et al., 2024; Pesovski et al., 2024).

We fill a critical gap in the literature by investi-
gating the potential of GLMs for graded vocabu-
lary lists and by extending the analysis to multiple
different models and multiple languages on compa-
rable data.

3 Methodology

In this paper we explore two uses cases for GLMs
and graded vocabulary lists. First, we suppose that
a researcher/learner/teacher is in possession of an
ungraded word list that they might want to grade us-
ing GLMs. Second, we suppose that no vocabulary
list exists, and the researcher/learner/teacher wants
to create a graded vocabulary list from scratch us-
ing GLMs. In both cases, we compare the output
of the GLMs to existing vocabulary lists, using
both qualitative and quantitative evaluations (see
Section 3.3 for evaluation criteria).

3.1 Data

As data for this investigation, we use the freely
available CEFRLex1 lists. These lists are derived

1https://cental.uclouvain.be/cefrlex
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from textbooks aimed at learners of different lan-
guages and contain among others for each lemma
the frequencies at different textbook levels (see
Figure 1) according to the Common European
Framework of Reference for Languages (CEFR;
Council of Europe 2018). We specifically use
EFLLex (Dürlich and François, 2018) for English,
ELELex (François and De Cock, 2018) for Span-
ish, FLELex2 (François et al., 2014) for French,
SVALex for Swedish (François et al., 2016) and
NT2Lex (Tack et al., 2018) for Dutch3.

Figure 1: Frequencies across levels for the words ‘Lan-
guage’ and ‘Learning’ in EFLLex

While the Cambridge English Vocabulary Pro-
file (EVP; Capel 2015) or Pearson’s Global Scale
of English (GSE; Pearson 2017) might potentially
be more widely used, they are not available in a
machine-readable form, being targeted at human
end users. Furthermore, they only cover the En-
glish language. However, a study comparing these
two resources between themselves and to EFLLex
found moderate to high correlations both between
EVP and GSE (0.85) and between EVP&GSE and
EFLLex (0.70; Graën et al. 2020).

As the word lists contain some artifacts and
word fragments (e.g., -hour_day, bly7458/00578,
flight_kl0549), we perform some data cleaning. We
only retain single words (excluding multi-word ex-
pressions), and exclude words that contain non-
alphabetical characters such as digits or other sym-

2From the three available versions, for reasons of compara-
bility, we chose the TreeTagger version without automatically
assigned CEFR labels.

3We do not take into account the sense-disambiguated
version of this list, as it mirrors the original list with additional
sense labels

bols. We only retain nouns, verbs, adjectives, and
adverbs.

Finally, we map each word to the level at which it
is first observed (first-occurrence approach). While
simple, this method has been shown to perform on-
par with more complex level assignment methods
(Gala et al., 2013; Alfter, 2021). We opt for a
numerical scale rather than the CEFR scale that the
word lists are derived from, mapping A1 to 0, A2
to 1, B1 to 2, B2 to 3, and C1 to 4. We disregard
C2, which is only included in the French list, as
the difference between C1 and C2 is difficult to
assess (Springer, 2012; Sung et al., 2015; Isbell,
2017), and the focus of the study lies less in the
discriminatory performance at the highest levels
but rather a general ability to grade vocabulary
from easiest to hardest.

Table 1 shows an overview over the final word
lists used in the experiments.

List WC WC2

EFLLex (English) 29667 10295
ELELEx (Spanish) 14290 13291
FLELex (French) 17237 13242
SVALex (Swedish) 15634 13662
NT2Lex (Dutch) 17743 13972

Table 1: Overview over word counts before (WC) and
after (WC2) data cleaning

3.2 Experimental setup

We test five popular instruction-tuned model fami-
lies: Google’s Gemma (Gemma Team et al., 2024),
MistralAI’s Mistral (Jiang et al., 2023), Meta’s
Llama (Touvron et al., 2023), Microsoft’s Phi3
(Abdin et al., 2024), and OpenAI’s GPT (OpenAI
et al., 2024). Specifically, we use Gemma-1.1-
2b-it, Gemma-1.1-7b-it, Mistral-7B-Instruct-v0.3,
Llama3-8B-Instruct4, Phi-3-mini-4K-instruct, and
GPT-4o. Gemma, Mistral, Llama, and Phi3 provide
small versions of their models (2B to 8B) that do
not necessitate massive servers to run, while GPT-
4o potentially relies on multiple different models of
larger size (cited as exceeding 200B; Ayub 2024)
but can be queried programmatically, thus requiring
only a paying account and access to the internet.

4Preliminary experiments with Llama2-7b-chat showed a
strong underperformance in comparison to the other models,
an “unwillingness” to follow instructions, and a tendency to
mostly respond with a score of 3. As a result, the model was
excluded from further experiments.
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All models (except GPT4o) are loaded in 4bit
quantized form, and GPT4o is queried through
its API. All calculations were performed on a sin-
gle high-end laptop computer with a 12th Gen In-
tel®Core i7 2.40Ghz processor, 32GB RAM and
an NVIDIA GeForce TRX 3080 Ti Laptop GPU
graphic card.

Parameters for the models were taken from their
respective Hugginface pages with sample code, mir-
roring a ‘naive’ approach to using GLMs by simply
copy-pasting their example code and running it.
This means that some models use sampling or have
a temperature parameter above zero, reducing the
reproducibility of this study. All parameters can be
found in Appendix B, Table 8.

3.2.1 Generating grades
For the first experiment, we use the word lists as
basis and ask the generative language models to
grade the vocabulary.

Similar to Enomoto et al. (2024) who prompt
GPT4 with a single English prompt for lexical com-
plexity values for different languages, we use a sin-
gle English prompt for all languages and models,
with the first part specified as system input if the
model supports a system role, otherwise prepended
to the user prompt. The full prompt is:

You are an experienced teacher of lan-
guage as a second language. You can
easily assess the difficulty of words in
language for learners. You assess words
on a scale from 0 (easiest) to 4 (hardest).
You only answer with a number.

Assess: word (part-of-speech)

3.2.2 Generating vocabulary list
For the second experiment, we ask the genera-
tive language models to generate word lists from
scratch.

Given the generation limit of GLMs and the as-
sociated cost, and the more qualitative evaluation
of this experiment, we opt to prompt each model
for a maximum of 100 words per level, using the
following prompt. As the output may include re-
peated words, we take the set of unique words for
each level and compare it to the word lists.

You are an experienced teacher of lan-
guage as a second language. You can
easily tell which words are suitable for
learners of language at different levels.

You assess words on a scale from 0 (easi-
est) to 4 (hardest).

Generate 100 words for learners of level
level.

3.3 Evaluation

First, we evaluate the models according to cor-
rectness in predicting grades in comparison to
the textbook-derived grades assigned by the first-
occurrence approach. For this quantitative evalua-
tion, we use Pearson correlation, Jensen-Shannon
distance, accuracy, adjacent accuracy (the predic-
tion is considered correct if it deviates from the
target level by at most one level), precision, recall,
and F1 score.

Second, we evaluate the quality of the generated
graded word lists. For this more qualitative evalua-
tion, we consider coverage of generated vocabulary
as the overlap with existing word lists and a more
in-depth analysis and discussion.

We also investigate whether there is a link be-
tween frequency and discrepancy in prediction. A
low frequency in the word list means that the level
assignment will be less reliable; if we only observe
one occurrence of a word, the level of the word will
be the level where it was observed, by definition.
If GLMs are consistent in grading, then we expect
them to grade low-frequency words according to
their own internal criteria (as opposed to observed
frequency). Further, if GLMs are consistent and
correct in grading vocabulary, then we expect that
larger discrepancies are found in words with low
frequency, and less discrepancy in high frequency
words.

In addition, we explore the impact of the cho-
sen grading scale, investigating whether prompting
the models to grade vocabulary on the CEFR scale
rather than a numerical scale might improve results.
We have opted for a numerical scale because it
might be a more generalizable concept for models
to work with, rather than the CEFR scale, which
the models might have limited knowledge of. For
reasons of economy, we only perform this exper-
iment using the best performing model and two
word lists: the one it scored worst on, and the one
it scored best on.

4 Results and Discussion

In this section, we report the results from the ex-
periments and discuss the results. For space rea-
sons, model names and word list names are abbrevi-
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ated, with G2 and G7 standing for Gemma-2B and
Gemma-7B respectively, GPT for GPT-4o, L8 for
Llama3-8B, M7 for Mistral-7B, and P3 for Phi-3;
EN for EFLLex, ES for ELELex, FR for FLELex,
SV for SVALex, and NL to NT2Lex.

4.1 Generating Grades

As a first measure of comparison, we compare the
predicted label distributions to the original label
distribution by normalizing the label counts by the
total number of items and applying the Jensen-
Shannon distance measure (Lin, 1991). This in-
dicates how well the predictions follow the orig-
inal label distributions, although it gives no indi-
cation of the accuracy of predicted labels. Table
2 shows the Jensen-Shannon distance between the
original label distribution and the predictions for
each model.

G2 G7 GPT L8 M7 P3

EN 0.30 0.40 0.24 0.43 0.32 0.46
ES 0.31 0.35 0.22 0.33 0.20 0.39
FR 0.48 0.51 0.32 0.40 0.27 0.40
SV 0.22 0.42 0.12 0.30 0.37 0.37
NL 0.47 0.43 0.16 0.32 0.13 0.17

Table 2: Jensen-Shannon distance between the original
label distribution and the predicted label distributions
by model. Results in bold indicate the best result per
language.

In order to check for accuracy, we calculate ac-
curacy, precision, recall, weighted F1 score, and
adjacent accuracy. For reasons of space, we only
report F1 scores in the main body of the paper. The
full table including accuracy, adjacent accuracy,
precision, and recall, can be found in Appendix A,
Table 7. Table 3 shows the weighted F1 scores for
each model and word list.

G2 G7 GPT L8 M7 P3

EN 0.17 0.18 0.29 0.16 0.24 0.15
ES 0.15 0.19 0.24 0.20 0.28 0.19
FR 0.15 0.12 0.21 0.19 0.28 0.22
SV 0.26 0.30 0.33 0.25 0.18 0.20
NL 0.18 0.19 0.35 0.35 0.36 0.38

Table 3: Results in terms of Weighted F1 score. Results
in bold indicate the best result per language.

For comparability to lexical complexity predic-

G2 G7 GPT L8 M7 P3

EN 0.03 0.29 0.48 0.36 0.40 0.38
ES -0.03 0.22 0.42 0.29 0.33 0.26
FR 0.03 0.29 0.46 0.33 0.39 0.37
SV 0.07 0.22 0.39 0.25 0.25 0.29
NL 0.07 0.24 0.38 0.26 0.27 0.32

Table 4: Results in terms of Spearman’s ρ. Results in
bold indicate the best result per language.

tion, we also calculate Spearman’s ρ.5 Table 4
shows the results.

Both tables 2 and 3 show a similar trend, with
GPT-4o performing best on English and Swedish,
Mistral performing best on Spanish and French,
and Mistral performing best on Dutch in terms of
predicted label distribution but outperformed by
Phi-3 in terms of weighted F1 score. Table 4 shows
that GPT-4o correlates most with the reference data
in all cases, followed by Mistral-7B and Phi3.

Interestingly, although most models are exclu-
sively meant for use with the English language, all
models show a rather good cross-linguistic capacity.
Further, none of the models performed particularly
well in English, or remarkably better on English in
comparison to the other languages.

Given possible fluctuations, it seems that both
Mistral-7B and GPT-4o are performing similarly
well on this task. Given that GPT-4o requires a pay-
ing subscription, Mistral-7B seems to be a viable
free alternative. We can also observe that Mistral-
7B performs quite well across languages, except for
Swedish, where the Gemma models show surpris-
ingly good performance, coming second (G7) and
third (G2) after GPT-4o. We can also observe that
all models except the Gemma family performed
best on Dutch. Finally, we may see a language
bias: Mistral-7B performed best on Romance lan-
guages, while GPT-4o performed best on Germanic
languages, potentially reflecting a bias in training
data.

4.2 Frequency and Discrepancy

For this experiment, we order each list by total
frequency as given in CEFLex and calculate the
absolute difference in predicted level and assigned

5The lexical complexity prediction tasks indicate both
Spearman’s ρ and Pearson’s correlation coefficient, since the
numerical labels can be expressed as continuous numbers.
However, we do not assume a normal distribution of the data,
which is a prerequisite for Pearson’s correlation coefficient.
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level. We then calculate the average discrepancy
for the first and last x entries, varying x from 10 to
100 in steps of 10. Figure 2 shows the discrepancy
for the different values of x.

As can be seen from the figure, Gemma-2B
shows an opposite trend of what would be expected
with higher discrepencies for high frequency words,
and lower discrepancies for low frequency words.
Gemma-7B shows a mixed picture, with the ex-
pected trend at x = 10, 20, 30, but an opposite
trend from x = 40. GPT-4o, Llama3-8B, Mistral-
7B, and Phi3-4K display a higher discrepancy for
the lowest frequency words and a lower discrep-
ancy for the most frequent words across all lan-
guages, following the expected pattern and confirm-
ing that GLMs may be useful for grading vocabu-
lary items for which the total observed frequency
is too low.

4.3 Impact of Grading Scale
As noted previously, we only investigate the impact
of the grading scale using the best model and the
word lists it performed best and worst on. Based
on Table 2, we select Mistral-7B as model and
Swedish and Dutch as word lists. For the two word
lists, we proceed as described in Section 3.2.1, but
we modify the prompt as follows:

You are an experienced teacher of lan-
guage as a second language. You can
easily assess the difficulty of words in
language for learners. You assess words
on the CEFR scale ranging from A1
(easiest) via A2, B1, B2, to C1 (hard-
est). You only answer with a CEFR
label.

Assess: word (part-of-speech)

Numerical scale CEFR scale

SV 0.18 0.12
NL 0.36 0.20

Table 5: F1 scores (weighted) for numerical scale and
CEFR scale

Table 5 shows the comparison between using a
numerical scale versus using the CEFR scale. We
can note a marked decrease in performance for
both word lists, hinting at the possibility that the
language model may not have come into contact
with the CEFR in sufficient amounts to be able

to accurately apply it. We also notice a tendency
towards predicting A1, which may be due to the
problem of primacy, a tendency for the model to
pick the first alternative from a list of alternatives,
previously shown to exist in ChatGPT (Wang et al.,
2023).

4.4 Generating Vocabulary Lists
In this section we present the results of the vocabu-
lary generation task. During result examination, we
noticed that Gemma-7B consistently output num-
bered lists that only list items 1-10 and 90-100, with
ellipsis of the rest. We therefore opted to leave out
the results for Gemma-7B in this section.

Table 6 shows an aggregated version over all
languages and all levels for vocabulary generation.
The table shows that we requested 2500 words from
each GLM, with 100 words distributed over five
levels for five languages (100 ∗ 5 ∗ 5). We can see
that only GPT-4o generated the exact number of
requested words, Llama-3 generated almost the re-
quested number of words, Gemma did not provide
even half of the requested words, while Mistral-7B
and Phi-3 overgenerated. However, the generated
vocabulary lists contain duplicates. Based on the
unique count of words, we can see that GPT-4o was
closest to the target, followed by Llama-3 (who
overgenerated).

When looking at the number of items gener-
ated at the requested level, we can again see that
GPT-4o performed best, followed by Mistral-7B.
However, Mistral-7B also shows the highest out-of-
vocabulary rate, meaning that it generates words
that are not present in the reference word list. In
terms of overall coverage, we can see that GPT-4o
performs best, followed by Mistral-7B and Llama-
3-8B.

A detailed investigation of results reveals that
Mistral-7B and Llama3-8B tend to group words
by categories (numbers, days of the week, months
of the year, greetings, travel, family, weather,. . . ).
Gemma often disregards the requested level and
generates a list spanning all levels, grouped by
level (easy, moderate, challenging, complex); this
behavior is sometimes also observed for Mistral
(French and Spanish). Phi3 does generate a list
of at least 100 items, but starts repeating the same
word after 20-30 words.

In the following, we examine each model lan-
guage by language and investigate the causes for
a low overlap by looking at words that the model
generated that were not found in the reference list,
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Figure 2: Discrepancies over different values of x. Each graph shows the average absolute discrepancy over all
languages for the most frequent (High freq) and least frequent (Low freq) words when taking into account the x first
and last words of the frequency-ranked list.

R G U L D OOV OOVR (%) LC (%) OC (%)

Gemma-2B 2500 1204 935 156 542 237 25.35 6.24 27.92
Llama3-8B 2500 2433 2181 283 1148 750 34.39 11.32 57.24
GPT-4o 2500 2500 2460 487 1448 525 21.34 19.48 77.40
Mistral-7B 2500 2675 2574 355 1086 1133 44.02 14.20 57.64
Phi3-4K 2500 3073 1285 202 579 504 39.22 8.08 31.24

Table 6: Coverage of generated vocabulary lists aggregated over all languages and levels, with the requested number
of words (100 per level per language; R), the number of generated words (G), the number of unique generated words
(U), the number of words generated that correspond to the desired level (L), the number of generated words that are
in the word list but at a different level (D), the number of generated words that are not in the reference word list
(Out-of-vocabulary; OOV), the out-of-vocabulary rate (out of all generated unique words, how many are not in the
reference word list; OOVR), the level coverage (out of all generated words, how many are in the reference word list
at the given level; LC), and the overall coverage (out of all generated words, how many are in the reference word
list; OC)
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then draw an overarching picture.

4.4.1 English
Gemma-2B At level 0, the generated words include
conjunctions (or) and prepositions (from) that were
excluded from the reference word list due to their
part-of-speech. At level 1, the model generates
pronouns (I), interjections (hello) and multi-word
expressions (family member, thank you) that were
also excluded from the reference word list. At level
2, the model generates words that, according to the
authors of the paper, are of arguably higher com-
plexity than level 2 (e.g., accountability, resilience,
transformative). At level 3, the model generates
plausible candidates. At level 4, the model gen-
erates words that, again, are arguably above level
4, such as: superimpose, reticent, parsimonious,
abrogate, concomitant, magnanimous, prevaricate,
obsequious, iconoclast.
GPT-4o At level 0, the model includes personal
pronouns (you, us) and numbers (zero) that were
excluded based on part-of-speech. However, the
model also generates some words that are suitable
but missing from the reference list (lion, ant). At
level 1, the model generates interjections (hello).
At level 2, the model generates months of the year
and prepositions (between, during). At level 3, the
model generates plausible candidates. At level 4,
the model generates words that are plausible but
includes words of arguably higher complexity, such
as: pernicious, surreptitious, vicissitude, obstreper-
ous, prevaricate
Llama3-8B At level 0, the model generates num-
bers (four), multi-word expressions (thank you)
and plural forms (socks). At level 1, the model gen-
erates words that would potentially be more appro-
priate at level 0 (lion, rectangle, triangle). At level
2, the model generates plural forms (nuts, pillows),
easier words (lemon, omelette) but also plausible
candidates. At level 3, the model generates words
of a much higher level (inscrutable, garrulous, ob-
fuscate, sagacious, jaded, callipygian). At level 4,
the model generates even more complex words (ab-
struseness, papaphobia, mumpsimus, insouciant,
tintinnabulation, perspicacious, zephyrine, gym-
nosophy).
Mistral-7B At level 0, the model generates num-
bers (zero), prepositions (among, between, from)
and question particles (who, where, when, why,
what) that were excluded from the reference list
based on part-of-speech. At level 1, the model gen-
erates interjections (hello), multi-word expressions

(last week, thank you, next week, wake up), and
conjugated verb forms (does, hasn’t). At level 2,
the model generates numbers (four, six) and multi-
word expressions (I am fine, what time is it?, I
do, you’re welcome). At level 3, the model gener-
ates words that are of much higher complexity (jo-
cund, aphorism, temerity, blithe, capricious, kom-
phetamology). At level 4, the model also generates
words of much higher complexity (obstreperous,
sanctimonious, capacious, lachrymose).
Phi3-4K At level 0, the model generates numbers
(seven, nine, four, six), multi-word expressions
(a lot, thank you), but also some plausible miss-
ing words (giraffe, kangaroo, lion). At level 1,
the model generates plural forms (shoes, socks,
pants) and multi-word expressions (thank you, liv-
ing room). At level 2, the model generates plural
forms (shoes, socks, pants) and multi-word expres-
sions (thank you). At level 3, the model gener-
ates plausible words but also words with arguably
higher complexity (xylography, opulence). At level
4, the model generates plausible words but arguably
of higher complexity (obfuscation, zephyr, rambuc-
tious, nebulous, taciturn, dichotomy, ephemeral,
ineffable, effulgent, limerence).

4.4.2 Spanish
Gemma-2B At level 0, the model generates good
candidates that simply are not in the reference word
list (día ‘day’, gato ‘cat’, perro ‘dog’, casa ‘home’).
MWE: gracias de nuevo, por favor too high level:
inspirador, felizmente number: uno At level 1, the
model generates numbers (uno ‘one’), multi-word
expressions (gracias de nuevo ‘thanks again’, por
favor ‘please’), but also words of a higher com-
plexity (inspirador ‘inspiring/inspirer’, felizmente
‘happily’). At level 2, the model generates plausible
candidates. At level 4, the model also generates
plausible candidates, although one word seems to
be misspelled (*objetovo, probably objetivo ‘(an)
objective’).
GPT-4o At level 0, the model generates numbers
(nueve ‘nine’, tres ‘three’), feminine forms (her-
mana ‘sister’) and multi-word expressions (por fa-
vor ‘please’). At level 1, the model generates inter-
jections (hola ‘hello’, gracias ‘thanks’), as well as
hermana and por favor from the previous level. At
levels 2 and 3, the model generates plausible words.
At level 4, the model generates plausible words but
also words with a higher complexity (caliginoso
‘caliginous’, inasible ‘ungraspable’, imperecedero
‘imperishable’, impertérrito ‘undaunted’).
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Llama3-8B At level 0, the model generates some
good words (computadora ‘computer’, telefono
‘telephone’), but also some plural forms (animales
‘animals’, recursos ‘resources’, familias ‘families’)
and words of higher complexity (pormenor ‘de-
tail’). At level 1, the model generates plural forms
(llaves ‘keys’, piernas ‘legs’, brazos ‘arms’, manos
‘hands’), hermana, interjections (hola ‘hello’),
months of the year, days of the week and numbers.
At level 2, the model still proposes computadora,
hermana, and esposa ‘wife’. At level 3, the model
generates multi-word expressions (lo siento ‘I’m
sorry’, me gustaria ‘I would like to have’, hasta
luego ‘see you soon’). At level 4, the model gen-
erates multi-word expressions and phrases, albeit
with only few base constructions, such as desar-
rollar ‘develop ’ (estrategias ‘strategies’, habili-
dades ‘habits’, . . . ), and enfermadad de ‘disease
of’ (alzheimer ‘Alzheimer’, cuidados intensivos
‘intensive care’, . . . ).
Mistral-7B At level 0, the model generates a lot
of words with articles (el choche ‘the car’, la nariz
‘the nose’, *el nariz, el pantalón ‘the pants’, el som-
brero ‘the hat’, el diente ‘the tooth’, la boca ‘the
mouth’) and multi-word expressions (¿donde está
el parque? ‘where is the park?’, ¿como se dice en
español? ‘how do you say this in Spanish?’, me
gusta ‘I like’. At level 1, the model generates num-
bers, interjections (hola ‘hello’), conjunctions (con
‘with’), conjugated verbs (ríe ‘laughs’, llora ‘cries’),
and multi-word expressions (lo siento ‘I’m sorry’,
no me gusta ‘I don’t like’). At level 2, the model
generates numbers, plural forms (amigos ‘friends’,
aguas ‘waters’) and multi-word expressions (bue-
nas tardes ‘good evening’, buenas noches ‘good
night’). At level 3, the model generates plausi-
ble words, but also plural forms (familiares ‘famil-
iar-ADJ-PL’, misterioses ‘mysterious-ADJ-PL’,
hombres ‘men’, tiempos ‘times’, equipos ‘teams’,
ventajas ‘advantages’) and conjugated verb forms
(mantiene ‘maintains’, empieza ‘begins’, hablaste
‘you spoke’, cómprame ‘buy me!’). At level 4, the
model generates mostly plausible words but also
French words (flâner ‘stroll around’) and words
with higher complexity (zozobrar ‘capsize’, ceno-
tafio ‘cenotaph’, panoptico ‘panoptic’, acriminarse
‘incriminate onself’).
Phi3-4K At level 0, the model generates inter-
jections (hola ‘hello’, gracias ‘thanks’), multi-
word expressions (a veces ‘sometimes’, por fa-
vor ‘please’) and plural forms (olas ‘waves’). At
level 1, the model generates multi-word expres-

sions (manazana roja ‘red apple’, manzana amar-
illa ‘yellow apple’, manzana verde ‘green apple’),
interjections (hola, gracias) and multi-word ex-
pressions (por favor). At level 2, the model gen-
erates interjections (hola, gracias). At level 3,
the model generates personal pronouns (nosotros
‘us’), plural forms (olas ‘waves’, mesas ‘tables’,
pájaros ‘birds’), conjugated verb forms (llegaron
‘they arrived’, llegaste ‘you arrived’, llego ‘(I) ar-
rive’). At level 4, the model generates multi-word
expressions (nave espacial ‘spacecraft’, cambio
climático ‘climate change’, historia antigua ‘old
history’, jardín botánico ‘botanical garden’, natu-
raleza muerta ‘still life’).

4.4.3 French
Gemma-2B At level 0, the model generates fem-
inine forms (grande ‘tall-FEM’, petite ‘small-
FEM’), interjections (oui ‘yes’), plural forms (amis
‘friends’) and multi-word expressions (merci beau-
coup ‘thank you very much’). At level 1, the model
generates grande as on the previous level. At level
2, the model generates plausible words. At level
3, the model generates oui as on level 0. At level
4, the model generates feminine forms (ambigüe
‘ambiguous-FEM’) and apparently English words
(incoherence, discreet).
GPT-4o At level 0, the model generates interjec-
tions (excusez-moi ‘excuse me’, oui ‘yes’), multi-
word expressions (s’il vous plaît ‘please’, au revoir
‘goodbye’), feminine nouns (amie ‘friend-FEM’)
but also slightly misspelled words (velo instead of
vélo ‘bicycle’). At level 1, the model generates
numbers, plural forms (amis ‘friends’), multi-word
expressions (l’année *derniere ‘last year’), but also
words of lesser complexity (mois ‘month’). At
level 2, there are no generated words not present
in the reference word list. At level 3, the model
generates multi-word expressions/reflexive verbs
(se faufiler ‘sneak’). At level 4, the model gen-
erates plausible words, but possibly of too high
complexity (prestidigitation ‘sleigh of hand’, pug-
nacité ‘pugnacity’, malversation ‘embezzlement’,
acquiescer ‘acquiesce’).
Llama3-8B At level 0, the model generates mostly
multi-word expressions and phrases or phrasal
fragments (je suis impatient ‘I am impatient’, je
voudrais ‘I would like’, c’est faux ‘that’s wrong’),
but also some questionable phrases such as ça est ir-
raisonable, which should be c’est irraisonable. At
level 1, the model again mostly generates phrases,
and again some questionable phrases such as je suis
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frère/femme ‘I am brother/woman’. At level 2, the
model generates plausible words and multi-word
expressions (réservation de taxi ‘taxi reservation’,
transport en commun ‘public transport’). At level
3, the model generates plausible words and plural
forms, although these are generally encountered
in the plural (chaussures ‘shoes’, souliers ‘shoes’,
épices ‘spices’). At level 4, the model generates
some questionable English words of high complex-
ity as mantic, catharsis, and kibosh.
Mistral-7B At level 0, the model generates per-
sonal pronouns (eux ‘them’, elle ‘she’), multi-
word expressions (pommes frites ‘French fries’),
but also some clearly non-French words (beef,
chicken, vino). At level 1, the model generates
conjugated verb forms (parlait ‘(s/he) spoke’), plu-
ral forms (doigts ‘fingers’), multi-word expres-
sions (au revoir ‘goodbye’), and some question-
able or wrong forms such as s’lever (possible in
slang but generally se lever), ecouter (écouter),
cafe (café). At level 2, the model generates plu-
ral forms (chiens ‘dogs’) and some questionable
words such as *prenon, coche ‘car-SPANISH’, milk,
banana, egg, water. At level 3, the model gener-
ates feminine forms (délicieuse ‘delicious-FEM’)
and English words (negociate). At level 4, the
model generates multi-word expressions (une fois
de plus ‘once more’, penser qu’il est possible ‘think
that it is possible’, selon une étude ‘according to a
study’), feminine forms (contemporaine ‘contem-
porary-FEM’), English words (idiosyncrasy), and
questionable so-called “multi-word expressions”
(trouver des choux de bruxelles sous les pierres
‘finding brussels sprouts under stones’, donner sa
bague à quiconque veut l’attraper ‘giving your ring
to anyone who wants to grab it’, s’asseoir sur *un
*chais de poule ‘sitting on a chicken chair(?)’).
Phi3-4K At level 0, the model generates multi-
word expressions (très bien ‘very good’, je n’ai
pas ‘I don’t have’, je suis ‘I am’, je ne comprends
pas ‘I don’t understand’, pas mal ‘not bad’). At
level 1, the model generates male/female alterna-
tives (apprenti(e) ‘apprentice’, professeur(e) ‘pro-
fessor’, *enfant(e)6), multi-word expressions (je
suis ‘I am’, très bien, merci ‘very good, thank you’,
je m’appelle ‘my name is’, s’il vous plaît ‘please’).
At level 2, the model generates multi-word expres-
sions (j’ai besoin de ‘I need’, un peu ‘a bit’, je
voudrais ‘I would like’). At level 3, the model gen-

6Enfant as a noun can take both the male and female arti-
cle. Enfante exists as a conjugated form of enfanter ‘to give
birth/bear fruit/bear a child’

erates plural forms (conséquences ‘consequences’,
héros ‘heroes’), multi-word expressions (justice
sociale ‘social justice’, liberté individuelle ‘individ-
ual liberty’), and English words (warrant). At level
4, the model generates plausible words.

4.4.4 Swedish
Gemma-2B At level 0, the model generates su-
perlative adjectives (bästa ‘best’, högsta ‘highest’),
conjugated verb forms (kom ‘come-IMP/came’),
alternatives separated by slash (ja/nej ‘yes/no’).
At level 1, the model generates more alterna-
tives separated by slash (goddag/godnatt ‘good
day/night’, skapar/tar ‘create/take’, jag/du/han/hon
‘I/you/he/she’). At level 2, the model generates
personal pronouns (du ‘you’, vi ‘we’), words of
higher complexity (semantik ‘semantics’, multi-
pel ‘multiple’, konnotation ‘connotation’) and con-
junctions (som ‘as’). At level 3, the model gener-
ates non-Swedish words (fyllek, inkluder, konsek-
went), fragments (effektivitets, sammanfatt) and
plural forms (distraktioner ‘distractions’, kondi-
tioner ‘conditions’, konflikter ‘conflicts’). At level
4, the model generates plausible words.
GPT-4o At level 0, the model generates fragments
(gat), interjections (hej ‘hello’), but also some valid
forms that are simply not in the reference word list
(snart ‘soon’, idag ‘today’, snälla ‘please’). At level
1, the model generates plural forms that are mostly
encountered in the plural (skor ‘shoes’, grönsaker
‘vegetables’, pengar ‘money’, byxor ‘pants’). At
level 2, the model generates valid forms that are
not present in the reference word list (plommon
‘plum’, citron ‘lemon’, fjärrkontroll ‘remote con-
trol’, körsbär ‘cherry’, fikon ‘fig’). At levels 3 and
4, the model generates plausible words.
Llama3-8B At level 0, the model generates per-
sonal pronouns (hon ‘she’, ni ‘you-PL’), conjunc-
tions (om ‘if’), and multi-word expressions (du kan
‘you can’, ni är ‘you-PL are’, vi har ‘we have’).
At level 1, the model generates plural forms (fruk-
ter ‘fruits’, händer ‘hands’, fötter ‘feet’), genitive
forms (husdjurs ‘of the pet(s)’), and non-Swedish
words (fartyk, probably meant to be fartyg ‘vehi-
cle’). At level 2, the model generates plural forms
(kängor ‘boots’, tänder ‘teeth’, fingrar ‘fingers’)
and definite forms (landet ‘the land’). At level 3,
the model generates plausible words. At level 4,
the model generates plausible words but also quite
some plural/definite/genitive forms.
Mistral-7B At level 0, the model generates non-
Swedish forms (ananass, kokka, ingokt), geni-

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

10



tive forms (köks ‘of the kitchen’), numbers, in-
terjections (hej ‘hello’), personal pronouns (du
‘you’), and some questionable forms such as man-
nis(ka) and kvinn(a) that cannot be decomposed
as indicated in Swedish. The first word should
be människa ‘human’, there is no such word as
männis, and the second word should be kvinna
‘woman’, again there is no such word as kvinn.
At level 1, the model generates plural forms (skor
‘shoes’, pengar ‘money’, kakor ‘cookies’, byxor
‘pants’), definite plural forms (äpplen ‘the apples’),
and non-Swedish words (fräj). At level 2, the
model generates clearly English words (autumn,
january, march, august, winter), and the number
one-hundred-eleven (hundraettioett). At level 3, the
model generates non-Swedish words (hedervidy)
and some misspelled words (heteronynym, ockupa-
tion, perssonlighet). At level 4, the model generates
plausible words.
Phi3-4K At level 0, the model generates noun
phrases with articles (en liten flicka ‘a small girl’,
en liten hund ‘a small dog’, en liten fisk ‘a small
fish’, *en liten hus ‘a small house’), multi-word
expressions (jag har ‘I have’), definite forms (kat-
ten ‘the cat’), interjections (hej ‘hello’), articles
(det ‘the’), comparative adjective forms (äldre
‘older’). At level 1, the model generates personal
pronouns (du ‘you’, hon ‘she’, han ‘he’), nouns
with article (en bilspår ‘a car track’, en bil ‘a car’),
question particles (hur ‘how’) and small phrases
(du/han/hon/jag/det är ‘you/he/she/I/it is/are’). At
level 2, the model generates small phrases with
låt oss ‘let’s’ (träffa ‘meet’, spela ‘play’, . . . ). At
level 3, the model generates definite forms (skolan
‘the school’, dörren ‘the door’, gatan ‘the street’).
At level 4, the model generates multi-word expres-
sions (framtidens utveckling ‘future development’,
*kulturella identitet ‘cultural identity’).

4.4.5 Dutch
Gemma-2B At level 0, the model generates ar-
ticles (het ‘the’) and personal pronouns (ik ‘I’,
jullie ‘you’, hij/zij ‘he/she’). At level 1, the
model generates questionable words (*esensieel,
contextueel ‘contextual’, opwinding ‘excitement’,
verenigt ‘united’, *genuinen, opdrachten ‘com-
mands’, *overschrokken, onvoorspelbaar ‘unpre-
dictable’). At level 2, the model also gener-
ates questionable words (oplossingen ‘solutions’,
vervuld ‘fulfilled’, opwinding ‘excitement’, trans-
formatie ‘transformation’, verhoogd ‘elevated’, lib-
eraliseren ‘liberalize’, opvolging ‘succession’, mul-

tidimensionaal ‘multidimensional’) and English
words (delicate, aromatic). At level 3, the model
generates questionable words (*exceptieel). At
level 4, the model generates plausible words.
GPT-4o At level 0, the model generates days of the
week (woensdag ‘Wednesday’, vrijdag ‘Friday’)
and multi-word expressions (dank je ‘thank you’).
At level 1 and 2, the model generates words with
the diminutive -je ending (broodje ‘bread-DIM’,
koekje ‘cake-DIM/cookie’). At level 3 and 4, the
model generates plausible words.
Llama3-8B At level 0, the model generates ques-
tionable words related to games (spelletjeskistje
‘game box’, speelkaart ‘playing card’, spelletjes-
doos ‘game box’, spelletjesbox ‘game box’, spel-
letje ‘game’, spelletjspak ‘game pack’) and words
with the diminutive -je ending (hondje ‘dog-DIM’,
huisje ‘house-DIM’, katje ‘cat-DIM’, autootje
‘car-DIM’). At level 1, the model generates plausi-
ble words, but also days of the week, numbers,
multi-word expressions and diminutive expres-
sions (broertje ‘brother-DIM’, zusje ‘sister-DIM’).
At level 2, the model generates more diminu-
tive forms (liedje ‘song-DIM’, broertje ‘brother-
DIM’, koekje ‘cake-DIM/cookie’, muziekje ‘mu-
sic-DIM’, broodje ‘bread-DIM’, pakketje ‘pack-
age-DIM’, zusje ‘sister-DIM’, spelletje ‘game-
DIM’, briefje ‘letter-DIM’). At level 3 and 4, the
model generates plausible words.
Mistral-7B At level 0, the model generates days
of the week (donderdag ‘Thursday’, woensdag
‘Wednesday’), numbers (vier ‘four’, vijf ‘five’),
months of the year (augustus ‘August’, oktober ‘Oc-
tober’), personal pronouns (jullie ‘you’, hij ‘he’)
and multi-word expressions (hoe zoekt u? ‘how
do you search?’, met vriendelijke groet ‘yours sin-
cerely’). At level 1, the model generates diminutive
forms (vierkantje ‘square-DIM’, bankje ‘bench-
DIM’, tabletje ‘tablet-DIM’, hakje ‘heel-DIM’,
bootje ‘boat-DIM’, klusje ‘chore-DIM’). At level
2, the model also generates diminutive forms (ap-
peltje ‘apple-DIM’, dagje ‘day-DIM’). At level 3
and 4, the model generates plausible words.
Phi3-4K At level 0, the model generates diminu-
tive forms (appeltje ‘apple-DIM’). At level 1, the
model generates plural forms (dieren ‘animals’,
rozen ‘roses’), superlative adjective forms (oud-
ste ‘oldest’), personal pronouns (ik ‘I’), conjugated
verb forms (eet7 ‘eats/eat-IMP’) and days of the
week (maandag ‘Monday’). At level 2, the model

7In Afrikaans, eet is the infinitive form of the verb ‘to eat’
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generates plural forms (boodschappen ‘groceries’,
vrienden ‘friends’, autos ‘cars’). At level 3, the
model generates all days of the week and kled-
ingstukken ‘garments’. At level 4, the model gener-
ates multi-word expressions (regionale economie
‘regional economy’, sociale kwesties ‘social is-
sues’).

4.4.6 General Remarks
Overall, we see a common pattern in the generated
graded word lists, namely a propensity to gener-
ate personal pronouns (you, he, it), days of the
week, months of the year, and numbers. All those
categories were excluded from the reference word
list based on part-of-speech filtering. A common
motive also seems to be food and animals.

The models also tend to generate phrases rather
than single words at times; phrases and multi-
word expressions are undeniable useful for lan-
guage learners, but the models do not adhere to the
prompt.

In contrast to the grading task, which does not
require models to output any language, the vocabu-
lary generation tasks shows some shortcomings
of the models when it comes to producing lan-
guage other than English. This is noticeable for
Spanish (Gemma-2B, Mistral-7B), French (GPT-
4o, Llama3-8B, Mistral-7B, Phi3-4K), Swedish
(Gemma-2B, Llama3-8B, Mistral-7B), and Dutch
(Gemma-2B).

Finally, especially for English, all models gener-
ate words of the highest complexity when prompted
for words of level 4. This may well be a phrasing
problem in the prompt, as we explicitly state 4 as
the highest level, albeit for language learners.

One general problem that we noticed is that if
the word to assess is (or could be interpreted as)
an English word, apparently mostly related to com-
puter programming (by, blank, score, index, col-
umn, sample, type), the model fails to recognize
the word to assess. We also notice that sometimes
the models score outside of the given range (5,6,7),
repeats the input prompt, or generates additional
explanations even though it was asked not to. This
is especially true for Gemma-7B.

5 Conclusion

In this paper, we presented experiments of using
small versions of large generative language mod-
els out-of-the-box for (1) grading vocabulary lists
and (2) generating graded vocabulary lists. Results
show that while most of the models may only be

targeted at English, they perform quite well cross-
linguistically at the task of grading vocabulary.
However, when it comes to producing vocabulary,
the quality suffers.

One key finding is that GLMs that perform well
on the task of grading vocabulary can be used
to grade vocabulary items with low observed fre-
quency. This use case uses the strength of graded
word lists and GLMs for synergy effects.

We have also shown that using a numerical scale
rather than the CEFR scale yields better results.
This may be because the language models have not
had enough contact with CEFR material to learn
and “understand” what the different levels mean. A
numerical scale may be more generalizable in this
case.

To answer the hypothesis put forward at the be-
ginning of the paper: “GLMs are effective at grad-
ing vocabulary”, we can conclude that all tested
models exhibited some form of grading ability, al-
though the predicted scores do not exactly match
the textbook-derived scores, leading to low accu-
racy, precision and recall. However, when taking
into account adjacent accuracy (the prediction is
considered correct if it is at most one level from
the target level), we can see values up to 99% (see
Table 7 in the Appendix A).

When it comes to generating vocabulary from
scratch, GLMs can be a starting point, although
their potential for generating large graded vocabu-
lary lists seem limited and needs further investiga-
tion. The inclusion of inflected forms (plural forms,
conjugated verb forms) is undesired for most pur-
poses.

One (maybe unsurprising) finding is that the
much larger base-model GPT-4o performed best
on average, indicating the larger GLMs may be
more accurate in grading and generating vocabu-
lary lists. However, Mistral-7B showed promising
performance at second place and thus might be a
viable free option.

Overall, while generative language models show
promise in grading vocabulary across languages,
continued research and development are needed
to enhance their performance and applicability in
language learning contexts.

In the hopes that the data may be of use to other
researchers in the field, we make the data available
at https://github.com/daalft/cefrlex_llm.
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6 Future Work

We noticed that all models show a general tendency
towards the middle levels. Previous research on
feature-based classifiers shows that these classi-
fiers tend to perform well on the extremes of the
scale, and tend to mix up the middle levels (Pilán
et al., 2016; Alfter and Volodina, 2018). Hence,
we could potentially use feature-based classifiers
to confidently identify items at the extremes of the
scale, and GLMs to classify the middle levels.

Prompt engineering would also be a possible av-
enue for future work. A chain-of-thought prompt
as used by Enomoto et al. (2024) may be more
effective at eliciting not only a grade but also the
decision process for arriving at that grade, allowing
for greater transparency. As LLMs are sensitive
to prompt formulation (Sclar et al., 2024), experi-
menting with different prompt wording may also
prove beneficial.

Finally, it would be interesting to investigate
how fine-tuning models impacts performance. We
suggest a scenario where fine-tuning is done on
one language family (e.g., Romance) and tested
on a different language family (e.g., Germanic), to
check for language-agnostic transferability of the
graded vocabulary concept.

Limitations

In this work, we investigate only European lan-
guages, giving the work a strong Eurocentric focus.
It would be beneficial to extend the investigation to
more non-European languages.

In this work, we only tested small models. It is
highly possible that the larger models may yield
better results. However, such models also require
significantly more power, both computational and
financial.

Finally, we only generate up to 100 words for
each level for each language. The generation limit
of the GLM can be circumvented through a chat
with history by repeatedly asking for another set
of 100 words and passing the previously generated
answer as history. Alternatively, the LLM can be
prompted to generate texts of a certain proficiency
level, based on which frequency-level information
about words can be extracted, simulating a learner-
oriented textbook (comprehension) corpus.
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A Generating grades: Full result table

Gemma-2B Gemma-7B GPT-4o
Acc AAcc P R F1 Acc AAcc P R F1 Acc AAcc P R F1

EFLLex 0.20 0.84 0.21 0.20 0.18 0.24 0.93 0.32 0.24 0.18 0.30 0.94 0.39 0.30 0.29
ELELex 0.18 0.77 0.23 0.18 0.16 0.23 0.93 0.30 0.23 0.19 0.25 0.91 0.33 0.26 0.25
FLELex 0.21 0.85 0.36 0.22 0.15 0.17 0.89 0.39 0.18 0.12 0.21 0.91 0.36 0.22 0.22
SVALex 0.26 0.94 0.25 0.27 0.24 0.30 0.96 0.31 0.30 0.21 0.33 0.96 0.34 0.34 0.33
NT2Lex 0.24 0.90 0.30 0.24 0.18 0.27 0.97 0.28 0.27 0.19 0.33 0.97 0.39 0.34 0.35

LLaMA3-8B Mistral-7B Phi3-4K
Acc AAcc P R F1 Acc AAcc P R F1 Acc AAcc P R F1

EFLLex 0.21 0.93 0.35 0.22 0.16 0.26 0.87 0.35 0.27 0.24 0.22 0.91 0.33 0.22 0.15
ELELex 0.24 0.95 0.29 0.24 0.20 0.30 0.90 0.31 0.30 0.28 0.25 0.94 0.35 0.25 0.19
FLELex 0.25 0.96 0.40 0.26 0.19 0.28 0.92 0.39 0.28 0.28 0.29 0.96 0.42 0.29 0.22
SVALex 0.28 0.96 0.31 0.29 0.25 0.21 0.87 0.28 0.21 0.18 0.26 0.95 0.28 0.26 0.20
NT2Lex 0.37 0.99 0.38 0.38 0.35 0.37 0.97 0.36 0.37 0.36 0.40 0.99 0.40 0.40 0.38

Table 7: Results in terms of Accuracy (Acc), Adjacent accuracy (AAcc), Precision (P), Recall (R), F1 score (F1), all weighted by label. Results in bold indicate the best result per
category (Acc, AAcc, P, R, F1)
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B Model parameters

Model parameters for generation. For the Gemma models and GPT-4o, no additional parameters were
passed. For Mistral-7B and Llama3-8B, sampling was enabled, for Llama3-8B the temperature and
top_p parameters were set, and for Phi-3, temperature was explicitly set to zero. The example code for
Phi-3 additionally includes do_sample=False, which has no effect when temperature is zero, thus we
excluded this parameter.

Model Generation parameters

Gemma-2B None
Gemma-7B None
Mistral-7B do_sample=True
Llama3-8B do_sample=True, temperature=0.6, top_p=0.9
Phi-3 temperature= 0.0
GPT-4o None

Table 8: Model generation parameters
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Abstract

Automatic Speech Recognition (ASR) can be
used to analyse L2 speech but researchers can-
not be sure that the ASR transcriptions accu-
rately represent learner speech. We aim to con-
front the ASR outputs with the acoustic analy-
sis of learner speech. Whisper (Radford, 2023)
provides transcriptions and probabilities asso-
ciated to the predicted transcriptions. This pa-
per analyses how global phonetic analyses of
learner data can be used to potentially con-
firm these Whisper probability scores assigned
to learner transcriptions. We tested the Ital-
ian component of the ISLE corpus with pho-
netic analyses of 23 learners of English. We
compared the levels assigned to these speakers
by the corpus experts to the outputs of Whis-
per’s tiny model. We discuss the phonetic
features that may account for these Whisper
predictions using acoustic data extracted from
forced alignment. We try to correlate the lev-
els assigned to the speakers in the ISLE cor-
pus with the quality of the phonetic realisa-
tion, using global vocalic measurements such
as the convex hull or Euclidian distances be-
tween monophthongs. We show that Leven-
shtein distance to the reference transcription
of the Whisper tiny model (measured using
Levenshtein distance to the read text) corre-
lates with the grades assigned by the annota-
tors.

1 Introduction

Learner speech has mostly been recently re-
searched with Automatic Speech Recognition
(ASR) system and the focus has been on phone
substitution (Chanethom and Henderson, 2023).
These analyses presuppose time-consuming man-
ual checking of the transcriptions against the
recordings. We would like to explore acoustic
correlates of ASR transcriptions and investigate

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

whether phonetic data extracted from the tran-
scriptions could be used to confirm the ASR di-
agnoses. Our Research question is thus: ‘Can
Whisper’s automatically generated transcriptions
be used to assess a non-native speaker’s pronunci-
ation?’ OpenAI’s Whisper (Radford et al., 2023)
generates time-stamped transcriptions of recorded
speech from simple audio files. When map-
ping the signal to the best candidates for tran-
scription, Whisper ascribes a probability score
to each subtoken, which evaluates the likelihood
that the transcription that was selected is correct.
With non-native speakers, one potential issue is
that mispronunciations, especially when system-
atic or when pertaining to phonemic sequences
with dense phonological neighbourhoods, may
lead to transcription errors in spite of high prob-
ability scores. The purpose of this study is to
find out whether vocalic analyses based on force-
aligning Whisper’s transcriptions provide reliable,
usable acoustic information about speakers’ char-
acteristics in pronouncing English; 1) to find out
whether Whisper’s scores correlate with speak-
ers’ proficiencies in pronouncing English; 2) to
find out whether vocalic data collected from force-
aligning Whisper’s transcriptions provides reliable
information regarding the speakers’ performances.

We focus on vowels as they are notoriously dif-
ficult (Ballier and Martin, 2015) for learners. We
explore several holistic representations of vow-
els: the acoustic (F1 and F2) formants, the global
vowel trapezium plots and the corresponding con-
vex hull as they are likely to be indicative of any
actual phonological or phonetic phenomena un-
derlying non-native speakers’ pronunciations. Us-
ing the recordings of 23 Italian speakers from the
ISLE corpus, this study investigates the linguis-
tic significance of Whisper’s probability scores,
i.e., whether they are indicative of the non-native
speakers’ proficiencies in pronouncing English.
It also explores whether vocalic analyses based

Nicolas Ballier and Adrien Méli. Investigating Acoustic Correlates of Whisper Scoring for L2 Speech Using Forced
alignment with the Italian Component of the ISLE corpus. Proceedings of the 13th Workshop on Natural Language

Processing for Computer Assisted Language Learning (NLP4CALL 2024). Linköping Electronic Conference
Proceedings 211: 20–32.
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on force-aligning Whisper’s transcriptions provide
reliable, usable information about the speakers’
performances.

Whisper (Radford et al., 2023) is a multilin-
gual audio model trained to do language detec-
tion, voice activity detection, transcription trans-
lation, and up to a point, diarisation. It was trained
on 680k hours of labelled speech data and re-
ports state-of-the-art performance for transcription
(Radford et al., 2023). Among these functional-
ities, the language detection task has not really
been used for second language acquisition anal-
ysis. The analysis of the probability assigned to
the sub-token predicted is still in its early stage
(Ballier et al., accepted(a),a). With the C++ im-
plementation of Whisper, we produced the tran-
scriptions and the probability assigned to the sub-
tokens. When accessing the internal representa-
tions of Whisper like the probability, linguists do
not deal with tokens but with subtokens, which
are the results of a byte-pair-encoding process de-
signed to eliminate out-of-vocabulary tokens (Sen-
nrich et al., 2016). This very sub-tokenisation also
varies across models, even though Whisper uses
the same dictionary of sub-tokens for the different
models.

We focused on the Italian component of the
ISLE corpus, because the level of the corpus is not
homogeneous between the Italian component and
the German one. The ISLE corpus derives from a
European project aiming at analysing non-native
speech, notably English spoken by German and
Italian learners. The quality of the English spo-
ken by each speaker was graded (from 1 to 5) and
the raters reach a good agreement (Atwell et al.,
2003).

The remaining sections of the paper are organ-
ised as follows: Section 2 mentions previous re-
search, Section 3 outlines our method, Section 4
delves into our results, and Section 5 provides a
discussion of these results.

2 Background Research

Automatic speech recognition (ASR) has been fre-
quently used for the automatic analysis of learner
speech (Dalby et al., 1998; Inceoglu et al., 2020;
Tejedor-Garcı́a et al., 2021; Ando and Zhang,
2005), compared to audio Large Language Mod-
els (LLMs). The number of papers using Whis-
per for the investigation of L2 speech is, for the
time being, limited, but previous research suggests

that the probability assigned to the sub-token can
be used as a proxy for the prediction of the lev-
els of the learners (Ballier et al., 2023). Speech
recognition is typically used to compute deviations
from reference texts in read speech and investigate
phone substitutions (McCrocklin et al., 2019; Mc-
Crocklin and Edalatishams, 2020; Chanethom and
Henderson, 2023). An important contribution is
the paper that uses the Otter system to try to mea-
sure the shortcomings of the models in relation to
the vowel system on a very limited set constraints
(Chan et al., 2022). And using the ISLE corpus
data, (Arora et al., 2018) try to interpret the mis-
transcriptions in terms of phonological features,
thus focusing more on consonants.

3 Material and methods

In this section, we describe the ISLE corpus data
and the pipeline utilised to annotate the data and
the main phonetic representations. We analyzed
the convex hull representing the trapezium of vow-
els, the number of vertices produced by the vowel
trapezium representation, and then we present the
Whisper output.

3.1 The ISLE Corpus Data

The corpus was collected to analyse non-native
speech and is available from ELRA. The sections
of the ISLE corpus correspond to phonological tar-
gets that were tested, with the exception of the read
speech task (block A) which contained them all.
We re-organised the ELRA data compiled in 1999
in a unique dataset gathering metadata, prompts,
objectives and expert annotations. Table 1 illus-
trates the types of prompts that learners had to
read.

The material used in this study comes from the
ISLE corpus (Menzel et al., 2000). The record-
ings of 23 Italian speakers reading 180 blocks of
text were analyzed in the fashion described in the
following paragraph. The ISLE corpus is partic-
ularly interesting to study as it provides standard-
ised recordings of a sizeable sample of speakers,
whose performances were evaluated by trained an-
notators. These features make it possible to ob-
tain two baselines, the script to read and the hu-
man evaluations, against which Whisper’s perfor-
mances can be compared.
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Block # Sents. Linguistic Issue Exercise Type Examples

A
B
C

27
33
22

Wide vocabulary
coverage (410)

Adaptation/
Reading

“In 1952 a Swiss expedition was sent
and two of the men reached a point
only three hundred metres from the
top before they had to turn back.”

D 81
Problem phones
Weak Forms

Minimal Pair
Item
selection/
combination

“I said bad not bed.”
“She’s wearing a brown wooly hat
and a red scarf.”

E 63

Stress
Weak Forms
Problem Phones
Consonant clusters

Reading
“The convict expressed anger at
the sentence.” “The jury took two
days to convict him.”

F 10
Weak Forms
Problem Phones

Description/
Item
selection/
combination

“I would like chicken with fried
potatoes, broccoli, peas and
a glass of water.”

G 11
Weak Forms
Problem Phones

Item
selection/
Combination

“This year I’d like to visit Rome.

Table 1: Typology of prompts in the ISLE data (after Menzel et al., 2000)

3.2 Whisper outputs

We have used the C++ implementation (Gerganov,
2023) of Whisper and the tiny model, more
likely to be sensitive to non-native deviations
from the training model realisations (Ballier et al.,
2023). Whisper transcribes speech and the C++
implementation also allows researchers to extract
the probability assigned by the Whisper model
to the predicted subtokens. Figure 1 gives an
example of the probabilities assigned to the pre-
dicted subtoken. The lowest probability score
here corresponds to a mispronunciation of learner
#134 who realises “weather” with a long vowel
[wi:]. As this example shows, ”weather” is tran-
scribed as “weeder” in the transcription but cor-
responds internally to two subtokens (we—eder)
in the Whisper representations. It is very difficult
to re-align subtokens (we—eder) to tokens tran-
scribed by Whisper (weeder) and to map these out-
puts to the reference (“weather”), so that we did
not exploit probabilities at the subtoken level but
only globally. When modelling data, we only con-
sidered the mean value of Whisper’s probability
scores as a unique datapoint per speaker).

3.3 Whisper Scoring

We extracted the probability assigned to each sub-
token and to the language assigned by the lan-

[_TT_460] 0.747888
The 0.992373
second 0.995847
difficulty 0.996018
about 0.956371
climbing 0.998327
Everest 0.962417
is 0.991093
the 0.986653
we 0.332225
eder 0.876064
. 0.970952

Figure 1: Example of the C++ Whisper output. The
subtokens of the Whisper transcriptions are associ-
ated to a probability. [ TT 460] is a special subtoken
corresponding to temporal value. The mistranscribed
“weeder” (corresponding to “weather”) is split into two
subtokens we—eder. The realisation of the first sylla-
ble by the learner is phonetically [wi].

guage prediction functionality. Whisper’s proba-
bility scores are generated in a file with a subto-
ken and a score per line. Subtokens often cor-
respond to words, but are sometimes made up of
syllables, silences, or punctuation marks such as
commas or periods. “Expedition”, for instance,
constitutes a token, but its plural, “expeditions”,
is split into “exped” and “itions”, each with their
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respective probability scores. Unfortunately, this
feature makes it non-trivial to match the scores
with the alignment, so that per-speaker probability
scores were simply calculated by averaging over
each token’s score. Figure 2 shows a visualisation
of the different levels of probability assigned to the
subtokens by the tiny model. A transcription like
“wee—der” (corresponding to “weather”) shows
low probabilities that are consistent with misreali-
sations of the vowel quality and of the interdental
fricative.

3.4 Data Processing

For each speaker, the original short sound files
were concatenated into a main audio file and in-
put into Whisper, which in turn generated time-
stamped .srt subtitles and a .txt file list-
ing the probability scores for each token. The
time-stamps from the subtitles were then used to
split the main audio files into short ones. These
short audio files and their matching Whisper tran-
scription from the subtitles were fed into forced-
aligner P2FA (Yuan and Liberman, 2008), which
generated Praat (Boersma and Weenink, 2019)
TextGrids with alignments at the segmental and
lexical levels. The reason underlying this seem-
ingly tedious procedure is the contention that feed-
ing the forced aligner with short audio recordings
will prevent cascading alignment errors. A syl-
labic tier and another segmental tier based on the
British pronunciations of the Longman Pronunci-
ation Dictionary (Wells, 2000) were also added.
Finally, all these short TextGrids were merged into
one main TextGrid. Vocalic data was then col-
lected by parsing the LPD segmental tier of each
speaker’s main TextGrid and storing relevant in-
formation, such as formant values and duration,
when the segment was a vowel.

Figure 3 recaps the different alignments pro-
duced with our pipeline. We used the P2FA aligner
to process the recordings. The aligner is fed with
the CMU phonetic dictionary, one of the rare open
source available for English, but which assumes
an American pronunciation. We then used the
PEASYV pipeline (Méli and Ballier, 2023) to gen-
erate the reports on the phone inventories of the
different learners. Figure 7 sums up the vowel in-
ventories corresponding to the transcriptions, with
the proviso that some learners misread sentences
or that some sentences for some speakers are not
actually present in the ELRA data.

3.5 Evaluation Metrics

We wanted to correlate the mean probability scor-
ing assigned by Whisper, the grades assigned by
the annotators of the corpus (ranging from 1 to 5
for the 23 Italian speakers) and acoustic properties
extracted from our forced alignment of the learner
recordings with the Whisper transcription.

3.5.1 Levenshtein distance
One metric instrumental to this is study is the
Levenshtein distance, which calculates the num-
ber of edits needed to change one string of char-
acters into another. The systematic comparison
of each speaker’s Whisper-generated transcription
with the original ISLE script to read, provided by
the designers of the corpus, was made after tak-
ing the following steps: the script to read was
stripped of capital letters, blank spaces and punc-
tuation marks. Measurements written in full let-
ters were converted to numbers, in keeping with
Whisper, which transcribes most numbers in Ara-
bic. Subtleties such as “3 meters”, transcribed
by Whisper in Arabic numbers, but “three moun-
tains” transcribed in full letters, were accounted
for. Each speaker’s Whisper-generated transcrip-
tion underwent the same treatment: blank spaces
and punctuation marks were removed, and capital
letters were converted to lower-case.

3.5.2 Main Acoustic Correlates
The next step was to determine whether corre-
lations existed between the two baselines of the
ISLE corpus, i.e. the annotators’ grades (from 1
to 4) and the Levenshtein distance to the original
script (formatted in the way described in the pre-
vious section). In order to do so, several phonetic
metrics for each speaker were computed with the
formant values extracted at mid-temporal values
from our forced alignment:

1. the Euclidean distances of each monoph-
thong to all other 11 monophthongs in the
F1/F2 space using mid-temporal values (66
datapoints per speaker);

2. the Vowel Inherent Spectral Change (Nearey
and Assmann, 1986; Nearey, 2012; Morri-
son and Nearey, 2007; Morrison, 2012) of
each vowel, i.e., both monophtongs and diph-
thongs, using the mean formant values at
20% and 80% of the vowels’ durations (19
datapoints per speaker);

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

23



Figure 2: Probability Scoring of Whisper’s Tiny model predictions for the subtokens of the transcription of (male)
speaker 134. Purple corresponds to high probability, cyan to low probability

is the weeder n
spIH1 Z DH IY0 EH1 N
sp IS THE N
NF Iz Di: en
sp IH1Z DHIY0 EH1N
sp Iz Di: en

Time (s)
419.9 420.6

420.230501 420.637582

Figure 3: Fragment of a TextGrid corresponding to “is
the weather n”. Under the waveform are the five tiers
that correspond to the Whisper output transcript (“is
the weeder n”), to the phoneme (CMU Arpabet tran-
scription), to the words (“weeder” was missed by the
aligner), to the British transcription (SAMPA), to the
syllables of the CMU Arpabet transcription and to the
British transcription (SAMPA) of the syllables.

3. the area of the speaker’s convex hull and its
number of vertices (2 datapoints).

Pearson correlations with the Levenshtein distance
and the annotators’ marks were then systemati-
cally computed. p-values above the 0.05 conven-
tional threshold were rejected, along with absolute
R-values inferior to 0.55, in order to exclude weak
correlations.

3.5.3 Probability Density and Kernel Density
Estimates (KDE), Convex Hulls and
Number of Vertices

We wanted to test several global validation pro-
cedures based on acoustic correlates of vowels,
investigating the convex hull and number of ver-
tices as a representation of the trapezium produced
by the different learners as compared to potential
British models (the pronunciation norm indicated

for the ISLE data). We used the British pronunci-
ation norm, reported as being the one used by the
learners in the corpus (Atwell et al., 2003). We
computed the convex hull and the number of ver-
tices needed to represent the trapezium of vowels
for the speakers. Figure 11 illustrates the trape-
zoids of the Italian male and female speakers, the
vertices connecting the means of the F1/F2 values
for vowels. The reference trapezium corresponds
to the values reported in one of the reference stud-
ies for British English (Deterding, 1997). Because
the formant extractions were based on lab speech
(vowels in the /hVd/ context), these means cor-
respond to hyperarticulated values. Our last at-
tempt at exploiting the area of the vowel space is
the number of vertices associated to the different
vowel trapezia representing the vowel plots. The
mean of each vowel distribution serves as an edge
for the vowel space trapezoid and we reported the
number of vertices. The hypothesis in terms of
the number of vertices was “the higher the number
of vertices, the bigger the vocalic space”, and then
the clearer or the more separate the various vocalic
realisations are and therefore the better the overall
pronunciation might be.

4 Results

In this section, we present the different results
from individual realisations of vowels to more
global comparisons.

4.1 KDE of Vowel Realisations
We used kernel density estimates (KDE) to repre-
sent in three dimensions, the F1 and F2 probabil-
ity density. We are using this visual representa-
tion as a cue for the separability of the different
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vowels. We would expect the properly realised
phonetic minimal pairs to be realised as two dis-
tinct cones. Conversely, when only one vortex or
pyramid can be observed, we assume that the dis-
tinction between the two phonemes is not realised.
We computed these KDE for the vowels shown in
Figure 7, and we only show here the most relevant
pair of confusing vowels (KIT vs. FLEECE) illus-
trated by two speakers for our learners.

4.2 Number of Vertices

Table 2 reports the number of vertices that is
associated with the different vowel trapezia rep-
resenting the vowel plots. Our hypothesis was
“the higher the number of vertices, the bigger
the vocalic space” and then the clearer or the
more separate the various vocalic realisations were
and therefore the better the overall pronunciation
might be. This hypothesis is not verified, at least
with our data.

Level mean of vertices support
1 6.71 7
2 6.73 11
3 6.50 4
4 6.00 1

Table 2: Mean of complex hull vertices per level for
Italian speakers

4.3 Reference Vowel Inventories

For a global analysis, we tried to come up with a
reference inventory of the phoneme systems, the
vocalic system, because most of the subjects were
assumed to have British pronunciation. We used
the British transcription from the Longman Pro-
nouncing Dictionary to try to estimate the ref-
erence vowel inventory. Such an undertaking is
challenging because we need to eliminate the vari-
ants that are automatically assigned by the pho-
netic aligner. The variants, when available in the
dictionary of the aligner, are selected on the basis
of the acoustic signal. We systematically took the
first variant when several were present.

The distribution of the vowel inventories that we
would expect varies across speakers but we do not
report phoneme error rates, we are trying to offer a
global appreciation. This is based on the transcrip-
tion of the target, the text that needed to be read
by the different learners following the different
tasks of the ISLE data. A total of 30,032 vowels

across the 23 Italian speakers were collected and
analyzed. No filters, such as removing function
words or focusing on stressed syllables only, were
applied. The per-vowel distributions can be found
in Figure 7. Monophthongs account for 79% of all
collected phonemes, with /@/ amounting to 19.2%
of all vocalic occurrences with 5,757 tokens.

4.4 Correlations to Levenshtein Distance
The Levensthein distance to the reference text read
by the ISLE speakers (the smaller the distance,
the better the pronunciation) proved to be ro-
bustly correlated to per-speaker mean of the prob-
ability scores (R=-0.94), to the ability to classify
monophthongs (R=-0.7), and partially correlated
to the learner grades (R=-0.57) assigned by ISLE
annotators.

The main result is a strong correlation (R =
−0.94, p < 0.005) of Whisper’s probability scores
with the Levenshtein distance separating the tran-
scriptions from the script of the reading assign-
ment. Figure 8 confirms the hypothesis that higher
probability scores in the Whisper prediction cor-
responds to a better pronunciation (lesser devi-
ation from the expected realisations). Speakers
whose automatic transcriptions have a higher Lev-
enshtein distance are more likely to have lower
Whisper probability scores.

The second observed correlation is with the
acoustic data. The Levenshtein distance is par-
tially correlated to the ability to classify monoph-
thongs for each speaker on the basis of their for-
mant values. We extracted the formant values
from the forced aligned data and used the k nearest
neighbour (k-NN) algorithm (Deng et al., 2016)
to classify the monophthongs on the basis of their
F1/F2 formant values1. We computed the accu-
racy for this classification task. The scatter plot
on Figure 9 illustrates the relationship between the
Levenshtein distance to the original text string and
the accuracy reported for the per-speaker classi-
fication of Italian speaker’s monophthongs using
the k-NN algorithm (k-NN Accuracy) represented
on the y-axis. One can see a clear negative correla-
tion between the Levenshtein distance and this k-
NN Accuracy, as indicated by the downward slop-
ing trend line and Pearson’s correlation coefficient
R = -0.7. The relationship is statistically signifi-
cant, with p < 0.001. The data points are some-

1Vowel discrimination between native and non-native re-
alisations have already been tested with this type of clustering
(Méli and Ballier, 2019).
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Figure 4: KDE estimate for F1 / F2 probability density for Speaker #S003
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Figure 5: KDE estimate for F1 / F2 probability density for Speaker #139

Figure 6: Comparison of the two Kernel Density Estimates (KDE) for the KIT vs. FLEECE vowels for two
speakers. The unimodal distribution of the acoustic realisations (one peak) suggests that speaker #3 does not
properly categorise the two vowels (top), whereas speaker #139 produces two distinct series of realisations (bottom)
for the KIT vs. FLEECE vowels, suggesting that the vowel categorisation has been properly acquired.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

26



iː ɪ e æ ə ʌ ɜː ʊ uː ɔː ɒ ɑː

Count of monophthongs for Italian speakers
n=23719

0
1
0
0
0

3
0
0
0

5
0
0
0

ɪə eɪ aɪ eə əʊ aʊ ɔɪ ʊə

Count of diphthongs for Italian speakers
n=6313

0
50

0
10

00
15

00

Figure 7: Vowel inventories aggregated on the 23
Italian Speakers, monophthongs (top) and diphthongs
(bottom), based on the forced alignment of the tiny
Whisper transcriptions
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Figure 8: Negative correlation between the Levenshtein
distance to the original text string and the per-speaker
mean of the Whisper probability scores. The grey
shaded area represents the confidence interval, which
widens at the extremes of the x-axis, indicating less
certainty in the prediction at these points.

what scattered around the trend line, but generally
follow the negative trend. The grey shaded area
represents the confidence interval around the re-
gression line, which widens at the extremes of the
x-axis, indicating less certainty in the prediction
at these points. This plot confirms that our use
of the Levenshtein distance is a sensible correlate
to the assessment of phonetic quality: the more a
text is altered from its original form, the harder
it becomes for the k-NN algorithm to accurately
classify the monopthongs of a given speaker. Ad-
mittedly, the accuracy reported is far from perfect,
as the accuracy of the prediction (with 70% train,
30% test) ranged from about 0.35 to 0.55, but it
should be borne in mind that vowel data points

for monophthongs partially overlap, so that accu-
racy for native speakers’ monophthong classifica-
tion would also be limited. With a skewed dis-
tribution and 12 classes to predict, this is no easy
task. Nevertheless, this accuracy of the classifica-
tion of the monophthongs on the basis of their for-
mant values correlates with the Levenshtein dis-
tance.
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Figure 9: Negative correlation between the Leven-
shtein distance and the accuracy of the prediction of
the monophthongs using k-NN. The grey shaded area
represents the confidence interval, which widens at the
extremes of the x-axis, indicating less certainty in the
prediction at these points.

Finally, the correlation of the Levenshtein dis-
tance with the grades assigned by the ISLE anno-
tators are weaker but the correlation remains sta-
tistically significant (R = −0.57, p < 0.005).
Figure 10 suggests that as the Levenshtein dis-
tance increases (indicating greater difference from
the original text), the annotators’ marks tend to
decrease. This means that the annotators’ grad-
ing of the Italian speakers does decrease when the
Whisper tiny model transcriptions deviate more
from the original text. The Levensthein distance
is therefore a metric consistent with the grades as-
signed to the Italian learners in the ISLE corpus.

4.5 Absence of Global Correlations
However, the analyses of 88 parameters related to
vocalic data (e.g., the Euclidean distances between
each monophthong in the F1/F2 vocalic space) re-
turn no, or very weak, correlations with the Lev-
enshtein distance. One exception may be found
in the /i:/-/I/ distance (R = −0.56, p < 0.005).
This validates our hypothesis that visual inspec-
tion of the KDE density of these two vowels is
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Figure 10: Negative correlation between the Leven-
shtein distance and the corpus annotator’s grades. The
grey shaded area represents the confidence interval,
which widens at the extremes of the x-axis, indicating
less certainty in the prediction at these points.

a valid cue for the interpretation of the quality
of realisations. This distinction between the two
phonemes is noted in the papers describing the
ISLE corpus (Atwell et al., 2003) and in the L2
phonetic literature (Kenworthy, 1987). This global
representation of the probability density for F1 and
F2 for these two vowels show distinct visual rep-
resentations. We assume that phonetic realisations
are distinctive if two peaks can be distinguished.
Conversely, learners failing to mark F1/F2 differ-
ences for these vowels have a unimodal distribu-
tion. As can be seen on Figure 6, speaker 003 has
a unimodal distribution for the F1/F2 realisations
of the FLEECE and KIT vowels.

5 Discussion

To the best of our knowledge, this is the first
paper that tries to correlate the grades assigned
to taylor-made spoken corpora to Whisper out-
puts (transcriptions and internal representations
of their probabilities) and phonetic correlates ex-
tracted from forced alignment of the Whisper tran-
scriptions. Assuming we take the ISLE grades
as golden reference taken for granted, the dis-
cussion bears on how we collected the phonetic
data points (subsection 5.1), aggregated the Lev-
enshtein distance neglecting task effects (subsec-
tion 5.2), compared scores of linguistic units vary-
ing in size and scope (subsection 5.3), measured
the correlations (subsection 5.4) and on the Whis-
per outputs we have not investigated yet (subsec-
tion 5.5).

5.1 Precision of the Aligners

The first point to discuss is the precision of
the aligner, the tool that automatically aligns the
Whisper transcription to the signal. As shown in
Figure 3, there may be errors in the forced align-
ment. We have used the P2FA aligner whose per-
formances may be lower than more recent ones.
The Montreal Forced aligner (McAuliffe et al.,
2017) may produce better results, but is not that
easy to integrate into our annotating pipeline. Pre-
vious research suggests that the precision of our
pipeline may be lower than more recent ones (Méli
et al., 2023). One key question is therefore that of
the accuracy of the forced alignment performed by
P2FA. A hopefully convincing way to answer this
question is to plot the means of the mid-temporal
F1 and F2 formant values and to compare them
to established values in the literature. Figure 11
shows that the vocalic trapezoids thus obtained for
per-sex average values are consistent with those
listed in Deterding (1997). The lines trace the
convex hulls of the sets of average F1/F2 values.
Unfortunately, the number of vertices required to
represent the trapezium did not present a consis-
tent pattern correlating with Levenshtein distance
or learner grades.

5.2 Task Effects: the Different Prompts

We merged the different sound files corresponding
to the subtasks (see Table 1) to analyze the ISLE
data and reported global results, in line with the
global grading of the sound files by the annota-
tors. We do not report the probability scores or
the Levenshtein distance per type of prompts (see
Table 1) and do not investigate whether some task
effects could be measured, looking at the language
prediction and the average probability assigned to
the subtokens of the different group. A related re-
search question is the need to estimate what would
be the optimal duration of the data to be used by
automatic systems when predicting the level of the
learners.

5.3 Granularity and Scope of Scoring

Our analysis focuses on vowels, but the papers
presenting the ISLE corpus also insisted on phone
substitutions for consonants (Atwell et al., 2003).
One of the difficulties of using Whisper scor-
ing is that probability scores correspond to subto-
kens, which do not exactly correspond to sylla-
bles and rarely match phonemic representations.
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reported in (Deterding, 1997)

We could at best report the confidence of the sys-
tem (the Whisper probabilities) at the subtoken
level, but in this paper, we mostly consider holis-
tic estimations: Levenshtein distance (the tran-
scription of the full recording) or mean probabil-
ity of all the predicted subtokens. These ’tex-
tual’ Whisper predictions can only be partially
mapped to speech units of a different granularity.
A phonemic transcription could parallel the Lev-
enshtein distance and include phonological conso-
nants. The PEASYV pipeline extracts formants
and focuses on vowels. Vowel plots and their
structures (numbers of vertices) are holistic rep-
resentations, and so are vowel inventories. Most
other metrics are between two vowels (distances
or kernel density estimates) and may be used to
monitor whether vowel distinctions have been ac-
quired.

5.4 Alternative Methods

For our ‘kitchen sink method’, the phonetic vari-
ables related to vowel plots reveal little correla-

tion to the levels assigned by the annotators or to
the Levenshtein distance. In particular, the num-
ber of vertices (at least based on our forced align-
ment) does not seem to be a plausible correlate
for the level of the learners. An ablation method
for a multinomial ordinal regression may highlight
other variables. Another approach of the vowel re-
alisations is based on Pillai scores. For an intrinsic
measure of the dispersion of L2 speech, we may
use Pillai scores applied for L2 speech for vow-
els (Mairano et al., 2019, 2023). Additionally, we
have not explored clustering techniques that would
try to investigate if the grouped phonetic data-
points corresponding to the reference grades of the
corpus would produce consistent results. Assum-
ing there are actually four levels to be considered
for the Italian ISLE speakers, what would be the
confusion matrices of these four levels using k-
means (with k equals 4 for the four levels) for the
vowel acoustic correlates we examined? Would
the four clusters produced by the k-means corre-
spond to the four levels of the corpus grades?
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5.5 Whisper Scoring of Language Detection

Another feature is worth investigation. Whisper
has been trained to recognise the language spo-
ken as an identification task (Radford et al., 2023).
This language identification (and its associated
probability) could be potentially used to analyse
learner data, to discriminate speakers predicted to
be English or Italian. For example, using Whis-
per’s large model to predict the language spo-
ken by the Italian speaker, we observed that more
advanced learners (level 3 or 4) were labelled as
English, whereas the learners graded as level 2
were either predicted as being English or Italian.
With presumably the most robust Whisper model,
there seems to be a threshold between less ad-
vanced learners whose first language is predicted
(Italian) and more advanced learners that are de-
tected as being English. The most interesting case
study is the intermediate group of Italian learners
labelled “2” in the ISLE corpus that is sometimes
predicted as English or as Italian. We want to anal-
yse the potential phonetic correlation that may ac-
count for this judgement, therefore potentially val-
idating the idea of a threshold detecting between
less advanced learners and more advanced learn-
ers with Whisper. We intend to compare these
Whisper predictions with the phonetic realisations
(including consonants) using the P2FA aligner to
compare the various phonetic realisations with the
Whisper predictions, trying to account for that dif-
ference in the system.

6 Conclusion

In this paper, we have tried to correlate Whisper’s
transcriptions with the levels assigned to the Ital-
ian learners in the ISLE corpus and with acous-
tic correlates of vowels. We used the Leven-
shtein distance to measure deviation from the read
texts for each speaker based on Whisper’s ASR
transcriptions and we used forced alignment and
the PEASYV annotation pipeline (Méli and Bal-
lier, 2023) to produce our vowel-based acoustic
data (vowel formants), phone reports and pho-
netic measurements. Levenshtein distance does
correlate with the levels, but the acoustic corre-
lates we analysed are not convincing. The as-
sumption that Whisper scoring could be a good
cue to the quality of the phonetic realisation is
validated because it is negatively correlated to the
deviation from the reference read text measured
with the Levenshtein distance. Our explorations of

the holistic phonetic correlates is less successful.
Holistic representations like vowel plots appar-
ently fail to be correlated to the grades attributed
to the Italian learners in the ISLE corpus. Never-
theless, the type of trapezoids we produced with
the PEASYV pipeline could be used in Computer-
Assisted Pronunciation Training (CAPT) systems
(Rogerson-Revell, 2021) as actionable visualisa-
tions for teachers and expert users.

Limitations

The first limitation is the number of speakers and
languages for our analysis. Because graded spo-
ken learner corpora are not that frequent, we fo-
cused on the ISLE data, and only on the Italian
component, since the German component has a
different level distribution. Only 11 male speak-
ers were analysed, which also introduces a gender
limitation to our work. A second limitation is the
focus on segmental errors, like many studies based
on Automatic Speech Recognition. The analysis
of L2 speech should also account for supraseg-
mental features. Last, our metrics, visualisation
and k-NN analysis of the vowels mostly tackled
monophthongs and not diphthongs and these tech-
niques in investigating vowel separability may be
contradicted by perception tests.

Ethics Statement

It is important to note that the Whisper scor-
ing should not be used as a substitute for hu-
man feedback. Whisper does not explicitly mon-
itor suprasegmental features. As noted during
our analyses, the probabilities associated with the
Whisper transcriptions do not necessarily guaran-
tee that the word transcribed by Whisper is the
most accurate rendition of what the learner actu-
ally pronounced. As a consequence, we endorse a
human-in-the loop approach to this kind of tech-
nology.
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Adrien Méli and Nicolas Ballier. 2019. Analyse de la
production de voyelles anglaises par des apprenants
francophones, l’acquisition du contraste /I/–/i:/ à la
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Abstract

Studies on second language acquisition have
argued in favour of practising vocabulary in
authentic contexts. After the tradition of ob-
taining these usage examples by “invention”
(i.e. language experts creating examples based
on their intuitions) was superseded by corpus-
based approaches (i.e. using dedicated tools
to select examples from corpora), the rise of
large language models led to a third possi-
ble “data source”: Generative Artificial Intel-
ligence (GenAI). This paper aims to assess
GenAI-based examples in terms of their ped-
agogical suitability by conducting an exper-
iment in which second language (L2) learn-
ers compare GenAI-based examples to corpus-
based ones, for L2 Spanish. The study shows
that L2 learners find GenAI-based sentences
more suitable than corpus-based sentences,
with – on a total of 400 pairwise comparisons –
265 artificial examples being found most suit-
able by all learners (compared to 10 corpus-
based examples). The prompt type (differ-
ent zero-shot and few-shot prompts were de-
signed) did not have a noticeable impact on
the results. Importantly, the GenAI approach
also yielded a number of unsuitable example
sentences, leading us to conclude that a “hy-
brid” method which takes authentic corpus-
based examples as its starting point and em-
ploys GenAI models to rewrite the examples
might combine the best of both worlds.

1 Introduction

Although vocabulary items can be learnt in iso-
lation (e.g., through flash cards; Nation, 2022),
providing in-context usage examples of vocabu-
lary items strengthens word form - word meaning
associations (Laufer and Shmueli, 1997) and has
shown to foster both language comprehension and
production (Frankenberg-Garcia, 2012, 2014). As

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

a result, example sentences are often used in vo-
cabulary lists, learners’ dictionaries, and grammar
sections as a means to illustrate the usage(s) of vo-
cabulary items and grammatical patterns. Some
types of materials even depend entirely on the
presence of example sentences, such as fill-in-the-
blanks and in-context translation exercises.

To obtain example sentences, linguistic dis-
ciplines have a long tradition of using intu-
ited/invented examples (IEs) created by lan-
guage experts such as lexicographers and teachers
(Cook, 2001; Laufer, 1992; Stefanowitsch, 2020).
The underlying idea is that their advanced lin-
guistic competence allows them to formulate well-
formed, relevant, and grammatically correct sen-
tences. However, the last decades witnessed an
increased interest in the selection of example sen-
tences from digital(ised) native (L1) corpora, first
manually and later following (semi-)automatic
selection procedures (Frankenberg-Garcia et al.,
2021). Even though well-designed IEs can have
pedagogical value (Cook, 2001), carefully se-
lected corpus examples can be considered more
authentic, reliable, and valid expressions of lan-
guage (Firth, 1968; Stefanowitsch, 2020). More-
over, thanks to the continued improvements made
to the tools and techniques used for corpus
processing and consultation, performing corpus
queries to extract sentences that should meet a
given set of criteria has become highly efficient.

Recently, major developments in the field of
Generative Artificial Intelligence (GenAI) uncov-
ered another pathway to obtain example sentences:
based on a prompt specifying the desired criteria,
GenAI systems can be asked to output a series of
– according to the model – suitable usage exam-
ples. Although the artificial way in which they are
conceived bears some resemblance with IEs, these
examples can also be said to have a corpus-based
touch, since the GenAI tools that produce them are
trained on (extremely large) collections of text.
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In the present paper, we present an experiment
in which second language (L2) learners of Spanish
compare example sentences selected following a
corpus-based method to examples created follow-
ing a GenAI-based method. In doing so, we aim to
make a contribution to the assessment of the peda-
gogical usability and validity of artificially gener-
ated learning materials. The paper is structured as
follows: after providing an overview of the related
research in Section 2, we describe the methodol-
ogy (Section 3) and elaborate on the results (Sec-
tion 4). A discussion of those results is presented
in Section 5. Finally, Section 6 includes a con-
clusion together with possible directions for future
research.

2 Related Research

Broadly speaking, the criteria which define a
“good” example can be categorised as either form-
related or content-related. The former type refers
to grammatical soundness and straightforward su-
perficial properties such as a capitalised first letter
and a punctuation mark at the end of the sentence.
Content-related criteria, on the other hand, encom-
pass features such as naturalness (i.e. contain-
ing formulations which can also be encountered
in real-life language use), context independence,
intelligibility (often captured in terms of sentence
length and number of difficult words), typicality
(i.e. containing collocations or colligations), and
informativeness (i.e. containing clues which help
understand the meaning of the target item).

The definition of sentence selection criteria has
been considered from both a pedagogical (Pilán
et al., 2016) and a lexicographic point of view
(Atkins and Rundell, 2008). Although many cri-
teria apply to both of them, the two perspectives
also exhibit differences. With regard to the in-
telligibility criterion, lexicographic resources tend
to prefer short sentences, while language learn-
ing resources are considerably more tolerant to-
wards long sentences, as exposing learners to more
(relevant) context can be beneficial for the learn-
ing process (Kosem et al., 2019). Secondly, in
a language learning setting, the criteria of infor-
mativeness and typicality are often isolated and
linked to, respectively, the concepts of “decod-
ing” (i.e. aimed at fostering comprehension) and
“encoding” (i.e. aimed at fostering production).
As these concepts reflect two very distinct as-
pects of language learning, the example selec-

tion methods used to create language learning re-
sources often focus on only one of these two cri-
teria, instead of looking for sentences incorporat-
ing both (Frankenberg-Garcia, 2014). Finally, se-
lecting sentences for pedagogical purposes also re-
quires assessing a sentence’s complexity in terms
of learner proficiency levels and adapting the se-
lection accordingly, as there exist considerable dif-
ferences between the language knowledge of be-
ginning, intermediate, and advanced learners.

2.1 Corpus-based Examples

Finding its origins in the grammar-translation
method of the mid-19th century, invented exam-
ples (IEs) have long been the primary source for
presenting new words or exemplifying linguistic
phenomena of a lexical (i.e. collocations) or gram-
matical (i.e. colligations) nature (Cook, 2001).
In essence, IEs are concocted by experts (e.g.,
L2 teachers or lexicographers) and rely on the
intuitions these experts have about the usage of
the word/pattern to be presented/exemplified. To-
wards the end of the 20th century, however, the
rise of online accessible corpora together with ad-
vances in the technological means to process and
consult them opened new horizons in the selec-
tion/creation of examples. The COBUILD ini-
tiative (Sinclair, 1987), for example, radically re-
jected the use of IEs and only used unaltered cor-
pus examples in its resources.

Importantly, much of this research into corpus-
based example selection methods originated from
lexicographic motives, which – as mentioned ear-
lier – do not necessarily include pedagogical con-
siderations. Yet, many lexicographic methods
were (and still are) also used for pedagogical pur-
poses (Kosem et al., 2019). One of those methods
is GDEX (Good Dictionary EXamples; Kilgarriff
et al., 2008), which marked a major milestone in
the field of corpus-based example selection. In
brief, the method takes as input a list of corpus
concordances for a given target item and returns a
ranked version of that list. The main particularities
of GDEX are the overall scoring algorithm with
adjustable parameters (a so-called “GDEX config-
uration”) and the “second collocate” classifier that
prioritises sentences containing the most typical
collocates of a given collocation. Moreover, as the
adjustable parameters allow users to tailor the sen-
tence selection criteria to their specific needs, the
need for posterior manual revisions also decreases.
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As mentioned above, GDEX is – despite its lex-
icographic origins – widely applied in language
learning contexts as well (Kallas et al., 2015;
Smith et al., 2010). The SKELL tool, for ex-
ample, employs GDEX to retrieve the most use-
ful examples for language learners from large cor-
pora and return them as a ranked list (see Fig-
ure 1). Nevertheless, extra curation is still required
when selecting examples from GDEX-based con-
cordances, particularly when priority has to be
given to specific collocation or colligation patterns
(Frankenberg-Garcia et al., 2021).

Regarding the (limited) research dedicated to
corpus-based sentence selection specifically for
language learning purposes, a first important study
to highlight is that on HitEx (Pilán et al., 2016),
a sentence selection framework for L2 Swedish.
Combining both rule-based and machine learning-
based components, the HitEx framework pays spe-
cial attention to linguistic complexity and inde-
pendence from the surrounding corpus sentences,
but also takes into account well-formedness and
a series of structural criteria (e.g., presence of
modal verbs and sentence length) and lexical cri-
teria (e.g., word frequency and presence of proper
names). Next, Heck and Meurers (2022) devel-
oped an algorithm which can select suitable ex-
amples to be used as input for L2 English gram-
mar exercises. Apart from offering different data
sources to choose from (the web, precompiled cor-
pora, or custom texts), the method also includes
tailor-made selection criteria such as the presence
of relative pronouns, extraposition, and preposi-
tion stranding.

2.2 GenAI-based Examples
The process to obtain artificially generated exam-
ple sentences is very straightforward: based on a

Figure 1: SKELL output for recusal. Date of perform-
ing query: 6 June 2024.

natural language prompt as input, a GenAI model
can be asked to return a series of sentences, with-
out any specific prior training. Depending on the
model’s architecture, the prompt can be formu-
lated as a zero-shot learning or few-shot learning
phrase. As shown in Figure 2, zero-shot prompts
can be written as if one is making a request/asking
a question to a fellow human being. In this case,
we simply ask the model for three sentences that
have to meet a set of criteria (sentences cannot be
longer than 20 words and have to clarify the mean-
ing and usage of the target item). With few-shot
prompting, the request/question is complemented
by (or sometimes even replaced by) a limited num-
ber of examples the model can learn from, as il-
lustrated in Figure 3. In this case, we just take the
three sentences returned by the model for the zero-
shot query, convert them into a structured format,
and prompt the model to return the corresponding
information for a new item. The underlying idea
is that the model will “deduce” the desired char-
acteristics from the examples (e.g., the sentence
length) and use this information when generating
the response for the new items.

The GenAI-driven creation of example sen-

Figure 2: Artificially generated example sentences by
means of zero-shot learning (i.e. a simple instruc-
tion/question) as prompting technique. Model: Open-
AI’s GPT-3.5 (accessed through ChatGPT interface).
Date of performing prompt: 6 May 2024.

Figure 3: Artificially generated example sentences by
means of few-shot learning as prompting technique.
Model: OpenAI’s GPT-3.5 (accessed through Chat-
GPT interface). Date of performing prompt: 6 May
2024.
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tences has been explored in the context of data-
driven learning (Crosthwaite and Baisa, 2023) and
as a means to clarify difficult words (Kohnke
et al., 2023). A large-scale study which specifi-
cally assesses the pedagogical suitability of arti-
ficially generated example sentences has not yet
been performed, a gap we aim to fill with this
study. However, an important observation to make
in the context of GenAI research is that the non-
deterministic nature of the (online) models makes
the research, per definition, irreplicable. Due to
randomness being included in the generation pro-
cess, GenAI models can produce different outputs
at different times for the same input prompts1.
Regular updates to existing models (e.g., of Open-
AI’s proprietary GPT-3.5) and launches of new
models (e.g., OpenAI’s GPT-4 and GPT-4o or
Google’s Gemini models) further complicate ad-
equately assessing the pedagogical value of arti-
ficially generated sentences. Nevertheless, even
given these methodological drawbacks, there is
a growing consensus that scientific research is
needed to explore the use of GenAI models for
the creation of all kinds of L2 learning materials
and to help shed light on the pedagogical suitabil-
ity of this approach (Crosthwaite and Baisa, 2023;
Caines et al., 2023).

3 Methodology

As mentioned in the introduction, our aim is to
evaluate the pedagogical usability of artificially
generated example sentences by comparing them
to corpus-based sentences, which have become
the standard approach for obtaining pedagogically
suitable example sentences. To this end, we or-
ganise an experiment in which L2 Spanish learn-
ers compare corpus examples selected according
to a dedicated sentence selection framework (Sec-
tion 3.2) with examples generated by means of
OpenAI’s GPT-3.5 Turbo model, using different
types of prompts (Section 3.3). In total, we re-
cruit seven students from both beginner and ad-
vanced proficiency levels, all with Dutch as their
L1 (see Section 3.4 for more details). For the
former group, we envisage a general vocabulary
learning course as the target setting; for the latter,

1Recently, many large language model providers added a
“seed” parameter to their (API) interface, allowing develop-
ers to receive (mostly) consistent outputs. Yet, due to the in-
herent non-determinism of GenAI models, there will always
be a small chance that responses differ even when a seeding
parameter is specified.

we take a language for specific purposes course on
legal vocabulary as our anchor point. The research
questions we aim to answer are defined as follows:

1. Which source of example sentences is found
most suitable by L2 learners: corpus-based or
GenAI-based?

2. Which type of prompt used to query the
GenAI model is found most suitable by L2
learners: zero shot (with varying degrees of
specificity) or few shot?

3.1 Dataset

For each of the two target groups (beginner and ad-
vanced), we collect a set of 250 target items, which
are selected based on their relevance and repre-
sentativeness for the target setting defined above.
For the beginner group, we take the first 150
nouns, 50 verbs, and 50 adjectives from the 1,001-
2,000 frequency range in the Davies and Hay-
ward Davies (2018) word list, excluding Spanish-
Dutch cognates (e.g., ES proyecto - NL project -
EN project). For the advanced group, we take a
25M specialised corpus containing newspaper ar-
ticles on legal topics2 as our starting point, rank
all words in the corpus based on Odds Ratio as the
keyness metric (Pojanapunya and Watson Todd,
2018; Gabrielatos, 2018) and select the first 150
nouns, 50 verbs, and 50 adjectives from the re-
sulting list. Apart from cognates, we also ex-
clude region-specific eponyms (e.g., baltarismo,
which refers to the political movement named af-
ter the Galician politician José Manual Baltar) and
derivations with ex, sub, and vice as the prefixes
(e.g., exdiputado: ‘former MP’; subgobernador:
‘vice governor’; vicepresidente: ‘vice president’).

3.2 Corpus-based Examples

To obtain corpus-based sentences for the 500 tar-
get items, we develop a dedicated framework to
select examples from corpora. Our framework
– named SelEjemCor (Selección de Ejemplos de
Corpus) – builds on the work of Pilán et al.
(2016), who developed the HitEx sentence selec-
tion framework for L2 Swedish (see also Sec-
tion 2.1). In comparison to HitEx, our frame-
work – the first of its kind for L2 Spanish – in-
cludes the integration of a tailor-made word dif-
ficulty classifier and the promotion of typicality

2The corpus is available within the Spanish Corpus An-
notation Project (SCAP; Goethals, 2018).
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to being a main selection criterion as novel as-
pects. A comprehensive overview of all selection
criteria included in the framework is presented in
Appendix A. The Python implementation of the
framework is made publicly available in a GitHub
repository. To obtain the morphosyntactic infor-
mation required for certain selection criteria (e.g.,
on part-of-speech tags, morphosyntactic features,
and dependency relations), the Python module
makes use of spaCy’s automatic morphosyntac-
tic analysis pipeline3. To render our framework
as language-independent as possible, we use the
morphosyntactic categories and labels proposed
by the Universal Dependencies initiative (Nivre
et al., 2016).

All Boolean criteria in SelEjemCor function as
filters (i.e. if the criterion is not met, the sentence
will be excluded from the selection), whereas all
numerical criteria function as rankers (i.e. the
closer the numerical value lies to the desired value,
the higher the sentence will be ranked). For fil-
ters, criterion values can be set to either True (fil-
ter active, all sentences which do not pass the fil-
ter are excluded) or None (filter inactive). For
rankers, values can be set to any numerical value
(in which case the criterion will act as a threshold-
based ranker, with all sentences obtaining a better
value than the threshold being considered equally
suitable), to all (in which case the selection algo-
rithm will simply rank all sentences from highest
to lowest value), or to None (ranker inactive). In
the end, all sentences which have not been filtered
out receive one single overall “goodness score”,
which corresponds to the average of all individual
ranking positions.

We apply the SelEjemCor framework to a 7.5M
corpus containing accessible reportages about
tourist destinations4 (for the 250 items in the be-
ginner group) and to the abovementioned 25M
specialised corpus containing newspaper articles
on legal topics (for the 250 items in the ad-
vanced group). For each target item, we select
the top-ranked sentence according to the selec-
tion algorithm explained above. The values set
for the different selection criteria are included in
Appendix A. For the advanced group, we make

3Even though other NLP toolkits such as UDPipe and
Stanza tend to perform (slightly) better at tagging and pars-
ing natural text, spaCy’s built-in large and Transformer-based
models have shown to achieve near state-of-the-art perfor-
mance with a significantly higher processing speed.

4Also compiled within SCAP.

the values slightly more tolerant in terms of non-
lemmatised tokens, modal verbs, word frequency,
and out-of-vocabulary words.

3.3 GenAI-based Examples
To obtain the artificially generated sentences, we
use OpenAI’s GPT-3.5 Turbo model. We de-
fine four different prompt types and correspond-
ing prompt texts to access the model, with the
prompt texts also varying according to the target
group. The prompts define both a system role
(which specifies the way in which the model an-
swers questions) and a user role (which specifies
the output that should be returned). A short de-
scription of the prompt types is provided below
(see Appendix B for the full overview):

1. ZS-GEN (zero-shot general): only the broad
context (L2 learning setting; Spanish as tar-
get language; desired sentence length; sen-
tence has to be usage example) is included in
the prompt.

2. ZS-GEN+AUD (ZS-GEN plus target audi-
ence): apart from the broad context, also the
target audience is specified in the prompt.

3. ZS-GEN+AUD+CRIT (ZS-GEN+AUD
plus criteria): next to the broad context and
the target audience, the prompt also includes
the specific “goodness” criteria the output
sentence should adhere to.

4. FEWSHOT: a limited number of suitable
sentences (one sentence for each part of
speech; with target words that do not oc-
cur in dataset) are provided in the prompt
for the model to learn. The example words
are selected from the 2,001-3,000 frequency
range in Davies and Hayward Davies (2018)
and the sentences are extracted from the
Spanish Clave dictionary (González, 2012).
The prompt also presents the broad context
and differentiates between the two target au-
diences (see ZS-GEN and ZS-GEN+AUD
above).

To enable the analysis at the layer of the prompt
type, we randomly subdivide the 250 items in each
group (beginner and advanced) into five subsets of
50 items (30 nouns, 10 verbs, and 10 adjectives).
For the 50 items in the first subset (IDs 1 and 6),
we generate an example sentence based on the ZS-
GEN prompt type; for the second set (IDs 2 and
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Figure 4: Example of pairwise comparison between corpus-based and GenAI-based example sentences (in subset
1 to 4 and subset 6 to 9). The order in which the sentences are presented is randomised.

Figure 5: Example of BWS comparison between corpus-based and GenAI-based example sentences (in subset 5
and 10). The order in which the sentences are presented is randomised.

Prompt type
Subset ID

BEG ADV

ZS-GEN 1 6

ZS-GEN+AUD 2 7

ZS-GEN+AUD+CRIT 3 8

FEWSHOT 4 9

ALL 5 10

Table 1: Overview of prompt types used to generate ar-
tificial example sentences. “BEG” stands for beginner,
“ADV” for advanced.

7) based on ZS-GEN+AUD; for the third set (IDs
3 and 8) based on ZS-GEN+AUD+CRIT; and for
the fourth set (IDs 4 and 9) based on FEWSHOT
(see Table 1). For the 50 items in the fifth subset
(IDs 5 and 10), we generate an artificial example
sentence based on all four prompt types. Finally, a
Dutch translation is added for all 500 target items
in the dataset (see Table 2 for a dataset sample).

3.4 Evaluation Procedure

For each of the two target audiences (beginner and
advanced), the first four subsets are used to per-
form pairwise comparisons between corpus-based
sentences and artificially generated ones. As the
artificial sentences are generated based on differ-
ent prompts, comparing the results at subset level
will also enable us to gain insights into the per-

formance of each prompt type. The fifth sub-
set is used to compare all five possible sentence
sources (i.e. corpus-based and the four differ-
ent GenAI prompts) at once in a best-worst scale
(BWS) setup. The 250 beginner items are eval-
uated by three L2 Spanish learners (≈ B1 profi-
ciency level, 19 years old, L1 Dutch), the 250 ad-
vanced items are assessed by four learners (≈ C1
proficiency level, 22-24 years old, L1 Dutch)5.

Prior to starting the experiment, participants
were given a written document including the in-
structions, which were discussed orally with one
of the researchers involved in the study. In the
pairwise comparisons, participants were asked to
indicate the best sentence, as illustrated in Fig-
ure 4; in the BWS comparisons, they were asked
to indicate both the best and the worst one, as illus-
trated in Figure 5. To make the term “best” as con-
crete as possible, the instructions stipulated that
the participants should first check if the sentences
complied with a series of criteria, which are ex-
plained below. Together, these descriptions reflect
how the term “pedagogical suitability” as used in
this paper should be interpreted.

• The sentence is not a definition. If it is, the
participant should write “definition” in the

5All students are enrolled in the Applied Linguistics study
career at Ghent University, Belgium. The Applied Linguistics
curriculum stipulates – based on the CEFR scale – the mini-
mal linguistic competences students should gain before they
are admitted to the next year of the career. As a result, we
can estimate the proficiency level of the learners based on the
year they are enrolled in.
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Item POS Value ID Corpus-based GenAI-based

enemigo
(‘vijand’)

NOUN 1,024 1 El coche es el enemigo público
número uno: en Londres se aplica
una tasa ambiental a los vehı́culos
más contaminantes.

Durante la guerra, es importante re-
conocer quién es tu verdadero ene-
migo para poder luchar de manera
estratégica y efectiva.

causar
(‘veroorzaken’)

VERB 1,007 3 Los bares y restaurantes de madera
causan una impresión de poblado
tradicional.

El exceso de velocidad puede causar
accidentes graves en la carretera.

polı́tico
(‘politiek’)

ADJ 1,237 5 Los de los partidos polı́ticos
acompañan a sus votantes en la otra
vida.

• Es importante estar informado so-
bre la situación polı́tico-social de
un paı́s para comprender su reali-
dad y desarrollo.

• El discurso polı́tico del presidente
generó opiniones divididas entre
la población.

• La situación polı́tica en América
Latina es muy complicada debido
a diversos factores económicos y
sociales.

• El discurso polı́tico del presidente
fue muy persuasivo y tuvo gran
impacto en la opinión pública.

exacción
(‘heffing’)

NOUN 75.8 7 La investigación le atribuye pre-
suntos delitos de cohecho, prevar-
icación, blanqueo de capitales y
fraude y exacciones ilegales.

La exacción de impuestos a menudo
genera debate y controversia en la
sociedad.

deslegitimar
(‘delegitimeren’)

VERB 206 9 Los independientes, a su modo de
ver, “deslegitiman y desnaturalizan
la participación de los partidos”.

El periódico publicó un artı́culo que
intentó deslegitimar las acusaciones
contra el polı́tico.

Table 2: Dataset sample. “ID” refers to the subset ID. Values for the beginner group (subset 1-5) refer to the rank
in Davies and Hayward Davies (2018); values for the advanced group (subset 6-10) refer to the Odds Ratio value.

“comment” column and annotate the other
sentence as “best”.

• The sentence can be understood without
any additional context (i.e. it is context-
independent). If not, the participant should
write “context-dependent” in the “comment”
column and annotate the other sentence as
“best”.

• The sentence does not contain words that
are too difficult. If it does, the participant
should write “too difficult” in the “comment”
column and annotate the other sentence as
“best”.

In case the example sentences adhered to all
criteria, participants were instructed to indicate
which sentence they found best (and worst in case
of the BWS setup) based on their intuitions and
needs as L2 learners. Regarding measures taken
to arrive at qualitative annotations, we organised
the first batch of ten annotations as an on-site ses-
sion without any time constraints, allowing us to

provide guidance and answer questions whenever
necessary. The remaining annotations could be
completed at home. For their annotation work,
the participants also received a financial compen-
sation, serving as an additional incentive for them
to complete the classification task diligently.

Finally, we checked if the sentences complied
with the following formal criteria:

• The target item occurs in the sentence. If not,
we label the other sentence as “best”6.

• The target item has the correct part of speech
(POS). If not, we label the other sentence as
“best”.

• The sentence is complete (i.e. it starts
with capital letter and ends with punctuation
mark). If not, we label the other sentence as
“best”.

6Unless the target item does also not occur in that sen-
tence, in which case we label both sentences as “N/A”.
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4 Results

The results of the experiment have been sum-
marised into a series of tables, listed below. The
tables will be extensively referred to in our two
main analyses: the comparison between corpus-
based and GenAI-based as the source of the sen-
tence (RQ1; Section 4.1) and the comparison be-
tween the different prompt types to generate the
artificial example sentences (RQ2; Section 4.2).

• Table 3: results for pairwise comparisons
(statistics)

• Table 4: results for pairwise comparisons
(compliance with criteria)

• Table 5: results for BWS comparisons (statis-
tics)

• Table 6: inter-annotator agreement (IAA)
scores per subset

4.1 Comparison between GenAI-based and
Corpus-based

As appears from Table 3, GenAI-based sen-
tences are more frequently being found suitable
than corpus-based sentences, with learners unan-
imously choosing the artificially generated sen-
tence over the corpus-based one in 265 of the
400 pairwise comparisons (148/200 for the begin-
ner group and 117/200 for the advanced group).
In comparison, where the source is corpus-based,
this value only amounts to 10/400. The moderate
to substantial IAA scores (Table 6) for the corre-
sponding subsets (between 0.62 and 0.72 for be-
ginner and 0.55 and 0.65 for advanced) indicate
that these annotations can be considered reliable,
especially for the beginner group.

When looking at why corpus-based sentences
are found less suitable than their GenAI-based
counterparts, Table 4 reveals that – apart from a
few cases where they contain the target item in a
wrong POS (Example 1) – the corpus examples
are less preferred mainly because they are (1) more
context-dependent (Example 2, with la otra [‘the
other’] being dependent on the preceding context)
and (2) too difficult (e.g., rugen and se abalanzan
in Example 3). In other words, the selection algo-
rithm based on the SelEjemCor framework some-
times fails to meet the main criterion of context
independence and the specific criterion of difficult

vocabulary (see Appendix A). Especially the con-
text dependence of the corpus-based sentences (in
120 of the 400 sentences, i.e. 30%) can be con-
sidered an indication that selecting suitable exam-
ples from corpora at sentence level is a challenging
task. Working at paragraph level might reduce this
risk at context dependence (as paragraphs should
constitute a more coherent unit of text), but will at
the same time also increase the cognitive load and
response time of the learning materials based on
the examples.

1. Un parlamentario del tripartito puso como
ejemplo de “buen funcionamiento” y “dis-
creción” la comisión de investigación foral
sobre el fraude de la Hacienda de Irún. (‘An
MP of the tripartite gave as an example of
“good functioning” and “discretion” the foral
commission of enquiry into the fraud of the
Irún Treasury.’) – Example taken from sub-
set 6 for the adjective tripartito

2. Mercedes Alaya instruye ahora además la
otra gran macrocausa andaluza: el fraude en
los cursos de formación. (‘Mercedes Alaya is
now also investigating the other big Andalu-
sian mega lawsuit: the fraud in the training
courses.’) – Example taken from subset 7 for
the noun macrocausa

3. En invierno rugen los torrentes que se abalan-
zan montaña abajo, y el aire fresco agita las
ramas de los robles. (‘In winter the torrents
roar and rush down the mountain, and the
fresh air stirs the branches of the oak trees.’)
– Example taken from subset 1 for the noun
rama

In the subsets with BWS evaluations (Table 5),
we observe a similar trend: corpus-based exam-
ples are more frequently annotated as “worst”
(28/50 times by all participants in the beginner
group, 26/50 times in advanced) compared to ar-
tificially generated examples (2/50 in total for all
GenAI prompt types in both beginner and ad-
vanced groups). Yet, even though the GenAI ap-
proach outperforms the corpus-driven approach by
a large margin, Table 4 highlights that there is
a non-negligible number of cases where the ar-
tificially generated sentences contain the target
item in a wrong POS (3 instances in the beginner
group, 7 in the advanced group; Example 4), con-
sist of a definition (12 instances in the advanced
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Subset
GenAI-based | Corpus-based

NOUN ( / 30) VERB ( / 10) ADJ ( / 10) Total ( / 50)

1 23 | 0 7 | 0 8 | 1 38 | 1

2 25 | 0 6 | 1 8 | 0 39 | 1

3 24 | 0 6 | 0 6 | 0 36 | 0

4 22 | 1 7 | 1 6 | 0 35 | 2

Total 94 | 1 26 | 2 28 | 1 148 | 4

6 16 | 3 6 | 1 6 | 0 28 | 4

7 19 | 0 6 | 0 3 | 1 28 | 1

8 19 | 0 8 | 0 6 | 0 33 | 0

9 15 | 1 7 | 0 6 | 0 28 | 1

Total 69 | 4 27 | 1 21 | 1 117 | 6

Table 3: Statistics on example sentences annotated as “best” by all participants (N = 3 for subsets 1-4 and N = 4
for subsets 6-9) in pairwise comparison format. Results for the artificially generated sentences appear before the
vertical line, results for corpus-based appear after.

GenAI-based | Corpus-based

ZS-G ZS-G+A ZS-G+A+C FEWSH

Beginner

Definition 0 | 0 0 | 0 0 | 0 0 | 0

Context-dependent 0 | 16 0 | 13 0 | 15 0 | 17

Too difficult 1 | 11 1 | 12 0 | 11 0 | 9

No target item 0 | 0 1 | 0 0 | 0 0 | 0

Wrong POS 1 | 1 1 | 1 0 | 0 1 | 0

Incomplete 0 | 2 0 | 2 0 | 0 0 | 1

Advanced

Definition 3 | 0 1 | 1 5 | 0 3 | 0

Context-dependent 1 | 14 0 | 16 1 | 15 1 | 14

Too difficult 3 | 23 0 | 21 0 | 19 2 | 23

No target item 0 | 0 0 | 0 0 | 0 0 | 0

Wrong POS 2 | 3 2 | 1 3 | 1 0 | 0

Incomplete 0 | 0 0 | 0 0 | 0 0 | 0

Table 4: Details on sentences that did not meet the suitability criteria defined in the annotation instructions, for
the pairwise comparison subsets (see also Section 3.4). The number of sentences for GenAI-based appear before
the vertical line, the number for corpus-based after the vertical line (on a total of 50, i.e. the number of sentences
in a subset). “ZS-G” stands for the ZS-GEN prompt type, “ZS-G+A” for ZS-GEN+AUD, “ZS-G+A+C” for ZS-
GEN+AUD+CRIT, and “FEWSH” for FEWSHOT.
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Full agreement | ≥ 1 agreement

CORP ZS-G ZS-G+A ZS-G+A+C FEWSH

5best NOUN 0 | 2 0 | 19 4 | 16 0 | 16 0 | 13
VERB 0 | 1 0 | 3 2 | 6 1 | 3 0 | 5
ADJ 0 | 0 0 | 1 0 | 2 2 | 5 4 | 6

Total 0 | 3 0 | 23 6 | 24 3 | 24 4 | 24

5worst NOUN 17 | 29 0 | 1 0 | 2 0 | 4 1 | 7
VERB 7 | 9 0 | 2 0 | 1 0 | 0 0 | 1
ADJ 4 | 9 0 | 2 0 | 3 0 | 2 1 | 2

Total 28 | 47 0 | 5 0 | 6 0 | 6 2 | 10

10best NOUN 0 | 3 0 | 20 0 | 16 1 | 20 2 | 18
VERB 1 | 1 1 | 7 0 | 5 1 | 4 0 | 4
ADJ 0 | 1 1 | 5 0 | 5 1 | 7 0 | 6

Total 1 | 4 2 | 32 0 | 26 3 | 31 2 | 28

10worst NOUN 17 | 27 0 | 3 1 | 4 0 | 1 0 | 3
VERB 3 | 8 0 | 1 0 | 3 0 | 1 1 | 2
ADJ 6 | 10 0 | 2 0 | 2 0 | 0 0 | 3

Total 26 | 45 0 | 6 1 | 9 0 | 2 1 | 8

Table 5: Statistics on example sentences annotated as “best” and “worst” in subsets 5 (beginner target group) and
10 (advanced). “CORP” stands for corpus-based. The value before the vertical line refers to the sentences for
which all of the participants (N = 3 for subset 5 and N = 4 for subset 10) agreed, the value after the vertical line
reports the number of sentences for which at least one of the participants chose the sentence. The values in the
“Total” rows are on a total of 50 (i.e. the number of sentences in a subset). “ZS-G” stands for the ZS-GEN prompt
type, “ZS-G+A” for ZS-GEN+AUD, “ZS-G+A+C” for ZS-GEN+AUD+CRIT, and “FEWSH” for FEWSHOT.

Subset IAA (α) ZS-G ZS-G+A ZS-G+A+C FEWSH ALL

1 0.7 ✓
2 0.72 ✓
3 0.66 ✓
4 0.62 ✓
5best 0.29 ✓
5worst 0.61 ✓

Avg 0.6 ✓ ✓ ✓ ✓ ✓

6 0.6 ✓
7 0.58 ✓
8 0.55 ✓
9 0.65 ✓
10best 0.22 ✓
10worst 0.71 ✓

Avg 0.55 ✓ ✓ ✓ ✓ ✓

Table 6: IAA scores – as computed by Krippendorff’s alpha (α) – for the annotation task in which L2 learners
compare corpus-based sentences to artificially generated ones. “ALL” refers to subsets for which an example
sentence based on each of the four different input prompts is generated. “Avg” rows report the average IAA value
per target group. “ZS-G” stands for the ZS-GEN prompt type, “ZS-G+A” for ZS-GEN+AUD, “ZS-G+A+C” for
ZS-GEN+AUD+CRIT, and “FEWSH” for FEWSHOT.
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group; Example 5), or are found to be too diffi-
cult (2 instances in the beginner group, 5 in the
advanced group; Example 6, with the word desen-
cadenó being considered difficult by some of the
advanced learners). This finding is also backed
by the BWS evaluation results in Table 5, which
show that there are 27/50 (beginner) and 25/50
(advanced) artificially generated examples anno-
tated as “worse” by at least one of the learners
(“≥ 1 agreement”) in total across the four prompt
types.

4. Mañana vamos a visitar el museo de arte
moderno en el centro de la ciudad. (‘Tomor-
row we are going to visit the museum for
modern art in the city centre.’) – Example
taken from subset 2 for the noun mañana

5. El blanqueo de dinero es un delito grave que
involucra la transformación de dinero de ori-
gen ilı́cito en apariencia lı́cita. (‘Money laun-
dering is a serious crime involving the con-
version of money of an illegal nature into a
lawful form.’) – Example taken from subset
6 for the noun blanqueo

6. La destitución del director desencadenó una
crisis en la empresa que aún no se ha resuelto.
(‘The dismissal of the director triggered a cri-
sis in the company that has not yet been re-
solved.’) – Example taken from subset 9 for
the noun destitución

4.2 Comparison between Different Prompt
Types

When comparing the full agreement results for the
different GenAI prompts in Table 3, there is no
noticeable difference (total scores range between
35/50 and 39/50 for the beginner group and be-
tween 28/50 and 33/50 for the advanced group).
The only values which are slightly out of the or-
dinary are those for the adjectives in the advanced
group: for ZS-GEN, ZS-GEN+AUD+CRIT, and
FEWSHOT 6/10 sentences are annotated as “best”
by all of the learners, while for the ZS-GEN+AUD
prompt type this value only amounts to 3/10.
Yet, this evidence is not substantial enough from
which to draw conclusions, particularly because
ZS-GEN+AUD obtains the top value (8/10) in the
corresponding subset for the beginner group (sub-
set 2, ADJ).

The results of the BWS evaluations (Table 5),
however, paint a somewhat different picture. For

the beginner group, the full agreement scores show
that specifying the target audience (ZS-G+A, 6/50
chosen as “best”) and the criteria (ZS-G+A+C,
3/50) has an added value compared to the broad
context description (ZS-G, 0/50), just as providing
the GenAI model with a few examples (FEWSH,
4/50). Nevertheless, when looking at the “≥ 1
agreement” results, this difference disappears:
23/50 for ZS-GEN and 24/50 for the other three
prompt types. Moreover, for the advanced group
the ZS-GEN prompt type actually comes out as
the arguably second-best prompt type with 2/50
full agreement and 32/50 ≥ 1 agreement (com-
pared to 0 and 26/50 for ZS-GEN+AUD, 3 and
31/50 for ZS-GEN+AUD+CRIT, and 2 and 28/50
for FEWSHOT). In other words, even though the
BWS evaluations reveal somewhat more outspo-
ken differences, these differences do not follow
any clear pattern. This observation is also corrob-
orated by the IAA scores, which are fairly low for
the “best” annotations in subset 5 (α = 0.29; be-
ginner group) and 10 (α = 0.22; advanced group).

5 Discussion

Regarding RQ1 (corpus-based versus GenAI as
sentence source), the experiment has shown that,
overall, L2 Spanish learners find artificially gen-
erated example sentences considerably more suit-
able than corpus-based sentences. The evaluation
by the learners revealed that 30% of the corpus
sentences were not fully comprehensible without
further context. Put otherwise, GenAI methods
seem most sensible to use for examples at sen-
tence level, while corpus-based methods might be
more suitable to retrieve items in a broader con-
text, for example at paragraph level. However, the
results also showed that in a number of cases the
L2 learners did prefer the corpus-based example
at sentence level, implying that exclusive reliance
on GenAI to create sentence-level example sen-
tences is not to be recommended. Moreover, even
though the large language models used to generate
the artificial examples are trained on large corpora,
it is highly questionable if these sentences can be
said to represent an authentic expression of lan-
guage. Therefore, a third method which combines
the best of both worlds might be worth consider-
ing: starting from a corpus-based example and us-
ing a GenAI model to rewrite it.

As for RQ2 (comparison between GenAI
prompt types), the results were inconclusive:
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adding a higher degree of specificity (by describ-
ing the target audience and the criteria the sentence
should meet) did not result in any observable im-
provement compared to using a zero-shot prompt
that only sketched the broad context. Opting for
a few-shot prompt (i.e. providing a few examples
the model can learn from) instead of a zero-shot
prompt did not have any noticeable impact on the
results either.

A first limitation of the study is that both the
dataset size and the number of L2 learners eval-
uating the example sentences should be increased
to arrive at more substantiated conclusions. Fur-
thermore, even though the four different prompts
provided considerable variation, more extensive
prompt engineering could constitute a valuable
avenue for further research, as would the com-
parison between different large language mod-
els for generating the artificial examples. Es-
pecially the choice between open-source (e.g.,
Meta’s Llama models) and proprietary/closed-
source models (e.g., OpenAI’s GPT models) will
become one of the most crucial methodological
decisions, with the possibility to have a “peek un-
der the hood” being weighed against performance
levels and ease of use.

A third potential limitation is that – in the cur-
rent setup – the target words may appear in a dif-
ferent linguistic construction (e.g., as a part of a
collocation/colligation or not), meaning (e.g., lit-
eral versus metaphorical sense), or syntactic role
(e.g., subject versus object position). It might be
argued that differences in these aspects should be
limited as much as possible, as they could have
an impact on how easy or difficult it is for learn-
ers to understand the example sentences. Finally,
the role of the texts from which the corpus-based
sentences are chosen should also be analysed in
further detail, for example by studying if com-
piling a specific corpus consisting exclusively of
texts that have been written for users with a lower
proficiency (e.g., from newspapers for children or
adolescents) has a positive impact on the corpus-
based scores for the beginner group.

6 Conclusion and Future Work

In this paper we compared corpus-based sentences
to artificially generated sentences in terms of ped-
agogical suitability. We constructed a dataset con-
taining 500 target items (250 vocabulary items
to be taught to beginner learners and 250 to

advanced learners), for which we selected cor-
pus examples according to a dedicated selection
algorithm based on the SelEjemCor framework
(Appendix A) and generated artificial examples
by querying the GPT-3.5 Turbo large language
model. The comparative evaluation of the sen-
tences was performed by means of an experiment
with seven students of L2 Spanish. The results of
the experiment can be summarised into three main
takeaways:

1. L2 learners find GenAI-based sentences con-
siderably more suitable than corpus-based
sentences. Of the 400 pairwise comparisons
between corpus-based and GenAI-based sen-
tences, 265 artificially generated examples
were found suitable by all learners, compared
to only 10 corpus-based examples.

2. Despite their excellent performance, the use
of GenAI models has also shown to yield
a number of unsuitable example sentences
(with the target word in a wrong POS, the
sentence being a definition instead of a usage
example, or the sentence containing words
that are too difficult).

3. A general zero-shot prompt describing the
broad context of the task (i.e. the creation of
example sentences for language learning pur-
poses) provides enough information to cre-
ate suitable example sentences. More spe-
cific prompts (describing the target audience
and the criteria the sentence should meet) do
not lead to better results, nor does formulat-
ing the prompt in a few-shot format (i.e. con-
taining a few examples the model can learn
from).

In potential follow-up experiments, the limita-
tions discussed in Section 5 should be addressed,
starting with increasing the number of target items
and participants, evaluating the impact of using
different corpora, and applying more extensive
prompt engineering based on techniques for ed-
ucational purposes in general (Cain, 2024) and
for L2 learning purposes in particular (Isemonger,
2023). To convert the experimental design adopted
in the current study into a more “controlled envi-
ronment”, testing different GenAI models with the
same prompts or using designated platforms such
as LMStudio are options worth considering. Ad-
ditionally, fine-tuning the annotation instructions
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(e.g., by adding an explicit evaluation of the gram-
matical soundness and syntactic properties of the
sentence) would allow us to gain more in-depth
insights into the exact reasons why one example
sentence is preferred over another.

Furthermore, as hinted at in the discussion (Sec-
tion 5) as well, developing a new method that
combines a corpus-based and GenAI-based ap-
proach constitutes another important topic for fu-
ture research. In such a “hybrid” method, au-
thentic corpus-based examples can be taken as
the starting point and GenAI models can be used
as the means to rewrite the examples in order
to make them meet the required criteria, espe-
cially regarding context independence and diffi-
culty. Different types of rewriting prompts could
be compared, from zero shot over few shot to
retrieval-augmented generation (in which we let
the model “look for” the most relevant information
in large set of corpus examples and then prompt
it to generate new examples based on this infor-
mation). Yet, our (preliminary) finding that the
corpus-based method (yielding authentic example
sentences) is being outperformed by the GenAI-
based one (yielding artificial examples) can also
be considered a reason to bring that other source
of non-authentic examples, the invented example
(IE; Section 2.1), back into the equation. Conduct-
ing an experiment in which IEs are compared to ar-
tificially generated sentences could shed renewed
light on the role IEs can play in an L2 setting.
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Appendices

Appendix A. SelEjemCor framework
The criteria included in the SelEjemCor are pre-
sented in Table 7. The values set for obtaining the
example sentences in the experiment are included
in the “Vset BEG” and “Vset ADV” columns.

Appendix B. Prompt types
The different prompt types used in the experiment
are presented in Table 8.
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Nr Criterion Vset BEG Vset ADV

/ Proficiency level target audience. B1 C1
/ Number of years experience target audience. 1 3
1 Boolean value indicating if search term has to occur in sentence. True True
2 Numerical value indicating maximum number of times search term can occur in sen-

tence.
1 1

3 Numerical value between 0 and 1 indicating at which position search term has to occur. None None
4 Boolean value indicating if sentence has to contain dependency root. True True
5 Boolean value indicating if sentence has to contain subject or finite verb. True True
6 Boolean value indicating if sentence has to contain explicit subject. True True
7 Boolean value indicating if sentence has to start with capital letter and end with punc-

tuation mark.
True True

8 Numerical value indicating maximum number of tokens which do not occur in SCAP-
based lemma lexicon.

0 1

9 Numerical value indicating maximum number of non-alphabetical tokens (e.g., mark-
up traces in web materials).

0 0

10 Boolean value indicating that no conjunction or subjunction can appear in sentence-
initial position.

True True

11 Numerical value indicating maximum number of demonstrative pronouns (e.g.,
este|esta: ‘this’; ese|esa: ‘that’).

0 0

12 Numerical value indicating maximum number of words/phrases which occur in precom-
piled list of anaphoric expressions (e.g., allı́: ‘there’; aquı́: ‘here’; entonces: ‘then’).

0 0

13 Numerical value indicating maximum number of negation adverbials (e.g., no: ‘no’;
nadie: ‘nobody’; nada: ‘nothing’).

0 0

14 Boolean value indicating that sentence cannot represent direct question. True True
15 Boolean value indicating that sentence cannot represent direct speech (i.e. speaking

verb combined with delimiters such as quotation marks).
True True

16 Boolean value indicating that sentence cannot represent answer to closed question (i.e.
sentence-initial adverb of affirmation or negation followed by delimiter).

True True

17 Numerical value indicating maximum number of tokens which occur in precompiled
list of modal verbs (when functioning as an auxiliary verb).

1 3

18 Numerical value indicating maximum number of tokens in the sentence (including
punctuation).

10-30 10-30

19 Numerical value indicating maximum number of words above the proficiency level of
the target audience according to a personalised machine learning classifier.

0 0

20 Numerical value indicating minimum frequency of words in SCAP lemma frequency
dictionary (expressed in percentiles).

P90 P75

21 Numerical value indicating maximum number of words not included in SCAP token
lexicon.

0 1

22 Boolean value indicating that sentence cannot contain words which occur in precom-
piled list of potentially sensitive words related to PARSNIP topics.

True True

23 Numerical value indicating maximum number of proper names. 2 2
24 Numerical value indicating minimum average normalised Lexicographer’s Mutual In-

formation (Bouma, 2009) score for verb-noun pairs (in subject, object, and oblique
relation) and all noun-adjective pairs (in attributive or predicative relation) in the sen-
tence. The scores are retrieved from a SCAP-based resource.

all all

25 Numerical value indicating minimum average ∆P score (Ellis, 2006; Gries, 2013) for
verb-noun pairs (in subject, object, and oblique relation) and all noun-adjective pairs (in
attributive or predicative relation) that include the search term. The scores are retrieved
from a SCAP-based resource.

all all

26 Numerical value indicating minimum average cosine similarity of serch term with head
and dependents (both static and contextualised word embeddings).

all all

27 Numerical value indicating minimum average n-gram frequency of the sentence (ex-
cluding n-grams with punctuation marks). Frequencies are retrieved from SCAP dictio-
nary containing lemma-based n-grams.

all all

Table 7: Criterion descriptions and Values set for SelEjemCor criteria. Filters are put in bold, rankers in plain text.
“BEG” and “ADV” refer to the beginner and advanced target groups respectively.
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Prompt ID Prompt text

SYS1 You are a teacher of Spanish as a foreign language.

SYS2 You are a teacher of Spanish as a foreign language to a beginner/lower-intermediate
group of university students who have been studying Spanish for one year.

SYS3 You are a teacher of Spanish as a foreign language to an upper-intermediate/advanced
group of university students who have been studying Spanish for three years.

USR1 Write a sentence between 10 and 30 words in Spanish that presents an authentic usage of
the Spanish [POS] ‘[WORD]’, a vocabulary item that has to be learnt by your students.
The sentence should not be a definition of the word.

USR2 Write a sentence between 10 and 30 words in Spanish that presents an authentic usage of
the Spanish [POS] ‘[WORD]’, a vocabulary item that has to be learnt by your students.
The sentence should not be a definition of the word. The sentence should be well-formed
and context-independent, it should be tailored to the proficiency level of your students,
and it should contain phrases that frequently co-occur with the target item ‘[WORD]’.

USR3 Write a sentence between 10 and 30 words in Spanish that presents an authentic usage
of a Spanish vocabulary item that has to be learnt by your students: word=diseño; part
of speech=noun; sentence=Para hacer un buen diseño de un mueble hay que pensar
en su utilidad. ### word=comprometer; part of speech=verb; sentence=Sus revelaciones
comprometı́an en el caso de corrupción a otras dos organizaciones. ### word=dramático;
part of speech=adjective; sentence=Toda la prensa se hace eco del dramático caso de la
niña desaparecida. ### word=[WORD]; part of speech=[POS]; sentence=

Prompt type System role User role Subset

Beginner

ZS-GEN SYS1 USR1 1

ZS-GEN+AUD SYS2 USR1 2

ZS-GEN+AUD+CRIT SYS2 USR2 3

FEWSHOT SYS2 USR3 4

Advanced

ZS-GEN SYS1 USR1 6

ZS-GEN+AUD SYS3 USR1 7

ZS-GEN+AUD+CRIT SYS3 USR2 8

FEWSHOT SYS3 USR3 9

Table 8: Detailed overview of prompt types used to generate artificial example sentences.
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Abstract

This study is at the crossroads of Natural
Language Processing (NLP) and Second Lan-
guage Acquistion (SLA). We used Whisper’s
speech recognition on a French L2 learner cor-
pus to get automatic transcripts, and compared
them with pre-existing manual transcripts. We
then conducted quantitative and qualitative
analysis of the issues which are inherent to
the specificities of interlanguage for any auto-
matic tool. We will discuss the different is-
sues encountered by Whisper that are specific
to learner corpora.

1 Introduction

The TranSLA project aims at analyzing to which
extend Automatic Speech Recognition systems
(ASR) can provide useful information on the
distance between interlanguage and the inter-
nalized norm of those systems. Providing tools
for corpus linguistics is an essential part of the
research carried out in Second Language Ac-
quisition (SLA). Recent technological advances
raise new methodological questions. The act of
transcribing involves an initial task of interpreting
the discourse in L2, which is particularly delicate
since it can influence the researcher’s subsequent
analysis (Benazzo and Watorek, 2021).

If the results obtained for speech recogni-
tion in general are very encouraging (Radford
et al., 2023), we still need to be able to evaluate
precisely their performance on non-standard lan-
guages, such as interlanguage of foreign learners
(Selinker, 1972). Interlanguage is the idiolect de-
veloped by second language learners and it refers
to the mental grammar constructed by a learner
at a specific stage of the learning process (Ellis
and Barkhuize, 2005). It is therefore intrinsically

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

subject to variation and evolution simultaneously
and possesses a unique linguistic organization.

This study aims firstly at measuring the perfor-
mance of an ASR system on a L2 French learner
corpora, and secondly to observe if ASR systems
could be used as a tool to evaluate how close or
distant learners speech productions can be from
the language model that is used, and therefore to
correlate it with learners’ acquisition levels. We
will discuss the discrepancies linked to SLA issues
as well.

2 Transcription of learner corpora

The transcription process is a time-consuming
phase for any researcher who wants to work on
audio or multimodal data. It is also a very precise
work that requires already to have clear thoughts
about which linguistics phenomena will be ana-
lyzed, and therefore which elements have to be
transcribed and how.

In Second Language Acquisition, this process
is even more important because fine-grained
access to information is crucial. To transcribe
exactly what the learners are actually saying
and pronouncing is the goal - even if it is not
always attainable. In that way, how to transcribe
is already a choice. It is even more complicated
when the language has a wide gap between oral
and written modalities, like French (Blanche-
Benveniste, 2000). Thus choosing one form over
the others carries the risk of over-estimate or
under-estimating the knowledge of the learner
(Benazzo and Watorek, 2021).

We present a few examples from the ESF (Euro-
pean Science Foundation Second Language) cor-
pus (Perdue, 1993) which shows the problems of
choosing a specific form for transcription in Fig-
ure 1.

The transcriptions presented (El Ayari and Wa-
Sarra El Ayari and Zhongjie Li. Potential of ASR for the study of L2 learner corpora. Proceedings of the 13th
Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024).

Linköping Electronic Conference Proceedings 211: 49–58.

49



Figure 1: Examples of transcriptions

torek, 2021) show that transcribing a corpus is al-
ready choosing which linguistic form the learner
has pronounced, even though we do not always
have enough knowledge to decide.

3 State of art

Not many studies focused on ASR systems’ per-
formances on non-native languages. It is a very
important matter as those systems have been
trained predominantly on standard varieties (Gra-
ham and Roll, 2023). Studies focusing on learner
corpora and ASR mostly focus on the global eval-
uation of ASR performances: (Graham and Roll,
2023; Cumbal et al., 2021) on Swedish or on pro-
viding pronunciation feedback with a focus on
phonetic features: (Wei et al., 2022) on Dutch,
(Ballier et al., 2023; Chanethom and Henderson,
2022) on French. We did not find any studies in-
tertwining ASR performances and learners’ profi-
ciency.

4 The corpus

The LANGSNAP corpus1 is based on the study
abroad of 29 advanced learners of L2 French
(mit) (eleven years length of French study). The
learners are L1 English speakers and Anglophone
university students, learning French over a 21-
month period, including a 9-month stay abroad.
This analysis is based on 14 participants. The
audio data as well as the transcriptions are freely
available on Talkbank2 (CLARIN Knowledge
Centre), an open access integrated repository for
spoken language data.

The LANGSNAP corpus is longitudinal and
therefore offers a good basis to compare the oral
productions of the learners at different times.
There are different linguistic tasks available:
oral interviews (where participants took part in
a semi-structured interview led by a member
of the research team); story retelling (where
participants retold a story guided by a sequence

1LANGSNAP: https://web-archive.southampton.ac.uk
2Talkbank: https://www.talkbank.org

of pictures); argumentative writing (where par-
ticipants wrote a timed 200-words response to
a stimulus question). We chose to analyze the
oral interviews where participants took part in
a semi-structured interview led by a member of
the research team, which have been conducted
regularly through the project. We analyzed data
at different times: October 2011 in stay abroad
(T1), May 2012 in stay abroad (T2) and October
2012 post stay abroad (T3). The interviews have
already been manually transcribed in chat format
(MacWhinney, 2000), with speech alignment.
The corpus contains also the same oral interviews
performed by French native speakers manually
transcribed too, which we will use as a baseline
for the ASR performances on native French.

Examples of utterances:

(1) alors pour commencer décris moi où tu
habites et les gens avec qui tu habites ?

(2) &-euh j’habite à City donc c’est une ville
vers &-euh l’ouest <de la France>[//] &-euh
de Paris.

This corpus is ideal for looking at the evolution
of the interlanguage of the learners (Corder, 1980),
as they have produced the same tasks at different
times and as the data have been transcribed and
analyzed beforehand. The data have a good audio
quality without background noises, which is also
something important to take into consideration for
an automatic analysis.

5 Methodology

Our methodology consists in comparing the tran-
scriptions obtained automatically by Whisper3 to
the ones produced manually to see precisely the
differences and to evaluate the performance of the
ASR system in general on this corpus.

5.1 ASR system
We used the ASR system Whisper, created by
OpenAI. Our choice of ASR is a pragmatic one as
Whisper is the only one freely available on gov-
ernmental servers by the IR Huma-Num4 and the
CINES5 in France (release 20231117). It has been

3Whisper: https://github.com/openai/whis
per

4Huma-Num: https://www.huma-num.fr
5CINES: https://www.cines.fr
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trained on French dataset, and therefore can pro-
duce speech recognition task and automatic tran-
scriptions of oral data.

“Whisper architecture is a simple end-to-end
approach, implemented as an encoder-decoder
Transformer. [...]. A decoder is trained to predict
the corresponding text caption, intermixed with
special tokens that direct the single model to
perform tasks such as language identification,
phrase-level timestamps, multilingual speech
transcription” (Radford et al., 2023).

The challenge here is to see how well the sys-
tem performs on the particular oral data that are
learner oral productions. As different linguistics
levels are in the process of being acquired, the
transitional aspect of interlanguage offers difficul-
ties for any type of automatic process. Pronun-
ciation, vocabulary, morphology and syntax will
not be standard. As such, learner corpora can be
considered as one type of less-resourced language,
and specific resources might be needed to process
them accurately.

5.2 Evaluation metrics

Different metrics are can be used to evaluate ASR
systems. WER (Word Error Rate) evaluates the
proportion of correct words compared to man-
ual transcripts, while the CER (Character Error
Rate) measures the proportion of correct charac-
ters. Both metrics are commonly used to quantify
ASR performance. We are aware that those met-
rics have limitations such as only taking into ac-
count the word level and therefore not pondering
the results linked to semantic similarity. Never-
theless they offer us a global metric to evaluate
Whisper’s performances despite the evolving na-
ture of L2 data and interlanguage. We wanted to
get a global overview of the results across time for
a semi-control task. Nevertheless, we will deepen
the analyse by looking closely at Whisper’s cor-
rections: insertions, substitutions and deletions in
order to get a better understanding of the results.
We did not look into Part-Of-Speech Error Rate
because of the nature of the data, and particu-
larly the bias created by the meaning idiosyncrasy
where a form used by a learner does not imply that
its linguistics function is also mastered (proximity
fallacy (Perdue, 1993)).

5.3 Data processing
Our goal is to provide parallel corpora in order to
compare manual and automatic transcripts. Fig-
ure 2 shows the pipeline for files normalization, in
order to be able to compare the transcriptions.

The manual transcripts are in chat format,
which belongs to the CLAN program (Comput-
erized Language ANalysis) (MacWhinney, 2000).
The speakers are introduced by a code and an as-
terisk and a pos-tagging has been automatically
generated (line %mor) as shown on Figure 3.

We have encountered different issues during
the process of the data. The first difficulty
encountered when processing the transcriptions
is the turn-taking. Long turns of speech are cut
into several lines so it was difficult to combine
the lines together in order to compare them.
Secondly, as manual transcriptions have been
done by different transcribers at different times,
human errors and changes in the transcription
guide had to be taken into consideration and were
lacking regularities.

Another issue is linked to Whisper itself which
creates bugs increasing the WER score of auto-
matic transcriptions. The first bug relates to lan-
guage changes detected in the middle of a French
transcription. In the examples below, the tran-
scription alternates between several languages and
is not pronounced by the speaker at all (extra-
hallucinated errors).

(3) Euh... Ça lui soulage la sensation. J is subi
au passé. tardised beara. Hope you are okay
now. Jean Apple. Brooke de Ney sur une
locale.

The second type of bug concerns the repetition
of a word or words in several lines. Here, as illus-
trated in the following example, the word ”oui” is
reproduced in several lines, which is not the case
in the audio file. Word repetition degrades the
quality of the automatic transcription by adding
non-existent words or replacing several turns of
speech.

(4) où il y a des élèves un peu difficiles. Oui.
Il n’y a pas beaucoup. . . Une prof m’a dit
qu’elle a. . . Oui. Oui. Oui. Oui. Oui. Oui.

The third type of bug is that Whisper fails to
detect speech for certain audio sequences, leaving
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Figure 2: Pipeline

Figure 3: Manual transcription format

white spaces instead - which requires also manual
intervention in order to preserve the alignment be-
tween the two transcripts.

Most of the normalization process has been
done automatically with python scripts, after an-
alyzing the data. Nevertheless because of Whis-
per’s irregularities, we had to manually check
and sometimes manually correct the utterances to
guarantee the accuracy of the alignment.

5.4 Harmonization of the data

The preparation of the data for metrics calculation
has been done in two steps.

Manual transcriptions have been done by differ-
ent transcribers and therefore do not always follow
the same conventions. We had to address this, es-
pecially as oral conventions in Clan can have dif-
ferent formats. Different elements had to be re-
moved, such a speaker codes, timestamps, punctu-
ation and characters used for idioms. A conversion
to lowercase has been done. A specific treatment
on the numbers to convert them into words, as well
as for the time. Table 1 illustrated the problems en-
countered to be able to compare the transcripts as
accurately as possible.

5.5 Transcriptions’ comparison

Transcription is the first stage in the study of any
oral corpus and, as such, it implies theoretical

choices. We assume that ”learner varieties are
not imperfect imitations of a ’real language’ - the
target language - but systems in their own right,
error-free by definition” (Klein and Perdue, 1997).
Indeed, there are notable differences, both quanti-
tative and qualitative linguistic behavior between
native and non-native languages (Dekydtspotter
et al., 2006). For those reasons, two important
points need to be kept in mind:

• comparative fallacy (Bley-Vroman, 1983):
learners’ language explained by reference to
the target language system rather than as set
of rules and performance characteristics ;

• closeness fallacy (Perdue, 1993) : learners’
language explained by attributing references
of the target language on the basis of their
formal resemblance.

Those two elements are likely to cause diffi-
culties for automatic tools processing on learner
corpora.

We developed a framework to visualize both re-
sults at the same time, and automatically highlight
and categorize the differences: elements inserted,
replaced or deleted, and to be able to check the au-
dio file for each utterance. The Figure 4 shows an
excerpt of the interface.

Figure 4: Interface of the comparison framework
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Issues Manual transcripts Correction
Speakers code *109: mais je suis pas sûre mais je suis pas sûre
Timestamps je suis pas sûre . 137805 139862 je suis pas sûre
Compound words rez + de +chaussé rez de chaussé
Type case j’habite au City j’habite au city
Disfluencies je suis content &-euh ici je suis content ici
Ponctuations Oui , et où ? Oui et où
Numbers environ 3 minutes environ trois minutes
Time à 1h30 du matin à une heure et demie du matin

Table 1: Transcripts’ harmonization

5.6 Evaluation measures

WER metric, derived from Levenshtein’s distance,
provides a score based on the number of incor-
rectly transcribed words. The higher the score, the
lower the similarity between the documents be-
ing compared similarity. CER metric indicates the
percentage of characters that were incorrectly pre-
dicted. They are defined by the ratio between the
number of incorrectly aligned words/characters
and the total number of words/characters in the
reference transcript:

WER|CER =
s+ i+ d

n

where s, i and d are the number of substitutions, in-
sertions and deletions and n is the total number of
words/characters in the reference transcript. They
both measure the overall word/character recogni-
tion performance without distinguishing between
fluent and disfluent words (Lou and Johnson,
2020). Both calculations have been done with Py-
hton and the JiWER package 6.

5.7 Speech disfluencies

Speech disfluencies are non-pathological hesi-
tances happening during speaking, like the use
of fillers (“like” or “uh”) or the repetition of a
word or phrase. Unfortunately, ”for faithful tran-
scription of conversational speech, there remain
challenges both in terms of the content predicted
by [transformer based] models (hallucinations,
unintended normalization of disfluencies and
transcriptions of background noises) and in terms
of alignment accuracy” (Yamasaki et al., 2023).
The main reason being that the models of ASR
systems are trained on fluent (and native) speech,
the mismatch between training data and other

6JiWER: https://pypi.org/project/jiwer

types of corpora decreases their performance (Lou
and Johnson, 2020).

6 Results

In this section, we will be comparing the two
types transcriptions: manual (MT) versus auto-
matic (AT). Results are better for natives, a type of
speech closer to the ones Whisper has been trained
on - especially if we remove the speech disfluen-
cies. Taking those into account make a real differ-
ence in the calculation of WER and CER for audio
corpora, in tasks such as interviews where speak-
ers are speaking freely and answering questions.

+ disfluencies - disfluencies
Corpus WER CER WER CER
L-T1 0.31 0.25 0.25 0.19
L-T2 0.35 0.26 0.29 0.23
L-T3 0.28 0.21 0.22 0.18

Natives 0.36 0.28 0.23 0.17

Table 2: WER and CER measurements

A WER score between 0.1 and 0.2 is considered
as good. The results without disfluencies, espe-
cially for natives and learners after stay abroad are
good for that kind of corpora. We can conclude
that Whisper’s performances on the LANGSNAP
corpus, for native speakers and advance learners
are very decent.

6.1 Longitudinal scores

Our second research question concerns the
hypothesis that ASR evaluation metrics can be
correlated with learners’ proficiency and should
therefore decrease as learners get closer to the
French speech Whisper has been trained on.
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Figure 5: Longitudinal WER & CER metrics

As shows Figure 5 , both WER and CER metrics
get lower as the learners improve their knowledge
of French, and get closer to the results obtained on
the natives speakers. This result is consistent with
the improvement of the learners and their acquisi-
tion level in general.

If the results between T1 and T3 are decreas-
ing (WER at T1: 0.25 / WER at T3: 0.22), we
can also see that they are increasing at T2. To ex-
plain this phenomena from an acquisitional point
of view, we can point out the critical rule hypoth-
esis stated by W. Klein (Klein, 1989). The idea
is that a linguistic rule inside interlanguage is not
definitive and therefore is subject to change and
evolve. So it could be possible that T2 would rep-
resent a specific acquisitional time where rules ac-
quired by learners during language courses would
evolve through the stay abroad, because of direct
input from native speakers and that some linguistic
rules would later be acquired in T3.

6.2 Overview of ASR process

In order to get a better understanding of the ASR
results and correlate them to learners’ proficiency,
we took a closer look on the substitutions, inser-
tions and deletions performed by Whisper. The
Figure 6 shows the percentage of those three pro-
cesses for each times.

Figure 6: ASR processes

We will get a closet look to each of those three
processes by comparing manual transcripts (MT)
to automatic ones (AT).

6.2.1 Insertions

Insertions are what we define here as hyper-
corrections or hyper-normalizations of the learn-
ers’ speech.

(5) a. MT: je dois je me dis toujours c’est une
expérience

b. AT: je dois je me dis toujours que c’est
une expérience

Here Whisper adds a subordinating conjunction
to the speaker’s utterance.

6.2.2 Substitutions

Substitutions are mostly linked to morphology:
number, gender, definiteness and verb tenses.
French has a relatively complex orthography
(van den Bosch et al., 1994) and contains a large
number of silent letters which correspond to mor-
phological markers, which make the transcrip-
tion’s process even more difficult.

(6) a. MT: j’ai imaginé que institute était à
paris

b. AT: j’ai imaginé que j’ai institute été à
paris

(7) a. MT: je me suis inscrit pour faire le
marathon

b. AT: je me suis inscrite pour faire le
marathon

(8) a. MT: danse aérobic

b. AT: danse aérobique

Most of the insertions are linked to negative
forms:

(9) a. MT: je l’aime pas

b. AT: je ne l’aime pas
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6.2.3 Deletions
Deletions are mostly about Whisper not process-
ing normal speech disfluency, where people can
repeat something twice while hesitating or think-
ing what to say next:

(10) a. MT: je fais la permanence du soir qui
est jusqu’au jusqu’à dix neuf heures

b. AT: je fais la permanence du soir qui est
jusqu’à dix neuf heures

We also encounter deletions where the learner
produces a non-canonical form that is corrected by
Whisper by deleting a character, such as contrac-
tions and speech pauses:

(11) a. MT: j’ai imaginé que à la bibliothèque
je rencontrerais beaucoup des gens

b. AT: j’ai imaginé qu’à la bibliothèque je
rencontrerais beaucoup de gens

Those three phenomena are expected in oral
treatments. They show that Whisper has difficul-
ties with elements linked to spontaneous speech,
such as hesitations, repetitions, disfluencies, con-
tractions. Those examples also show that it is dif-
ficult for the system to provide utterances that are
not following a specific format, even when the pro-
nunciation differs - like changing the words’ or-
der. There are typical corrections that one has to
correct back in order to access interlanguage prop-
erly.

6.3 Specific SLA issues

Whisper tends to (hyper-)normalize the speech of
the learners: Table 3 shows a few examples which
are problematic when one is studying learners’
productions for different reasons.

Those issues are extremely problematic for
researchers who work in the SLA field, because it
does not provide enough accuracy. The issues are
linked to different specificities of a learner speech
in L2 as pronunciation, prosody, fluency, pauses,
morphology, syntax and different idiosyncrasies.
The item expériencer for example is very impor-
tant to acknowledge because it is a clear hint of the
acquisition of verbal morphology from the learner.

Whisper rewrites the data according to the lan-
guage’s model deducted from the training dataset

but does not provide a systematic treatment, as
show the examples below from the same learner:

(12) a. MT: mais le FLE est vraiment similaire
de le cours français

b. AT: mais le fleur est vraiment similaire
au cours français

(13) a. MT: et puis le FLE c’est le français
langue étrangère

b. AT: et puis le bleu c’est le français
langue étrangère

FLE stands for Français Langue Etrangère
(French as a Foreign Language). The system here
provides two different proposals for the same
unknown word.

We have also see that some learners had trou-
bles with the sound /y/ in French, and pronounced
it sometimes /u/. As it is a productive difference
in French, Whisper sometimes misinterpreted the
second-person pronoun :

(14) a. oui et tout marche très bien

b. oui et tu marches très bien

(15) a. maintenant tout est tout passe bien

b. maintenant tu es tu passes bien

The pronunciation of French for a L2 learner
differs naturally from a native pronunciation, and
might not have been encountered lots by Whisper
during the data training phase. Without confi-
dence scoring or any information to understand
why the system chose fleur in one case and bleu
in the other, it is difficult to understand which
linguistics parameters have contributed. The
system is perceived as a black box for the users
as one can not know which patterns and rules are
applied by the system.

Using those systems as a basis for a linguistic
analysis of case studies could be interesting. Un-
fortunately, it does not provide such information
outside of the result.
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Linguistic levels Manual transcripts Automatic transcripts
Pronunciation la langue étranger le long est rejeu
Prosody co-douche coudouche
Morphology entendons entendant
Syntax je toujours parle le français je parle toujours le français
Semantics expériencer expérimenter

Table 3: Examples of errors

7 Conclusion

As Tancoigne et al. states, if we consider that
transcribing is already analyzing then delegating
this work to a machine can be seen as problematic
in a number of cases (Tancoigne et al., 2022).
This study aims at specifying which elements
have to be taken into consideration for using such
technologies on learner corpora.

Our study presents some limitations. An im-
portant one is linked to conducting this research
with only one ASR system: the discrepancies
we showed are inherent on Whisper. It would be
needed to compare the results obtained with other
ASR systems.
Secondly, we focused our analysis on advanced
beginners which are one specific group of learners
and would also need to add different level groups
to get a bigger perspective on the performances of
ASR and of the possible usage of this technology
for SLA studies.

Nevertheless, Whisper appears as a good start-
ing point for a manual correction of transcriptions.
Its hyper-correction is not suited for the degree
of precision needed on the actual production of
the speakers. Thus it can provide a first version
of the transcription, aligned on the audio with
timestamps, and correcting transcriptions rather
than creating them from scratch can diminish
cognitive overload.

One very interesting feature that we found is
that Whisper get very good results on inaudible
speech for human ears, and therefore allows to
double check manual transcriptions and complete
them. This is something that can be useful in order
to complete some data for which the sound is
inaudible for the transcriber or to choose between
different transcription possibilities.

Those reasons conducted us to add a new

import feature on our transcription and annotation
tool Sarramanka (El Ayari, 2022) to be able to
take Whisper transcripts as a starting point for
manual check before any annotation process.
Nevertheless the data would have been reviewed
in totality and checked thoroughly to correct the
elements transcribed in a native manner.

As we have discussed, transcription is a crucial
part of SLA researches on speech and a crucial
step that is the basis for any linguistic analysis.
Therefore an automatic system could really be a
very helpful tool for the study of those corpora,
especially as there are many corpora open-source
and available which have been documented,
transcripted, annotated and analyzed. Those are
precious resources that could be used to fine-tune
ASR systems.

Therefore it is important to keep in mind that
those systems can provide help and facilitate some
treatments but that a human check is always
needed in order to guarantee the quality of the data
processed automatically.

8 Perspectives

It is needed to train the system on data from
learners of French, but the question arises of
the impact of source languages, which induce
specificities concerning the acquisition of the
pronunciation of the target language - French
in this case. Next step is to train the model on
learners’ corpora with specific dataset matching
the SLA issues we present.

We want to conduct a similar study on begin-
ners’ productions and on learners with different
L1 on the VILLA corpus. The corpus is issued
from the project ANR ORA Varieties of Initial
Learners in Language Acquisition: controlled
classroom input and elementary forms of linguis-
tic organisation. The researchers observed the
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acquisitional path for L2 acquisition of Polish
with only 14 hours of exposure for learners from
five different L1: French, Italian, German, British
English and Dutch. This corpus will allow us to
see the impact of pronunciation and accent on the
automatic transcription provided, with a similar
level of acquisition. It will also be interesting to
see how efficient the system can be on beginners’
productions - as they should be more distant from
ASR systems’ inside norm.

Next step will be to train the model on learner
corpora with specific datasets matching the issues
specific to SLA we have presented in Table 3. It
would be really interesting to fine-tune Whisper or
another ASR system like wav2vec (Baevski et al.,
2020) on learner corpora depending on the L2 or
on the L1. As we said before, those corpora can be
considered like a poorly endowed language due to
their specificities.
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glish, Łódź, Poland. Université de Łódź.
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Abstract

This article builds on two recent resources for
Breton, a verb-centered database and a set of
sentences in the universal dependencies (UD)
format. Our focus is on Breton, an endan-
gered language in the Celtic family. We pro-
vide an analysis of the resource on verbs and
show how it can be connected and transformed
to a multi-faceted system intended to help a
learner in a flexible way. We discuss several
scenarios.

1 Introduction and objectives

Working on low-resourced languages comes with
specific challenges (Vergez-Couret et al., 2024).

In this paper, we consider this issue for Breton;
a discussion can be found for example in (Foret
et al., 2015). We provide here a workflow that
aims to facilitate the use and access by a learner to
rich linguistic data, in a flexible way. The work-
flow is intended to be open, reproductible, with
easily adaptable outputs1. The prototype is also
devised for a use case within the formal concept
analysis (FCA) paradigm2, handling several facets
(kinds of information).

In contrast to a carrier sentences or seed sen-
tence approach (Heck and Meurers, 2022), our in-
terface starting-point is a set or subset of verb in-
finitives that a learner wishes to master (by view-
ing information in several prepared hierarchies) or
that he may simply discover by serendipity or inci-
dental learning (Renduchintala et al., 2019). The

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1available at https://gitlab.inria.fr/fore
t/termlis/-/tree/main/Breton/Verbs

2in this project: https://www.smartfca.org/

outputs are thus intended as self-assisted learning
systems involving small resources and lightweight
technology (a browser, online or offline) but not
requiring specific technical knowledge from users.
We use a relational database system to store the
linguistic data and generate the end systems pro-
posed to a learner, but this is hidden to the users.

The plan of paper is as follows. In section 2
we point to some Breton specifities and difficul-
ties; in section 3 we discuss two different kinds of
resource available for Breton; these resources are
used in the new workflow described in section 4;
section 5 discusses scenarios enabled by the re-
sources and workflow; section 6 concludes with
perspectives.

2 Breton linguistic features

In Breton syntax, the verb occurs as second con-
stituant and allows one to put the most impor-
tant first. Consonant mutations are a particularity
of Breton and other languages in the Celtic fam-
ily. Depending of grammatical features and other
features, some initial consonants change to oth-
ers (Hupel, 2021; Jouitteau, 2009-2024). This is
a difficulty for Breton learners and automatic pro-
cessing as well.

The Breton verb varies depending on a lot of el-
ements. There are two main categories, related to
conjugations or not related. Firstly, as it is com-
mon, conjugations vary according to person, num-
ber, tense, mood, aspect and voice. Secondly, a
consonant mutation may apply. For example the
initial ”k”[k] will become ”c’h”[x], or ”g”[g]: the
infinitive ”kanañ” (EN: to sing) occurs as ”gan”
in this sentence ”An eostig a gan bemnoz” (EN:
The nightingale sings every evening) where a soft

Annie Foret, Erwan Hupel and Pêr Morvan. Enhancing a multi-faceted verb-centered resource to help a language
learner: the case of breton. Proceedings of the 13th Workshop on Natural Language Processing for Computer
Assisted Language Learning (NLP4CALL 2024). Linköping Electronic Conference Proceedings 211: 59–66.
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mutation from ”k” to ”g” is induced by the pre-
ceding ”a” verbal particle; the other verbal parti-
cle ”e” yields a mixed mutation, as in ”Bemnoz
e kan an eostig”. The ”pa” (EN: when) conjunc-
tion yields a soft mutation: the initial ”k”[k] will
become ”g”[g], as ”kregiñ” (EN: to begin) in Fig-
ure 4. But conjunction ”ma” (EN: if) yields a
mixed mutation where the verb initial ”k”[k] is un-
changed.

Other difficulties may arise for: a verb without
ending (”kemer”, ”lenn”, ”komz”); an altered verb
base in the infinitive (”skeiñ” → sko-, ”mervel”
→ marv-); a verb base different from the infinitive
(”gounit” → gounez-, ”dont” → deu-).

Most Breton verbs are regular3 (Desbordes,
1999). Nevertheless, several grammatical cate-
gories are distinguished in the database see sec-
tion 3 and Figure 2.

3 Two existing Breton resources

Breton is a low-resourced language. Nevertheless,
we discuss two resources of valuable interest in
this verb-centered proposal.

3.1 The DVB verb database
The DVB Breton verb site is handled by the asso-
ciation An Drouizig. Figure 1 shows the top of the
page for the Breton verb ”kanañ” (EN: to sing) 4.
Each page (in BR, FR, or EN language) provides
different kinds of informations on a given verb:

• tags (such as ”European level A1 verb”),
other forms, translations, sources, links are
on the top,

• mutation modes and examples,

• conjugations in details.

We give below a simplified explanation of the
DVB verb group classification (for conjugation):
- most verbs are regular and in d1;
- verbs in d2 are regular, end in -aat/-at and express
an action taking place;
- verbs in d3 are regular, end in -a and express
picking up something etc.;
- verbs in d4 are semi-regular, end in -iañ, -iiñ;
- verbs in d5 are semi-regular, end in -liañ, -liiñ;
- verbs in d6 are semi-regular, end in -niañ, -niiñ;
- verbs in d7 are irregular, follow the conjugation

3see also https://arbres.iker.cnrs.fr/inde
x.php?title=Verbes irr%C3%A9guliers

4
https://displeger.bzh/en/verb/kana%C3%B1

Figure 1: ”kanañ” (to sing) at https://displeger.bzh

of ”ober”;
- d8 regroups special verbs: ”bezañ” / ”bout” (to
be), ”kaout” / ”endevout” (to have), ”dont” (to
come), ”mont” (to go), ”gouzout” (to know).

Figure 2 shows statistics on grammatical cat-
egories. We computed them on the DVB rela-
tional database for Breton verbs provided by An
Drouizig, behind the DVB website.

Figure 2: Verb grammatical categories in DVB.

More globally, our analysis of the relational
database yields the general data model in Figure 3
with content statistics. Each table comes with a
name, a list of attributes (the table columns) with
its number of lines at the top. The underlined at-
tribute is its primary key. Each edge stands for a
foreign key connecting an attribute in the source ta-
ble to another attribute that it refers to in the target
table.

This database is a key component for the work-
flow proposed in section 4. We now describe the
second component used in the workflow.
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Figure 3: A relational schema for DVB (main part): each table has a name, a line count above, attributes (the
key is underlined). The edges show foreign keys. We focus particularly on tag, verbtranslation and
verblocalization tables and their code, translation, infinitive, category attributes.

Figure 4: Grew can show (and rewrite) the treebank part that matches a linguistic pattern (on the top). The
infinitive ”kregiñ” (EN: to begin) is highlighted in this parse tree (its exact form is ”grog”, with soft mutation after
”Pa”). The text[eng] metadata is: ”When boiling again, draw from the fire”. The second infinitive is ”birviñ” (EN:
to boil).
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3.2 UD treebanks

Dependency syntax has been developped for a
long time, for example in (Mel’čuk, 1988). This
approach underlies the active area of universal de-
pendencies (Nivre et al., 2016; de Marneffe et al.,
2021), an annotation framework with treebanks in
over 150 languages.

Several dependency treebanks are developed
for Celtic languages (Lynn and Foster, 2016;
Batchelor, 2019; Heinecke and Tyers, 2019). In
this work we consider the UD Breton-KEB
corpus V1.05 (Tyers and Ravishankar, 2018) with
a 2023 revised version 6. Its first annotated
sentence is:

We see the meta-information above at the
beginning (lines starting with #), then a line by
word occurrence in sentence order, with tabs
separated columns: ID FORM LEMMA UPOS XPOS

FEATS HEAD DEPREL DEPS MISC. From this, the
dependency parse tree can be drawn (as in Fig-
ure4). Our workflow exploits meta-information
and FORM, LEMMA, UPOS columns (crucially,
UPOS=’VERB’ tells which word occurrences are
verbs).

The universal dependencies site also collects a
list of tools for working with UD. We mention two:
- Grew7 (Guillaume, 2021) is a graph rewriting
tool dedicated to applications in Natural Language
Processing. Figure 4 shows the Breton treebank
with a query.
- CoNLL-U viewer at rug.nl is a simple
browser-based UD viewer. Figure 9 displays a
rewritten version of the treebank and its browsing.

We will show a scenario linking verb data to re-
lated sentences that have been parsed in the uni-
versal dependency format. The workflow enabling
this scenario is described in next section.

5available at https://universaldependencie
s.org/treebanks/br keb/index.html

6at https://github.com/UniversalDependen
cies/UD Breton-KEB

7https://grew.fr

4 A new workflow

The database is analyzed and processed to control,
to enhance and to select appropriate fragments.
The workflow outputs several versions (.csv,
.html, .ttl/rdf exports) allowing different
scenarios.

DVB processing We define different views on
the DVB tables. For an HTML output, a typical
generated line (in the tag part) is:

<a href="https://displeger.bzh/fr/verb/selaou"
data-id="5711" title="écouter" data-init="s"
data-categ="d1" data-base="selaou" data-idV="38435"
data-tag="verb_al_live_A1" data-row="179">selaou</a>
<a class="bis" href="#selaou-1" > # </a>

Some informations are rendered as HTML
attribute-value pairs, for a basic HTML view with
many CSS stylesheet possibilities, this is also
shaped to show useful information on hover and
useful links (to a relevant DVB page or to relevant
UD sentences). The grammatical category stored
in verblocalization is given as an attribute-
value pair, such as data-categ="d1" for the
verb ”selaou”, not visible in the browser, but could
appear as HTML content, by a simple CSS rule.

Verb facet selection The DVB database
contains grammatical categories in the
verlocalization table. DVB also con-
tains many tags of various kinds in the tag table,
that we organize in 11 subclasses (such as level,
or domain)8 to view fragments in a flexible and
informative way.

We produce in this way an enhanced ver-
sion (see Figure 5) in turtle/RDF (semantic web)
format, that enables search using the SPARQL
Query Language for RDF or related tools such as
Sparklis (Ferré, 2016); this approach is applied
to Georgian verbs by (Ducassé and Elizbarashvili,
2022).

For ease of use, we also produce simpler HTML
versions: either for verbs alone as in Figure 6,
or for verbs connected with sentences from a UD
treebank (parse trees) as explained below.

Treebank preparation Before an up-
load in SQL, the UD corpus file is pre-
pared, adding a column with a line num-
ber, and handling special symbols (quote

8our current tag subclass list is: Level, Domain, Link,
Substring, NbSyllabs, Ends (for verb ending), Change (for
variations), Construct, Args (for transitive, etc.), Synset
(number of synonyms for translation), Other.
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Figure 5: DVB verb facets in RDF, with tags hierarchy.

in quote, etc.). We then partition the num-
bered lines in two relational tables, br_keb_ud(

line,WID,FORM,LEMMA,UPOS, XPOS,FEATS,HEAD,DEPREL,...)

for word information, br_keb_sent(line, sent) for
whole sentence information. We then build SQL
views that generate HTML lines such as:

<p class="sent"><a id="selaou-2"
href="https://displeger.bzh/fr/verb/selaou">selaou</a>
<span data-form="selaouit" data-root="[r]">selaouit
</span> <span class="line" data-sentnum="511">
(line 8665, sent 511) </span># text = Va
<span class="solution" title="selaouit">_</span>
<span class="w" title="selaouit">selaouit</span>!
<span class="sentFr"> # text[fra] = Écoutez-moi!
</span><p>

We use in particular this CSS rule:

span.w {visibility: hidden;}

to hide the conjugated form of the verb (this
CSS rule may be dropped to show full sentences).

A similar output is generated for English trans-
lations, selecting lines of br_keb_sent containing
”text[eng]” instead of ”text[fra]”.

5 Enabled use case scenarios

We first describe successive scenarios in the
HTML mode, based on a navigator. We suppose

Figure 6: DVB verbs in HTML, <details> tag ”euro-
pean level A1” open. The top tag contents are hid-
den. After a click on the ”verb al live A1” tag,
the related verb list is visible. A translation is then
directly visible by hovering over a verb.

the user has a local copy of the HTML and CSS
files. In this HTML mode, the file produced by
the workflow gathers several kinds of information
in one place. And the user can view and interact
without internet connection.

Example scenario (1): verbs only, HTML mode
The first file version regroups information from
the DVB database, showing verbs by categories
(such as ”level A1”, then by initial letter inside a
category). As explained in section 4, each verb
is accompanied with attribute-value pairs that can
be shown or not, depending on the chosen CSS
rules (on the developer side). Figure 6 corresponds
to this version. This rendering uses the HTML5
<details> element, so that the user can open and
close an item (such as the ”verb al live A1” tag)
to display its content. For each infinitive such as
achivañ: its translation appears on hover and a
click on the infinitive links the DVB site for this
verb.

An enhanced version is provided that regroups
the various tags in 11 classes (supertags) as ex-
plained in section 4 and visible in the middle of
Figure 7. Note that this is strict hierarchy on tags,
while verbs appear in each tag they belong to (they
may appear several times in the file).

In these ways, users may choose a tag or a
facet (possibly several) and test their knowledge
on verbs belonging to this tag or this facet, in a
compact way.

Example scenario (2): including sentences
(HTML mode) This second file has two sec-
tions, a tag section corresponding to the whole first
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Figure 7: DVB verb facets in HTML, <details> tag
”european level A1” open, with sentences. In the
sentence section, the infinitive on the left is linked
from the A1 tag list and links to the DVB site.

Figure 8: Breton sentences from the corpus with their
EN translation and the verb form hidden (shown on
hover), linked from the selected infinitive ”selaou” in
the DVB tag ”european level A1” open.

file, and a sentence section as in Figure 7. Sen-
tences in the sentence section are ordered by in-
finitive (rewritten on the left of the sentence). A
click on # in the tag section points to the first sen-
tence (in the sentence section) where the verb oc-
curs; the verb occurrence is hidden (by the chosen
CSS stylesheet) in the sentence. The exact verb
form appears on hover. Sentences with a same in-
finitive follow each other, which enables training
on the same verb with proximate sentences.

Note that a sentence appears for each infini-
tive that occurs in it (a sentence may appear sev-
eral times in the file, depending on its number of
verbs).

In these ways, users may choose a tag or a facet
(possibly several) and practice or check several as-
pects on a verb:
- its hidden meaning as in the first file;
- its hidden conjugation in a set of sentences (the
solution appears on hover over the key , as ”se-
laouit” in Figure 8). For explanations, they may
also consult the appropriate page of the DVB site,
by a click on the infinitive (in either section).

Figure 9: Browsing the rewritten UD treebank (the in-
finitive in the tree node replaces the exact verb form).

Example scenario (3): including parse trees
(HTML mode) Grew can show and rewrite a
treebank part that matches a linguistic pattern.

On the preparation side, to transform the tree-
bank we applied the Grew command9 to rewrite
tree features and then converted the output with
the sed command to hide the ”text =” metadata.
The following one-rule rewriting system hides all
verb-forms, replaced by their infinitive :

package hide −verb −form {
r u l e h ideVerbsForm {

p a t t e r n { X1 [ upos=VERB] }
w i t h o u t {X1 . mark = ” x”}

commands {X1 . mark = ” x ” ;
X1 . form = ” ? ( ” + X1 . lemma + ” ) ” ; }

}
}
s t r a t main { Onf ( h ide −verb −form ) }

On the user side, the resulting treebank can then
be loaded and searched as in Figure 9 for a small
sentence (see Figure 4 for a larger tree).

Semantic Web mode In this mode, we assume
the user has a copy of the .ttl file and has in-
stalled a SPARQL server such as Apache Jena
Fuseki. The user or developper familiar with RDF
web semantic standards can load the .ttl file
to query it and to explore the data in these two
ways: directly write a SPARQL query (as exampli-
fied in Figure 5 or build a query with Sparklis
that is a tool with guidance in a natural language
as in (Ferré, 2016; Ducassé and Elizbarashvili,

9a rewriting system may also be loaded on web.grew.f
r and applied on the selected corpus tree
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2022). In this mode also, the file produced by the
workflow gathers several kinds of information in
one place. The facet filtering is very flexible, even
more with Sparklis requiring less knowledge
on the data model.

6 Conclusion and future work

The workflow described in this paper outputs
easy-to-use language learning verb-centered con-
texts, aimed to help a Breton learner. The outputs
gather heterogeneous information on one or few
files, so that a user may train with different sce-
narios and facets of verbs (including flat or struc-
tured sentences). This is still work in progress,
more automation and scenario variations could be
provided and tested. A user study could also be
added. We list some other points for future work.

• At the level of word descriptors, the hierar-
chy of tags could be exploited in a more elab-
orated way, in particular within the formal
concept analysis (FCA) paradigm; we could
test the potential of such approaches on the
design and use of a self-assisted learning sys-
tem. The FCA approach could also show
sets of verbs sharing a same set of descrip-
tors. Sentences from a parsed corpus (where
verbs are tagged with their linguistic features
as in UD) could inherit their verb descriptors
as well, providing indicators per sentence in
a flexible way.

• At the level of treebanks, a new10 Bre-
ton UD treebank is in preparation, which
may provide new insights. Other sen-
tence structures have been proposed de-
pending on the preferred grammatical for-
malism and parsing principles; the SUD
(Surface-syntactic Universal Dependencies)
variant (Gerdes et al., 2018) is available for
UD treebanks from Grew and could have
been proposed here instead of UD. Seman-
tic structures such as AMR (Abstract Mean-
ing Representations)11 (Heinecke and Shi-
morina, 2022) might also bring help, but we
are not aware of such data for Breton.

10see https://arbres.iker.cnrs.fr/index.
php?title=Breton treebank II

11AMR page : https://amr.isi.edu/, AMR bibli-
ography https://nert-nlp.github.io/AMR-Bib
liography/

• As concerns workflow handling, the develop-
ment follows a reproducibility principle and
we believe the workflow should apply to the
new treebank and to augmented versions of
the verb database (with few adjustments).

We generated browser-based versions aimed at in-
dividualized learning solutions. Worksheets or
gap filling exercises could be generated in a close
way by the workflow.

We think there is a need to enhance existing re-
sources especially on a low-resourced and endan-
gered language such as Breton. We hope this de-
velopment is a step in this direction.
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Annex: Breton mutation system

See Figure 10 for an overview on the four mutation
kinds: soft, spirant, hard and mixed.

Figure 10: Breton initial mutation overview (on nouns)
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Abstract

Pronunciation is an important, and difficult as-
pect of learning a language. Providing feed-
back to learners automatically can help train
pronunciation, but training a model to do so
requires corpora annotated for mispronuncia-
tion. Such corpora are rare. We investigate
the potential of using the crowdsourced an-
notations included in Common Voice to indi-
cate mispronunciation. We evaluate the qual-
ity of ASR generated goodness of pronuncia-
tion scores through the Common Voice corpus
against a simple baseline. These scores allow
us to see how the Common Voice annotations
behave in a real use scenario. We also take
a qualitative approach to analyzing the corpus
and show that the crowdsourced annotations
are a poor substitute for mispronunciation an-
notations as they typically reflect issues in au-
dio quality or misreadings instead of mispro-
nunciation.

1 Introduction

Pronunciation of utterances is a difficult task for
language learners, and there is limited research
on how best to generate feedback automatically
(Agarwal and Chakraborty, 2019; Moses et al.,
2020; Neri et al., 2006; Witt, 2012). However,
such feedback can be an invaluable tool for those
learning a language who want to improve their
speaking skills, allowing them to practice when
a human teacher is not available. Ideally, the
feedback should reflect the judgements of a native
speaker of the targeted language variant and be tar-
geted at the learner’s desired dialect (e.g., British
vs. American English) and skill level. One current
method for evaluating pronunciation is to interpret
the confidence of an Automatic Speech Recogni-
tion (ASR) model as the goodness of pronuncia-
tion (Moses et al., 2020). Doing so makes a crucial

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
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assumption that the accuracy of the transcription is
representative of the learner’s pronunciation accu-
racy.

One of the challenges in investigating the qual-
ity of automatic feedback is that there is only one
publicly available corpus with human judgements
on pronunciation, L2-ARCTIC (Zhao et al., 2018).
Since it does not contain examples of native speak-
ers producing the same sentences, we cannot use
it for our purposes.

The Common Voice corpus (Ardila et al., 2020)
does not contain pronunciation annotation, but
does contain upvote and downvote scores per ut-
terance. We propose using these crowdsourced up-
and downvote scores as a stand-in for pronuncia-
tion scores. We hypothesize that a clip receiving
both up- and downvotes indicates a mispronunci-
ation because annotators disagree on the quality,
and clips with only upvotes indicate proper pro-
nunciation as well as clear audio. To test whether
these labels can be used for evaluating pronunci-
ation scorers, we create a task to classify whether
a given audio clip in the Common Voice corpus
has any downvotes using the generated pronunci-
ation scores as input. Assuming that the output of
a Speech Recognition model is a measure of pro-
nunciation accuracy (Moses et al., 2020), a neural
model should be able to use that output to predict
the presence of downvotes.

Typically, in ASR, the task is transcribing audio
data into orthographic text. In this work we per-
form a zero-shot classification of downvoted clips
using an ASR model (section 5.1). The final layer
of this architecture is a softmax layer, providing
probabilities, which form the basis of our base-
line pronunciation scorer and which we compare
across speakers to generate feedback (section 4).

Our results show that detecting downvotes in
Common Voice is difficult. The baseline, inter-
preting the speech recognition softmax output as
feedback, achieves only 81.4% with tuning, and in
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67



the low 60s when comparing learner’s utterances
to expert’s and predicting downvotes from the
comparison. Looking closely at some of the exam-
ples and contents affirms that the voting on Com-
mon Voice utterances is a poor substitute for mis-
pronunciation annotation. This highlights the need
for a dedicated corpus annotated specifically for
pronunciation for the development of tools provid-
ing pronunciation feedback to language learners.

2 Related Work

Pronunciation feedback systems were researched
in depth in the 1990s and 2000s (Witt, 2012),
as they have been shown to improve learner’s
pronunciation (e.g., Agarwal and Chakraborty,
2019; Neri et al., 2006; Dalby and Kewley-Port,
1999). Early pronunciation feedback used Hid-
den Markov Models (HHMs; Franco et al., 2000;
Dalby and Kewley-Port, 1999), following the use
of HMMs for Speech Recognition at the time (Ma-
lik et al., 2021). Bratt et al. (1998) collected a cor-
pus annotated for pronunciation during this time
for evaluating these systems, but it is no longer
available.

As speech recognition moved to neural network
models (Malik et al., 2021; Hannun et al., 2014),
pronunciation feedback followed (Agarwal and
Chakraborty, 2019; Moses et al., 2020). Moses
et al. (2020) use DeepSpeech (Hannun et al., 2014)
to score pronunciation of Te reo Māori, an in-
digenous language in New Zealand, using their
own speech and text corpora by calculating con-
fidence scores for characters, as opposed to utter-
ances, in an elicited sentence or phrase. There is
no information available on how the scoring is per-
formed. It appears to consist of the probability of
the character from the target sentence appearing at
its aligned timestamp, which is interpreted as the
model’s confidence for that character. They “ob-
served the model working with confident te reo
speakers as expected”. (Moses et al., 2020)1

There are currently many proprietary apps for
language learning which include pronunciation
training in some form (Coulange, 2023). Com-
mon practice for these apps is to give the learner
an elicitation phrase and an example of an ex-
pert pronouncing it, then request the learner say
the phrase. Most apps, such as Memrise2 and

1Only a poster is available for this work https://pa
pareo.nz/docs/PapaReo_NeurIPS2020_Poster
.pdf

2https://www.memrise.com

DuoLingo3, give only binary feedback (correct or
incorrect), on a phrase or word level. ELSA4 is
able to give feedback on specific letters, based on
phonemes, but only teaches English. Our long
term goal is to generate feedback as narrowly as
ELSA with a system that can generalize to multi-
ple languages.

3 The Common Voice Dataset

We use the Common Voice English data. Com-
mon Voice is a large multilingual collection of
audio data for speech recognition crowdsourced
by Mozilla (Ardila et al., 2020). It consists of
around 1.6 million clips (≤10 sec.) of read
sentences/phrases totalling 2 319 hours. Users
can contribute recordings of sentence readings,
or judgements of other’s readings by upvoting or
downvoting clips5. Only clips with at least one
upvote are ultimately included in the validated
dataset.

Though the upvotes and downvotes do not nec-
essarily indicate a mispronunciation, they do in-
dicate problems as judged by human contributors.
Because mispronunciation is a potential reason for
an annotator to downvote a clip, these judgements
give us the best indication for which clips are mis-
pronounced.

4 System Overview

4.1 System Pipeline

The pipeline for the process of generating feed-
back for a given elicited phrase begins with run-
ning both the expert and the learner productions
of the phrase through the speech recognizer, Coqui
(see Section 5.1) and retrieving a softmax proba-
bility distribution per time slice. Coqui operates
by segmenting an audio file and predicting the
character, or lack of a character, present in each
segment. This takes the form of a probability dis-
tribution over the candidate alphabet. It then re-
combines the segments into orthography, combin-
ing repeating characters6 and inserting spaces as
informed by a language model. Figure 1 shows
this process, starting with the extraction of proba-
bility distributions in the first transition from the

3https://www.duolingo.com
4https://elsaspeak.com
5There is no meta data available about the individual lan-

guage skills of those upvoting and downvoting.
6Double letters, such as the T’s in letter, are handled by a

special character prediction.
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Figure 1: The extraction process for retrieving one probability distribution per character from the audio clip. 1)
Extract probability distributions for time slices using via ASR. 2) Align these to the elicitation phrase. 3) Then
select one representative distribution per character. The first row of each table represents the highest probability
character, the second row that character’s probability, and the 3rd and 4th rows are the next highest probability
characters. Each column contains a probability for each character, remaining character probabilities are represented
by ellipses.

audio, represented by an arbitrary waveform, to
the middle table. Each column in this table rep-
resents one time slice where the first row is the
highest probability character, the second row is
that character’s probability (rounded to 2 decimal
points), and the remaining rows indicate proba-
bilities for other likely characters for this time
slice. The model also predicts word boundaries,
represented by a space (white columns). The
next step aligns the probability distributions to
the elicitation phrase, using a modification of the
Needleman-Wunsch algorithm (see Section 5.2).
The alignment is shown via the colors, e.g., all
green columns align with the first character in
the elicitation phrase. Based on this alignment,
the best distribution (i.e., column) per character is
chosen to represent the corresponding character in
the elicitation phrase. The chosen distributions for
each character are shown in the lower table in Fig-
ure 1.

Once we have an alignment between the prob-
ability distributions and true character labels, we

need to choose one distribution per character in
the elicitation phrase (i.e., one column per color,
as shown in the lower table in Figure 1) to compare
between speakers. This guarantees every charac-
ter in the elicitation phrase is aligned to at least
one probability distribution, even if the most prob-
able character is not the true character. We de-
cide which distribution, from all aligned candi-
dates, to use for each character by choosing the
single distribution where the probability of the true
character is highest. These final distributions, one
per true character, are what we compare between
speakers to generate a score for each character.

The process to this point is executed on the
learner and expert’s pronunciations of the same
phrase, resulting in two probability distributions
per character of the phrase which we can compare
pairwise. Since similarity comparisons are depen-
dent on the similarity metric, we use three differ-
ent algorithms for this comparison: cosine similar-
ity, Jensen-Shannon Divergence (Lin, 1991), and
Cross Entropy (see Section 5.3).
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Elicitation phrase H O . . .

Best hypothesis: expert H O . . .
Best hypothesis: learner H O . . .

Comparison

% 0.992 0.975 . . .
Hel 0.034 0.097 . . .
JSD 0.001 0.011 . . .
XEn 0.016 0.047 . . .

Table 1: Example comparing the expert and learner
and probability distributions (for the first two charac-
ters shown in Figure 1), resulting in a single score per
character and similarity metric.

The pairwise comparison of the two speakers’
productions per character is shown in Table 1.
The probability distributions for each character
per speaker is scored using the comparison al-
gorithms, creating a single score per algorithm,
which serves as feedback for each character. Since
we do not know which similarity metric is the
most suitable one, we experiment with three dif-
ferent ones (see section 5.3 for details).

4.2 Quantitatively Evaluating the Corpus
As discussed above, our goal is to evaluate the po-
tential of Common Voice’s annotation as a stand
in for pronunciation annotation. I.e., we use the
downvotes as indication for incorrect pronuncia-
tion. We use the vote annotations as our silver
standard; the task then is to predict whether a
given clip has any downvotes (irrespective of the
number of upvotes) using ASR generated pronun-
ciation scores. Assuming the pronunciation scor-
ing algorithms work well, a classifier should be
able to identify clips with downvotes. Since the
number of votes per clip is small, we use a bi-
nary classification problem rather than predicting
the number of downvotes. Most clips have a max-
imum of 3 total votes, and have 1 downvote and 2
upvotes if there are any downvotes. All clips have
at least one upvote.

4.3 Data Preprocessing
We choose to focus on sets of files which contain
at least 10 different speakers producing the same
sentence. We then randomly sample 1 000 of these
sets, containing 34 105 total utterances. Of these,
the Coqui model fails to process 9,061 clips be-
cause of problems identified in preprocessing (e.g.
the transcript contains unknown characters, or the
clip is longer than 10 seconds). Our final count

Dataset WER CER
Sampled Common Voice 0.252 0.153
LibriSpeech clean 0.052 0.019
LibriSpeech other 0.150 0.073

Table 2: Word Error Rate (WER) and Character Error
Rate (CER) of sampled data used in our evaluation and
Coqui AI’s reported scores for English (Coqui, 2021).

for clips is 25 044. Table 2 shows the Word Error
Rate (WER) and Character Error Rate (CER) of
the sampled data, along with the scores reported
by Coqui for the used model when testing on the
full dataset (in the version of 2021) (Coqui, 2021).

By comparing the Coqui STT output of each
clip with all other clips of the same sentence (see
Section 5.3), we generate 511 532 comparisons.
Since we define an expert utterance as one with-
out downvotes, we only accept comparison pairs
where one clip only has upvotes (expert) and the
other as the language learner. To reduce the data
to a manageable size given our compute resources,
we reduce these randomly to 20 000 comparisons,
split into 15 000 for training and 5 000 for testing.

5 System Components

5.1 Speech Recognition
We use the freely available model, Coqui STT7

(Coqui, 2021), based on Baidu’s DeepSpeech
(Hannun et al., 2014). Out of the box, Coqui STT
predicts an orthographic transcription of speech in
an audio file by slicing it into chunks of a specified
length (default: 20ms), and using an LSTM net-
work to produce a softmaxed probability distribu-
tion over candidate characters per slice. This is il-
lustrated in Figure 1 where the waveform is sliced
into 20ms chunks, represented by the columns in
the middle table. The rows represent probabilities
of candidate characters.

Coqui STT was trained on approximately
47 000 hours of audio data from Common Voice
(Ardila et al., 2020), LibriSpeech (Panayotov
et al., 2015), and Multilingual LibriSpeech (Pratap
et al., 2020). Both Librispeech corpora are com-
prised of segmented audiobook data.

Coqui STT’s predictions over the sliced audio
results in far more characters than the transcrip-
tion; it decodes this long form transcription into
the final predicted words using a Connectionist
Temporal Classification (CTC) decoder (Graves

7https://coqui.ai (no longer maintained).

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

70

https://coqui.ai


et al., 2006). We modify Coqui STT to preserve
and return the softmax output in the form of prob-
ability distributions per 20ms time slice of the
LSTM in the model’s results, where the proba-
bility space is the set of all potential orthographic
characters, thus bypassing the CTC decoder.

5.2 Needleman-Wunsch Alignment

Since we need to align the transcripts of the time
slices to the correct transcription, rather than de-
coding the speech signal, we modify the alignment
algorithm by Needleman and Wunsch (1970).

The algorithm’s original purpose is to align two
DNA sequences by calculating the distance be-
tween all possible alignments, using Levenshtein
distance, and adding insertions to one or both se-
quences as needed. It then uses a backtrace to find
the sequence resulting in the lowest divergence.

The original algorithm results in a 1 : 1 align-
ment, with some characters aligned to an inser-
tion character. When there are multiple possible
alignments of equal weight, Needleman-Wunsch
only returns the best entirely aligned sequences.
However, for our problem, we need a many to one
alignment, allowing us to be intentional about se-
lecting a distribution per elicitation phrase char-
acter, rather than relying on the 1 : 1 mappings.
We modify the algorithm to allow pairing multiple
items from the longer sequence (audio slices) with
an item from the shorter sequence (correct tran-
scription).

5.3 Comparing Distributions

We use three algorithms designed to compare
probability distributions. The first is Hellinger
Distance (Hellinger, 1909). It is a simple sum-
mation of comparisons between elements in the
probability space normalized to be bounded by 0
and 1. The second is Jensen-Shannon divergence
(JS; Lin, 1991). JS divergence is based on KL di-
vergence (Kullback and Leibler, 1951), but it is
symmetrical, making it a more consistent measure
of similarity. It is also bounded by 1 when us-
ing probability distributions given the base of the
log used is 2. The third is cross entropy. This is
our only comparison metric which is not bounded
by 0 to 1, and, like Jensen-Shannon divergence,
a higher score indicates more dissimilar distribu-
tions.

Comparison Algorithm Accuracy

Baseline 81.4
Jensen-Shannon 60.6

Cross Entropy 60.9
Hellinger 64.2

Table 3: Results per comparison algorithm scores as
input to the downvote detection model.

5.4 The Downvote Detection Model

We evaluate our approach on the downvote detec-
tion task, trained on the comparison scores (see
above). The downvote detection classifier con-
sists of a Multi-Layer Perceptron with a softmax
output layer, implemented using scikit-learn (Pe-
dregosa et al., 2011). The goal of this classifier
is a binary classification of whether a given clip
has downvotes (indicating mispronunciation). The
input features are the per character pronunciation
scores from the distribution comparisons for each
phrase. Phrases are of variable length, so the input
is padded with ones to the length of the longest
phrase. The final parameters are shown in Table 8
in the appendix. We optimized over the parame-
ters using the Adam optimizer. The initial learning
rate and beta 1 for Adam were the most impactful.
More hidden layers did not improve performance,
indicating that a complex network is not necessary
for this task.

6 Quantitative Evaluation

In Table 3, we compare the accuracy of the down-
vote detection model when using the different
comparison algorithms. The best results, 81.4%,
are obtained by the baseline algorithm, using the
probability of each character in the elicitation
phrase from the speech recognition model’s soft-
max. This is a binary classification with a 50 : 50
split, i.e., random chance should yield about 50%
accuracy. As an upper bound, 81.4% is therefore
too low to be reliable. All of our comparison algo-
rithm scorers perform at around 60-64%. They are
similar to each other, with the Hellinger algorithm
performing best after the baseline. This suggests
that elaborate methods are not necessary for pro-
ducing effective scores of pronunciation.

7 Qualitative Analysis

In this section, we probe deeper into the model,
the task, and the corpus. If the vote annotation on
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Figure 2: The distribution of pronunciation scores gen-
erated by the distribution comparison algorithms as
percentages. The x-axis for Cross Entropy is different
because it is not bounded by 0-1.

the clips in Common Voice are a reliable indicator
of pronunciation quality, that should be reflected
in the data. To test this, we choose a subset of in-
stances we consider representative of the broader
corpus with regard to both ASR performance and
the mix of upvotes and downvotes.

7.1 Data in Aggregate

Figure 2 shows the distribution of scores by per-
cent for each of the scoring methods. Each bin
contains the output of the distribution compari-
son algorithm interpreted as a pronunciation score,
within the bin’s width of 0.1. Since cross entropy
is not bounded by 1, its scores range to 35 for our
data. However, such high scores are highly infre-
quent, thus we do not show scores >2. The scores
generated from instances both with and without
downvotes are included in these histograms. Sep-
arating the instances by presence of downvote re-
sults in nearly identical graphs.

For the baseline algorithm, the majority of
scores are in the 0.9-1.0 bin. Since these are the
probabilities given by the baseline for the char-
acter in the elicited phrase, this indicates that the
ASR model is confident and accurate most of the
time. This is expected for an English model, espe-
cially given the quantity of training data this model
was trained on. The baseline model rarely returns
intermediate probabilities. Consequently, when it
predicts the wrong character or chooses no predic-
tion, it still tends to do so confidently. The Jensen-
Shannon scorer presents a similar pattern, the ma-
jority of scores are in the bin representing the best

scores. (Since it is a distance metric, 0 represents
the highest similarity and therefore a positive pro-
nunciation score.)

The Hellinger scorer differs from the baseline,
Jensen-Shannon, and Cross Entropy scorers in that
it produces far fewer scores at the extremes of 0
and 1 or greater, instead making more distributed
judgements. These differences indicate that some
additional information is captured by the Hellinger
scorer with regard to the relationship between the
baseline and expert productions of the elicited
phrase. The baseline scorer outperforming the
Hellinger scorer (see Table 3) in our implicit eval-
uation task indicates that this relationship is not
productive in predicting downvotes.

While the distributions in Figure 2 show an
overview of the scorers, they do not directly com-
pare the scorers to one another. We are most in-
terested in how the comparison scorers relate to
the baseline, as the baseline is representative of
the model’s confidence in its transcription. Fig-
ure 3 provides a direct comparison of the baseline
scorer with the 3 scorers per character in each elic-
itation phrase. The diagonals provides a point of
reference; scores above the diagonal are scored as
worse pronunciation by the respective scorer for
the same character, and scores below the diagonal
are scored as better.

For the comparisons with the Hellinger distance
and Jensen-Shannon divergence (top and middle
of Figure 3), 1 on the y axis indicates a correct pro-
nunciation, so the diagonal indicating agreement
between the comparison and baseline has a neg-
ative slope. Most of the points appear below the
agreement diagonal, showing that the scorers are
more forgiving overall of mispronunciation. On
both extremes of the x axis, 0 and 1, there is a
broad range of scores on the y axis. As discussed
above, this is where the majority of baseline scores
appear, especially around 1, which is why the den-
sity at those extremes is much higher. From 0.9-
1.0 on the x axis, the y axis has points ranging
from 0-1, but the majority tend to be low, indicat-
ing that the Hellinger scorer tends to agree with
the Baseline scorer when the ASR model is con-
fident. There is more disagreement between the
scorers at the 0 x axis extreme. This may be influ-
enced by the smaller sample size compared to the
1 extreme, but there are enough points to confirm
that the Hellinger scorer is more forgiving when
the ASR model has low confidence. Of the non-
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Figure 3: The relationship between scores in the base-
line and the Hellinger, Jensen-Shannon, and Cross En-
tropy scorers. Each point represents a character’s pro-
nunciation score with the baseline on the x axis and
the graph’s respective comparison scorer on the y axis.
Scores on the diagonal are equally scored by the base-
line and the comparison scorer.

Baseline scorers, the Hellinger scorer performed
best, which is likely due to the higher agreement it
has with the Baseline.

The middle plot in Figure 3 compares the base-
line with the Jensen-Shannon Divergence scorer.
There is far less agreement in the Jensen-Shannon

scorer than the Hellinger/Baseline comparison in
the intermediate scores, but overall the Jensen-
Shannon and Baseline scorers compare very sim-
ilarly, being generally more forgiving when the
ASR model has low confidence in its predictions.

Cross Entropy, unlike Hellinger Distance and
Jensen-Shannon, is not bounded by 0-1, so there is
no agreement diagonal in the bottom plot in Fig-
ure 3. Similar to Jensen-Shannon and Hellinger,
most of the points are concentrated around the 0
and 1 extremes of the x axis. Because the Cross
Entropy scores are on a much larger scale, creat-
ing a threshold for a mispronunciation would be
at a different value than for the other scorers, and
difficult to determine.

7.2 Specific Examples

As discussed in Section 3, the dataset used
for these experiments is intended and annotated
specifically for speech recognition, not for any
specific pronunciation or dialect. This is, however,
the closest available annotation to our task. The
annotations on the audio clips collected indicate
whether the speaker in a clip “accurately [spoke]
the sentence”, represented as upvotes or down-
votes. Downvotes can indicate a mispronuncia-
tion, but also frequently indicate bad audio quality
or missing audio. Conversely, upvotes do not dis-
tinguish between dialects, since a desired charac-
teristic of ASR is the ability to generalize over di-
alect. We investigate a small number of examples
further, relying on the first author’s native Amer-
ican English judgments. In addition to looking
into different issues resulting from the data, we are
also interested in the question whether the differ-
ent similarity metrics we used can provide com-
plementary information to the baseline scores.

We take a closer look at individual examples
from Common Voice, illustrating a range of issues,
see Tables 4, 5, 6, and 7. Scores that show a dis-
tance > 0.3 from a perfect pronunciation (0 or 1,
depending on the metric) are highlighted in red,
indicating a mispronunciation.

Table 4 demonstrates the expected behavior in
the case of a mispronunciation. The last word,
feel, is mispronounced by learner 174840. The
f is dropped and the e’s are pronounced as a
lax high front vowels instead of tense. The
ASR model is able to correctly transcribe the clip
as how do you feel, though it reports being
nearly equally confident that the last word is hear.
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h o w d o y o u f e e l

Expert 0.995 0.801 0.962 0.965 0.882 0.918 0.880 0.901 1.000 1.000 0.998 0.999
Baseline 0.992 0.975 0.985 0.919 0.897 0.943 0.973 0.971 0.352 0.752 0.381 0.040

Hellinger 0.031 0.247 0.095 0.083 0.104 0.046 0.148 0.065 0.634 0.132 0.311 0.871
JSD 0.001 0.076 0.012 0.009 0.015 0.003 0.030 0.006 0.439 0.022 0.130 0.848

Cross Entropy 0.047 1.490 0.333 0.256 0.766 0.220 0.707 0.250 1.509 0.413 1.410 4.639

Table 4: Comparing Expert 167006 and Learner 174840.

h o w d o y o u f e e l

Expert 0.999 0.999 0.999 0.981 0.961 0.994 0.994 0.990 0.998 0.999 0.998 0.999
Baseline 0.992 0.975 0.985 0.919 0.897 0.943 0.973 0.971 0.352 0.752 0.381 0.040

Hellinger 0.034 0.097 0.060 0.165 0.119 0.024 0.055 0.034 0.629 0.132 0.309 0.872
JSD 0.001 0.011 0.004 0.033 0.028 0.001 0.004 0.002 0.437 0.022 0.130 0.848

Cross Entropy 0.016 0.047 0.026 0.186 0.347 0.100 0.066 0.118 1.514 0.415 1.406 4.640

Table 5: Comparing Expert 156711 and Learner 174840.

h o w d o y o u f e e l

Expert 0.999 0.999 0.999 0.981 0.961 0.994 0.994 0.990 0.998 0.999 0.998 0.999
Baseline 0.869 0.876 0.643 0.758 0.033 0.484 0.537 0.352 0.871 0.941 0.919 0.859

Hellinger 0.077 0.233 0.349 0.253 0.744 0.464 0.470 0.369 0.234 0.163 0.187 0.076
JSD 0.008 0.061 0.136 0.078 0.645 0.244 0.258 0.177 0.060 0.029 0.038 0.007

Cross Entropy 0.208 0.197 0.640 0.457 5.009 1.051 0.903 1.543 0.208 0.091 0.134 0.224

Table 6: Comparing Expert 156711 and Learner 103321.

While the Hellinger and Jensen-Shannon scorers
capture these issues just as the baseline scorer
does, the Cross Entropy scorer is much more crit-
ical, indicating errors where there are none in the
first three words.

Table 5 shows the same learner as in Table 4,
but compared with a different expert. The baseline
scores are identical to Table 4 because they are in-
dependent of the expert. Though the expert scores
are high in both Tables 4 and 5, the scores gener-
ated by the comparison scorers correctly indicate
better pronunciation of the vowels in the first three
words, especially in the Cross Entropy compari-
son. This demonstrates the impact that the selec-
tion of the expert has on scoring when using the
comparison metrics, especially for the Cross En-
tropy scores. In the implicit evaluation, the com-
parison metrics perform worse than the baseline,
but the impact of the choice of expert shows that
there is at least some potential in those scorers
which is not captured by that evaluation.

Table 6 contains an example where the expert
speaker speaks clearly and the learner, though
sounding native, does not enunciate clearly, so that
the ASR model misunderstands you in the pro-
duction, shown by the low scores. In this example,
the forgiveness of the Jensen-Shannon scorer cap-

tures better that the learner pronounces the phrase
correctly despite their lack of enunciation. The
Hellinger scorer and cross entropy scorer closely
reflect the baseline. This again shows the poten-
tial of the comparison scorers not captured by the
implicit evaluation.

In Table 7, the expert speaker pronounces the
phrase correctly, but the quality of the audio is
very poor, and the ASR model has trouble tran-
scribing the clip, though it is understandable to a
native speaker. The learner also pronounces the
clip correctly, i.e., the baseline scorer is correct in
its feedback. The other scorers, however, incor-
rectly indicate mispronunciations in the learner’s
pronunciation. This is an issue with our expert
selection more than with the annotation. How-
ever, in the case of this speaker being selected
as a learner instead of a speaker, several charac-
ters would still be incorrectly marked as mispro-
nounced. Choosing an expert carefully is critical,
and in this case, the Common Voice annotation is
not reliable enough to do so. Overall, we reveal an
issue in our methodology for selecting the expert
side of the comparison, specifically that the lack
of any downvotes is a poor selection criterion, as
poor quality clips may get through the annotation
without any downvotes.
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Expert 0.271 0.074 0.000 0.770 0.903 0.973 0.988 0.979 0.997 0.952 0.001 0.000
Baseline 0.992 0.990 0.984 0.984 0.992 0.999 0.999 0.997 0.997 0.995 0.993 0.998

Hellinger 0.434 0.804 0.750 0.283 0.125 0.050 0.047 0.028 0.020 0.109 0.680 0.704
JSD 0.235 0.770 0.572 0.097 0.020 0.003 0.003 0.001 0.001 0.015 0.496 0.499

Cross Entropy 2.675 8.502 2.385 2.218 0.578 0.114 0.095 0.070 0.041 0.384 0.086 0.004

Table 7: Comparing Expert 18456694 (bad quality audio) and Learner 18400454.

8 Conclusion & Future Work

Our investigation has shown that the upvote and
downvote annotations make a poor substitute for
a properly annotated pronunciation corpus. Clips
which have native sounding speech also have
downvotes because of the poor audio. There is a
great deal of variation in dialect and audio qual-
ity, which is desirable for training a speech recog-
nition model, but represents noise when grading
pronunciation. A downvote is far more commonly
used as an indicator of an issue with the file it-
self than of a mispronunciation. The issue goes
both ways as well, many clips with very poor au-
dio quality have no downvotes but are not accu-
rately processed by the speech recognition system.
Most clips also have very few votes overall (most
commonly 3), which prevents us from using ratios
of up- and downvotes.

Many of the issues we identified, especially in
section 7, indicate that there is a need for a speech
corpus annotated for pronunciation. Many of the
problems, such as selection of experts and varia-
tion in dialect and audio quality, can only be ad-
dressed by a careful collection of data and having
clearly defined annotations.

As demonstrated in section 7.2, the compari-
son scorers still demonstrate some promise. Since
the data situation makes it impossible to evaluate
our scorers accurately, our next step is to collect
a speech corpus annotated for pronunciation. We
can then evaluate and continue to develop these
scorers.

9 Limitations

We recognize that we make several critical as-
sumptions throughout this work necessary to inter-
pret our results: 1) Moses et al. (2020) show that
using the ASR softmax probabilities per character
is a reasonable way to score goodness of pronun-
ciation. Our results indicate that either our model
(see section 4.2) does not capture the relationship
between pronunciation and downvotes, or there is

none (the latter possibility being supported by our
qualitative analysis). 2) There are no pronuncia-
tion corpora available with the type of annotations
required for the task. In the absence of such data,
we use the closest alternative. While it is possible
to create such corpora for e.g. English, it may not
be possible for many under-resourced languages.
For the latter, using Common Voice may still be
the only option. 3) We assume that the compari-
son metrics used are reliable. However, this can
only be tested empirically once we have usable
data. Finally, the ASR model is trained solely for
speech recognition and not finetuned for the task
of pronunciation. As we have no character level
annotation to work with, finetuning is not possible
in this work.
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A Model Parameters

Best Model Parameters

input embedding 152
hidden layer size 128, 64, and 32

activation ReLU
optimizer Adam
batch size 200

learning rate 5e-4
Adam beta 1 0.80

Table 8: Optimized model parameters for the implicit
evaluation.
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Abstract

Automatic metaphor detection has been an ac-
tive field of research for years. Yet, it was
rarely investigated how automatic metaphor
detection can aid language learning. We there-
fore present MEWSMET, a corpus of argu-
mentative essays (MEWS1) written by English
as Foreign Language (EFL) learners annotated
for metaphors. We differentiate between two
kinds of metaphors: metaphors that are com-
prehensible to native speakers, even though
they themselves would not use them (compre-
hensible metaphors, CMs) and metaphors that
native speakers would use (target language
metaphors, TLMs). We use MEWSMET in
two ways: Firstly, we analyze our annotations
and find out that there is a positive linear cor-
relation between essay score and the number
of TLMs, while no correlation is found be-
tween essay score and the number of CMs.
Secondly, we explore how metaphor detec-
tion models perform on MEWSMET. We find
that metaphor detection is a hard task given
our noisy learner data, and that metaphor de-
tection models tend to be better at identify-
ing all metaphors (TLMs+CMs) instead of just
TLMs, even though only TLMs can be used as
a feature for automatic essay-scoring.

1 Introduction

Conceptual Metaphor Theory claims that
metaphorical linguistic expressions manifest our
way of thinking. One of the most well-known ex-
amples for a metaphorical linguistic expression is
to spend time. Here, the conceptual domain TIME

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1Measuring Writing at Secondary Level (see Keller, 2016
and Keller et al., 2020)

is described by means of the conceptual domain
MONEY. The metaphorical linguistic expression
thus shows that time is considered a limited and
valuable resource (Lakoff and Johnson, 1980b).
Metaphorical linguistic expressions are therefore
not merely ornamental, but omnipresent in our ev-
eryday life (Lakoff and Johnson, 1980a, Shutova
and Teufel, 2010).

Detecting metaphorical linguistic expressions
automatically is beneficial for a range of natural
language processing applications, such as emotion
detection (Dankers et al., 2019, Li et al., 2022),
identification of mental health problems (Zhang
et al., 2021, Gutiérrez et al., 2017), or propaganda
detection (Baleato Rodrı́guez et al., 2023). Even
though metaphors play an important role in edu-
cation (Niebert and Gropengiesser, 2012, Mouraz
et al., 2013, Oxford et al., 1998), it is only rarely
investigated how metaphor detection (MD) can be
employed to facilitate language learning.

Beigman Klebanov et al. (2018) have presented
a corpus annotated for metaphors that is based on
the ETS Corpus of Non-Native Written English2

– a collection of argumentative essays provided
by TOEFL test takers. They show that the use
of argumentation-relevant metaphors provides in-
formation about a writer’s English language profi-
ciency. We build on and extend this work in sev-
eral ways as detailed in the following.

First, our study addresses whether the same re-
lation between metaphoric language use and lan-
guage proficiency also holds for younger writers.
Although mean age of the writers in the study
by Beigman Klebanov et al. (2018) is not given
(Blanchard et al., 2013), we assume that – as

2https://catalog.ldc.upenn.edu/LDC201
4T06
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[Children] are likely to take over (adopt) the opinion
of the people [...] that are around them.

Young children should live their lifes and should not
have to build (form) their own opinion about
something.

This often brings (puts) parents in difficult situations.

Table 1: Example sentences with metaphorically used
verbs (underlined) taken from MEWS data (Keller
et al., 2020). They are comprehensible in English, even
though L1 English speakers would probably use differ-
ent expressions such as the ones given in brackets.

TOEFL tests are often taken by students who want
to study at a university where English is the lan-
guage of instruction – most writers are in their
last year of high-school or have recently grad-
uated from high-school. In contrast, our study
is based on the MEWS dataset by Keller et al.
(2020), which addresses German-speaking EFL
learners in earlier years of their education, while
also using TOEFL writing prompts3. We assume
that the general proficiency level will be lower in
our dataset than in the one by Beigman Klebanov
et al. (2018). In addition, our dataset comprises
essays of all proficiency levels, while the one by
Beigman Klebanov et al. (2018) only consists of
medium- and high-proficiency essays.

Secondly, we investigate the relationship be-
tween proficiency level and metaphors that En-
glish L1 speakers comprehend, even though they
themselves would not actively use them; exam-
ples are shown in Table 1. Samaniego Fernández
et al. (2005) demonstrate that professional trans-
lators introduce new expressions and conceptual
structures in a target culture when transferring
metaphors that are non-novel in the source lan-
guage to a novel metaphor in the target language.
The translated expressions “seem to have been un-
derstood correctly, and this proves their [i.e. the
metaphors’] transparency: they can be interpreted
precisely because they appeal to our recognition
of underlying symbolism.” In our dataset, stu-
dents also use metaphors that seem anomalous in
the target language in the sense that L1 speakers
would not use them. Yet, the metaphorical ex-
pressions are perfectly comprehensible for target
language speakers because they create new (and
sometimes even appealing) conceptual mappings

3The prompts are different from those used in the ETS
Corpus of Non-Native Written English, i.e. also different
from the TOEFL dataset by Beigman Klebanov et al. (2018).

(e.g. to build an opinion: an opinion is – or should
be – hard work just as building a house)4. We will
call these metaphors comprehensible metaphors
(CMs), as opposed to metaphors which target lan-
guage speakers would actively use (target lan-
guage metaphors, TLMs). We will examine the
scores human raters gave to essays containing
CMs in order to find out whether they rather oc-
cur in low- or high-proficiency essays.

Next, we investigate how well metaphor de-
tection models perform on more noisy data from
such younger, and partly less-proficient writers
in detecting metaphors – both CMs and TLMs.
To do so, we leverage the best-performing model
from the 2020 Shared Task on Metaphor Detec-
tion (Leong et al., 2020), namely DeepMet (Su
et al., 2020). Our study will focus on verbs only
for several reasons. First, Cameron (2003) re-
port that about half of all metaphors in educa-
tional discourse are found in verbs. Second, other
parts of speech, especially prepositions, are often
not seen as being metaphorical by laypeople (cf.
Beigman Klebanov and Flor, 2013), which would
pose an additional difficulty during the annotation
process. Third, many metaphor detection datasets
that potentially serve as training data, have been
annotated just for verbs.

Our study makes the following contributions:
1) We present the MEWSMET corpus. Here,
an additional layer is added to the MEWS-
dataset (Keller et al., 2020), where we annotated
metaphors that are perfectly acceptable in the tar-
get language English (TLMs) as well as metaphors
which are comprehensible but which native speak-
ers would not use (CMs). 2) We describe the
relationship between TLMs and the scores hu-
man raters attributed to the student essays. We
do so to confirm the trend Beigman Klebanov
et al. (2018) have observed for high-school gradu-
ates also for younger and less-proficient students,
namely that the use of metaphors provides insights
into a learner’s proficiency level. 3) We describe
the relationship between CMs and students’ pro-
ficiency levels. 4) We provide insights into the
behaviour of metaphor detection models on noisy
learner data for both TLMs and CMs.

For code and data see https://github.c
om/AnHu2410/MEWSMET_code.

4The expression to build an opinion is based on a false
friend, as the German equivalent to to form an opinion is
(sich) eine Meinung bilden, where the word bilden is phono-
logically similar to the English verb to build.
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2 Related Work

In this section we provide the scientific back-
ground to the three main fields of this study:
metaphor annotation, metaphor detection and au-
tomatic essay scoring.

2.1 Metaphor Annotation

A widely applied example of a metaphor annota-
tion guideline is the Metaphor Identification Pro-
cedure (MIP; Pragglejaz Group, 2007) and its ex-
tension, MIPVU (Steen et al., 2010). The under-
lying idea is that a token is used metaphorically
if its meaning in a certain context deviates from a
more “basic” meaning of this word, as defined by
a contemporary dictionary. For example, the basic
(i.e. first) meaning of the verb to build accord-
ing to the online version of the Longman Dictio-
nary of Contemporary English5 is to make some-
thing, especially a building or something large,
with examples ranging from houses and bridges to
birds’ nests. In the expression to build an opinion,
clearly this concrete basic meaning is not applica-
ble.

We follow the annotation guideline from Mo-
hammad et al. (2016). It is based on MIP (Prag-
glejaz Group, 2007), but condensed and enriched
with examples (see Appendix A.1.1), which we
deemed suitable for our annotators who had no
prior experience in the identification of metaphors.
While MIP and MIPVU were originally designed
for annotating metaphors in English, there have
been attempts to use the guidelines for other
languages such as Spanish (Sanchez-Bayona and
Agerri, 2022).

Beigman Klebanov et al. (2018) annotate
argumentation-relevant metaphors, i.e. metaphors
that help the writer of an argumentative essay to
advance an argument. In stark contrast to Prag-
glejaz Group (2007) and Steen et al. (2010), they
did not provide “formal definitions of what a lit-
eral sense is in order to not interfere with intuitive
judgments of metaphoricity” (Beigman Klebanov
and Flor, 2013). This line of thought also emerges
in other annotation studies, such as Tsvetkov et al.
(2014) and Piccirilli and Schulte im Walde (2022),
as they rely on intuitive definitions of metaphoric-
ity.

The distinction between – and annotation of
5https://www.ldoceonline.com. We use this

corpus-based dictionary for our annotation since it was also
used by Steen et al. (2010).

– novel and conventionalized metaphors is an
increasingly active research topic (Parde and
Nielsen, 2018, Do Dinh et al., 2018, Egg and Ko-
rdoni, 2022, Reimann and Scheffler, 2024a). This
distinction is also relevant for our dataset, and has
been been annotated for future use. Another dis-
tinction which is highly relevant for our study is
given by Reijnierse et al. (2018), who in their
annotation protocol differentiate between deliber-
ately and non-deliberately used metaphors. After
all, deliberately used metaphors cannot simply be
learnt from a textbook and could therefore hint at
a higher language competency. We have not anno-
tated whether or not metaphors in our dataset are
used deliberately, but leave this to future work.

2.2 Metaphor Detection

An early approach to automatic metaphor detec-
tion was developed by Birke and Sarkar (2006),
who used a word-sense disambiguation approach
to classify literal and non-literal usages of verbs.
Conceptual Metaphor Theory (Lakoff and John-
son, 1980b) claims that metaphors transfer knowl-
edge from a concrete, familiar domain to a
more abstract domain. Therefore, Turney et al.
(2011) used abstractness scores of context words
as features for their logistic regression classifier.
The idea of “conceptual features” also inspired
Tsvetkov et al. (2014) and Köper and Schulte im
Walde (2016), who – in addition to abstractness
and other scores – used semantic supersenses from
WordNet (Miller, 1994) and scores representing
distributional fit, respectively.

Early neural models, such as Do Dinh and
Gurevych (2016) (a multilayer perceptron with
word embeddings), showed a performance compa-
rable to non-neural classifiers; however, they be-
came popular because they did not require fea-
ture engineering. Later neural models clearly
outperformed the non-neural classifiers: Dankers
et al. (2019) used several multi-task learning mod-
els and reached state-of-the-art results in 2019
for both metaphor and valence/arousal/dominance
(VAD) prediction. During the 2020 Metaphor De-
tection Shared Task (Leong et al., 2020), DeepMet
overall performed best (Su et al., 2020); the au-
thors transformed metaphor detection into a read-
ing comprehension task and observed state-of-
the-art results. We use this model in our study
to compare its performance on the corpus by
Beigman Klebanov et al. (2018) and our corpus.
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Ma et al. (2021) fine-tuned BERT for MD. To
perform word-based metaphor classification, they
copied the input sentence and masked the target
word. The original sentence and the masked copy
were used as input for a sequence classification
task. Uduehi and Bunescu (2024) also mask the
target word, and compute the expectation of a lit-
eral meaning in the given context. Then, they
compute the estimation of the realized meaning
of the target word in order to predict whether
the target word violates the expectation of a lit-
eral word. Li et al. (2023) exploited the fact that
many datasets are based on the Metaphor Identi-
fication Process (MIP; Pragglejaz Group, 2007),
where a word is annotated as metaphorical if its
contextual meaning is dissimilar to its “more ba-
sic meaning” (among further criteria). While prior
models (such as MelBERT by Choi et al. 2021)
grounded on MIP use decontextualized represen-
tations of the target word, Li et al. (2023) success-
fully gathered the representation of the target word
from sentences where it was used literally. While
research on metaphors in English has received
a lot of attention, and also metaphor detection
in other low- to high-resource languages is turn-
ing into an active field (Aghazadeh et al., 2022,
Lai et al., 2023, Schuster and Markert, 2023), re-
search on metaphors in texts of English learners
is rare. Stemle and Onysko (2018) used a bidi-
rectional RNN and fastText embeddings to detect
metaphors for the 2018 Shared Task on Metaphor
Detection (Leong et al., 2018). As training data
for their embeddings they use TOEFL tests (Blan-
chard et al., 2013) of different proficiency levels
(among others); in contrast to our study (and that
of Beigman Klebanov et al., 2018), they use these
texts to detect metaphors in standard language and
not in learner language.

2.3 Metaphors in Automatic Essay Scoring

In automatic essay scoring, the task is to predict
the quality of an essay either on a holistic scale or
for specific aspects of an essay such as language or
structure. For holistic scoring, both linguistic form
and content are usually taken into consideration
and the correct usage of metaphoric expressions
can be seen as one aspect of linguistic proficiency.
Yet to the best of our knowledge, metaphors have
so far not been integrated into automated essay
scoring systems, as – until some years ago – it
has been claimed that the automatic metaphor de-

tection for non-conventionalized metaphors would
not work reliably enough (Graesser and McNa-
mara, 2012). For essay scoring in Chinese, Yang
et al. (2019) used a number of features, including
the number of metaphors. Given their examples,
though, their notion of metaphors rather corre-
sponds to a simile with specific lexical items mark-
ing their occurrence. However, there have been re-
cent successes integrating features on the related
topic of concreteness of multi-word expressions
into essay scoring (Wilkens et al., 2022) highlight-
ing the importance to consider complex linguistic
phenomena.

3 Annotation Study: Metaphor
Annotation in Learner Essays

The goal of the following annotation study is two-
fold: First, we aim at investigating the relationship
between essay scores and the use of metaphors.
Second, our annotation results are used as train
and test sets in the subsequent experimental study
on automatic metaphor detection in learner texts.

3.1 Annotation Data

The dataset used in our study is a subset of the
MEWS dataset by Keller et al. (2020), a collec-
tion of argumentative essays written by German
and Swiss EFL learners. The essays are written
on the basis of four different TOEFL prompts,
two of them being independent prompts (the stu-
dents are given a prompt only) and two of them
being source-based, i.e. the prompt refers to a
reading text. We focus on the independently-
written essays only as source-based essays might
mainly contain metaphors in standard language
adopted from the text. The following two prompts
were used. The students were asked whether they
“agree or disagree with the following statement”:

• Television advertising directed toward young
children (aged two to five) should not be al-
lowed. (Prompt “TV-Ads”)

• A teacher’s ability to relate well with stu-
dents is more important than excellent knowl-
edge of the subject being taught. (Prompt
“Teacher”)

For each essay, expert raters’ scores are avail-
able. Two raters scored the essays on a scale be-
tween one and five (with five being the best score).
If the two ratings were only one point apart (e.g.
rater A: 3; rater B: 4), the average was taken as the
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Figure 1: Number of essays per score in MEWSMET.

overall score. Otherwise, a third adjudicator rated
the essay in order to obtain the overall score. The
essays were written in the penultimate year before
graduation; half of them at the beginning of the
school year (T1) and half at the end (T2).

We randomly selected 236 essays (120 with
prompt “TV-Ads”, 116 with prompt “Teacher”)
from Swiss students; Figure 1 shows the number
of essays per score. As can be seen, all proficiency
levels are taken into account. These essays contain
8025 target verbs (excluding stop words, see Ap-
pendix B) which were automatically detected with
the off-the-shelf NLTK POS-tagger which utilizes
the Penn Treebank tagset (Bird and Loper, 2004).

3.2 Annotation Guidelines

Our goal is the annotation of verbal metaphors in
learner essays. Our guidelines were adopted from
Mohammad et al. (2016), who provide specific
definitions for metaphorical and non-metaphorical
usages compared to guidelines that rely on intu-
ition (cf. Beigman Klebanov and Flor, 2013).
We deemed this kind of guidance helpful for
this structurally difficult task. In contrast to
Beigman Klebanov et al. (2018), who only focus
on argumentation-relevant metaphors, we chose
to annotate all verbal metaphors in order to have
more comprehensive material for analysis. In ad-
dition to a binary decision for metaphorical vs. lit-
eral usage, annotators had to label each target verb
with one of the following four labels (examples
taken from MEWSMET):

• non-metaphorical: for literal usages, e.g.
children learn in their smal age to consume
and to spend money

• conventional metaphor: for frequent
metaphorical usages the annotator has seen
before, e.g. Sometimes you spend even more

time with a particular teacher than your
parents.

• creative metaphor: when the annotator felt
that the verb was metaphorical but rarely
used in this context, e.g. [TV-]channels [are]
flooded with tons of ads..

• uncommon translation of a German con-
ventionalized metaphor: a metaphor that
has a German conventionalized metaphor as
basis, but the English translation used here is
uncommon, e.g. This often brings parents in
difficult situations. (literal translation of the
following German sentence: Das bringt El-
tern oft in schwierige Situationen.).

The guidelines can be found in Appendix A.1.1.

3.3 Annotation Procedure
The annotation procedure was conducted in three
stages using the annotation platform INCEpTION
(Klie et al., 2018) as detailed in the following.

Phase 1 – Sample Annotation by Experts: An-
notating metaphors is generally considered a dif-
ficult task with rather low inter-annotator agree-
ment. For example, Reimann and Scheffler
(2024a) report a Cohen’s κ = 0.60 for anno-
tating metaphors in religious online forums af-
ter discussing disagreements and adjudication, and
Beigman Klebanov et al. (2018) report a Cohen’s
κ = 0.56 after a first round of annotation and a
Cohen’s κ = 0.62 after showing the annotators
their partner’s annotations for essays with high
disagreement values, and asking them to recon-
sider their original annotations. Annotating not
standard language, but learner language adds an
extra layer of difficulty. To check the feasibil-
ity of the task and the quality of our annotation
guidelines, we first asked two Swiss-German re-
searchers in the field of English didactics to an-
notate a small subset (5 essays) sampled from
MEWS that is not part of the subset described
above (Section 3.1). The annotators were given
the main annotation guideline as presented in Ap-
pendix A.1.1.

In this first annotation round, inter-annotator
agreement was low (Cohen’s κ = 0.22 ). There-
fore, we discussed unclear cases and extended the
main guideline (see Appendix A.1.2) to improve
their clarity. Based on these improved guidelines,
the experts annotated a second sample of 5 essays;
as Cohen’s κ increased to a value of 0.37, we con-
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sidered the guideline additions to be useful. Of
course, the inter-annotator agreement still was not
even moderate; however, given the difficulty of the
task, we considered it to be sufficient for a first
round of annotations.

Phase 2 – Main Annotation Study: Next, 236
essays taken from the MEWS corpus (see Section
3.1) were annotated by two annotators, who are
pursuing their master’s degrees to become English
teachers in Germany. For the purpose of training,
they first annotated a MEWS-based toy corpus on
the basis of our revised guidelines and discussed
the results. Both annotators independently anno-
tated the actual data. For adjudication after the
first round of annotations, Annotator A was given
the information whether her annotation differed
from the annotations of Annotator B. The differ-
ence can be one of the following:

• A: metaphor, B: no / uncommon metaphor

• A: uncommon metaphor, B: metaphor / no
metaphor

• A: no metaphor, B: uncommon metaphor/
metaphor

I.e., the nature of the difference was not disclosed
to the annotator and the difference between cre-
ative and conventional metaphor was not taken
into account at all.

Annotator A was asked to check these cases and
correct them if she made an obvious mistake. Af-
ter that, Annotator B did the same for the remain-
ing disagreements. Finally, the first author of this
paper manually checked all annotations and dis-
cussed cases which possibly contradicted the an-
notation guidelines with Annotators A and B.

Phase 3 – Check by Native Speakers: Two
English L1 speakers (one American English, one
British English speaker) were asked to check
whether the metaphors found in Phase 2 were a)
expressions that a L1 English speaker might use,
b) that an L1 English speaker would not use but
which are comprehensible, and c) that are incom-
prehensible. To avoid bias by language errors
surrounding the metaphorical expression, the sen-
tences were corrected and only the relevant part of
the sentence was shown to the annotators.

3.4 Annotation analysis
3.4.1 Inter-Annotator Agreement
After the first round of the main metaphor an-
notation study, agreement for the binary decision

Ann B
met non

Ann A met 362 57
non 32 7574

Table 2: Confusion matrix illustrating the inter-
annotator agreement for the binary metaphor annota-
tion task (metaphorical vs. non-metaphorical).

between metaphorical and non-metaphorical was
moderate with Cohen’s κ = 0.42. As mentioned
before, metaphor annotation generally is a field
with rather low inter-annotator agreement, and us-
ing learner essays from all proficiency levels poses
an additional difficulty. Therefore, the low level of
agreement after the first round was to be expected.
After the final round, Cohen’s κ reached a high
value of 0.88. The confusion matrix for the bi-
nary decision is shown in Table 2; even though for
89 target verbs the annotators did not agree, for
the vast majority they agreed in their annotations.
For 362 target verbs they agreed that they are used
metaphorically.

Agreement for the 4-way-task (“conventional-
ized”, “creative”, “uncommon”, “no metaphor”)
was lower with Cohen’s κ = 0.74, and the an-
notations are represented in the confusion ma-
trix shown in Table 3. While agreement on non-
metaphorical expressions is very high and they
mostly agreed on metaphors that are based on
German conventionalized expressions that are un-
common in English, disagreement was high for
whether a metaphor is creative or conventional.
The distinction between creative and conventional
is hard even for native speakers (compare Parde
and Nielsen, 2018); as our annotators are not na-
tive speakers, the distinction is even harder, be-
cause they are not as familiar with certain conven-
tionalized expressions as native speakers are.

Ann B
conv creat unc non

Ann A

conv 183 6 6 28
creat 94 34 4 27
unc 3 3 29 2
non 23 4 5 7574

Table 3: Confusion matrix illustrating the inter-
annotator agreement for the metaphor annotation (4-
way-annotation: conventional, creative, uncommon,
non-metaphorical).
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Ann 2
incompr compr L1

Ann 1
incompr 3 6 1
compr 6 20 1

L1 7 91 227

Table 4: Confusion matrix illustrating the inter-
annotator agreement for the check by native speak-
ers (incomprehensible metaphor, comprehensible
metaphor, L1 metaphor).

For the native speaker check, i.e., the 3-way an-
notation whether a metaphor was L1-like, compre-
hensible or incomprehensible, Cohen’s κ reached
a value of 0.24. This rather low value is mostly
caused by the fact that more metaphors were con-
sidered L1-metaphors for Annotator 1 than for An-
notator 2 (see Table 4). Annotator 1 was more
tolerant towards metaphors such as to fall into a
down (meaning: to become depressed) that could
be seen as a creative invention of the writers. This
may be due to Annotator 1’s Bachelor’s degree in
English Language and Creative Writing (Annota-
tor 2 had no background relevant for the task).

3.4.2 Quantitative Analysis
We collected annotations for a total of 8025 tar-
get words in 236 essays. We only counted those
target verbs as being used metaphorically in the
subsequent analyses where both annotators agreed
that the verb was metaphorical, i.e. where they
chose one of the following labels: conventional
metaphor, creative metaphor, or uncommon trans-
lation of a German conventionalized metaphor.
This was the case for 362 verbs. These 362 verb
tokens consisted of 149 types. We did not perform
adjudication for the individual labels (e.g., con-
ventional metaphor), as we only take into account
the binary label (metaphorical, non-metaphorical)
in this study.

The 362 verbs that both German annotators an-
notated as being metaphorical were shown to the
English native speakers. For their check, we de-
cided to err on the side of caution and use the least
optimistic label, i.e. if one annotator decided that
an expression is incomprehensible while the other
decided it was comprehensible, we chose the label
“incomprehensible”. 23 target verbs were anno-
tated as being incomprehensible by at least one an-
notator. These target verbs were counted as being
non-metaphorical, even though the writer might
have intended to use a metaphor here. 112 tar-

Figure 2: Number of CMs and TLMs found at begin-
ning (T1) and end of school year (T2).

Figure 3: Number of CMs and TLMs found for the
prompt “TV ads” (AD) and for the prompt “Teacher”
(TE).

get verbs were annotated as being comprehensible
(CMs). For 227 metaphorical expressions both an-
notators declared that they could have been uttered
by an English L1 speaker (TLMs).

Figure 2 shows the amount of metaphors (TLMs
and CMs) found at T1 and T2, respectively. As can
be seen, the amount of CMs stays nearly the same
for T1 and T2, but the amount of TLMs rises by
50%. This indicates that the learners’ proficiency
improves within one year, and that TLMs could
be a useful feature in essay scoring, whereas CMs
might not be.

Figure 3 shows the amount of metaphors (TLMs
and CMs) found for each prompt. While slightly
more TLMs occur in the essays on TV-Ads than
on Teachers, the number of CMs is roughly the
same for both prompts. The balance between both
prompts is important, since we split the entire
MEWSMET-corpus into two parts (MEWS Ads
and MEWS Teacher), and use them as training
and testing data.

3.4.3 Relationship between Metaphors and
Essay Quality Scores

In order to investigate the relationship between the
number of metaphors per essay and the essay’s
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holistic score, we counted the number of TLMs
and CMs in each essay, and normalized the num-
ber of TLMs and CMs by the number of each
essay’s characters in order to control for essay
length. Then we obtained the score (1 to 5) at-
tributed to each essay by expert raters. The corre-
lations between the number of TLMs, CMs as well
as all metaphorical expressions (TLMs plus CMs),
each divided by the number of characters, and the
respective essay scores in terms of Pearson’s ρ are
presented in Table 5.

The results show that there is a weak, yet signif-
icant positive linear correlation (p-value < 0.05)
between essay score and the number of metaphors
that English L1 speakers would use (TLMs). No
correlation between the essay scores and the num-
ber of comprehensible metaphors (CMs) was ob-
served. The combined correlation between es-
say score and all metaphorical expressions (both
TLMs and CMs) is weak, and this correlation is
not significant.

Pearson’s ρ p-value

TLM/score 0.143 0.028
CM/score -0.011 0.863
both/score 0.118 0.070

Table 5: Pearson’s correlation between target language
metaphors / comprehensible metaphors / both types of
metaphors combined (controlled for essay length) and
essay score.

4 Experimental Study: Automated
Metaphor Identification in Learner
Essays

After having manually identified metaphors in the
previous section, we now turn to the question of
how well existing metaphor detection algorithms
perform on MEWS learner data using our annota-
tions as gold standard.

4.1 Experimental Setup
4.1.1 Classifier
We use DeepMet (Su et al., 2020) to detect
metaphors in learner text. DeepMet transforms
metaphor detection into a reading comprehension
task, i.e. the model is trained to answer questions
based on a given sentence. Their model takes the
global context (i.e. the whole sentence), local con-
text (i.e. the words before and after the target word

that are enclosed by punctuation such as commas)
and two types of part-of-speech as features, which
are represented via BERT embeddings. These em-
beddings are fed into a siamese architecture based
on two Transformer encoder layers. Their output
is reduced to one feature vector by average pool-
ing, which is the input to a metaphor discrimina-
tion layer. We chose this model as it showed the
best performance in the 2020 metaphor detection
Shared Task (Leong et al., 2020).

4.1.2 Evaluation Procedure
We use the evaluation procedure presented in
Su et al. (2020), where stratified 10-fold cross-
validation is performed. In each fold, a model is
trained based on a subset (90%) of the training
data and used to make predictions on the entire
set of the test data. The predictions for all train-
ing folds are summed up (leading to a number be-
tween 0 and 10 for each test instance i). This sum
is divided by the number of folds (in our case 10).
A metaphor preference parameter α (determined
in previous experiments) indicates which predic-
tion is the final prediction for each test instance.
The default value is 0.2, so if at least two models
predicted instance i to be metaphorical, the final
prediction is metaphorical; else, the final predic-
tion is non-metaphorical.

4.1.3 Training Data
As mentioned before, we use two splits of MEWS-
MET, namely MEWS Teacher and MEWS Ads.
We train and test in both directions, i.e. we train
on MEWS Teacher and test on MEWS Ads and
vice versa. In addition to the data we annotated
ourselves, we use two other datasets: firstly, a
very large corpus annotated for metaphors, namely
the VU Amsterdam Metaphor Corpus (VUA) by
Steen et al. (2010). This corpus is sampled from
the British National Corpus (BNC) and covers
academic texts, conversation, fiction, and news
texts, which means that it contains standard En-
glish. The data was annotated under the MIPVU
protocol (Steen et al., 2010). Secondly, we
use the TOEFL corpus which, as mentioned be-
fore, is sampled from the ETS Corpus of Non-
Native Written English, and contains argumenta-
tive essays written by EFL learners shortly be-
fore or after graduating from secondary educa-
tion. Even though this corpus is not as big as
the VUA corpus, it contains learner language sim-
ilar to MEWSMET. Only argumentation-relevant
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Figure 4: Amount of training (tr) and testing data
(te) for VUA and TOEFL compared to size of
MEWS Teacher and MEWS Ads on a logarithmic
scale. Percentage of metaphorically used target verbs
given on top of each column.

metaphors were annotated here (Beigman Kle-
banov et al., 2018). For both VUA and TOEFL, we
used metaphor annotations for all parts of speech
for training, and we evaluated on the datasets
where only verbs are annotated for metaphoricity
(as done by Su et al., 2020). The stark differences
in the amounts of training and testing instances
for the two additional corpora, compared to our
dataset, are illustrated in Figure 4.

4.1.4 Computing Hours and Infrastructure
It took about 30 hours to train the VUA model, 12
hours to train the TOEFL model and 2 hours to
train the MEWS models. Experiments were per-
formed on an AMD EPYC 74F3 24-Core Proces-
sor and NVIDIA RTX A6000 GPUs.

4.2 Performance of Metaphor Detection
Method on MEWSMET

If we want to use metaphors as features for auto-
matic essay scoring, they have to be detected au-
tomatically and reliably. Therefore we investigate
how well metaphor detection models perform on
noisy student data such as MEWS.

4.2.1 Experiment 1: Metaphor detection
performance across different datasets

To assess how hard the task of metaphor detection
is on our dataset compared to existing metaphor
datasets, we compare performance across datasets
when training and testing on data from the same
dataset. Results for training and evaluating the
DeepMet model on VUA and TOEFL data are re-
ported in Su et al. (2020); to ensure comparability

with our results on MEWS data we repeated the
experiments on our own GPU machines.6.

To compare the performance on VUA
and TOEFL to our data, we first used the
MEWS Teacher split of our data for training
and MEWS Ads for testing, and secondly
MEWS Ads for training and MEWS Teacher
for testing. In both datasets, we only considered
TLMs, since we assumed that this metaphor type
is closer to the metaphors annotated in VUA and
TOEFL. The results are shown in Table 6. The
hyperparameters were taken from the paper by Su
et al. (2020) with seed = 12.

Precision Recall F1

VUA 70.9 81.9 76.0
TOEFL 64.1 82.8 72.3
MEWS T 35.8 19.4 25.1
MEWS AD 56.3 8.7 15.1

Table 6: Results for training on VUA / TOEFL /
MEWS data and testing on the corresponding test data.
For MEWS, the training data is mentioned in the table
(e.g. MEWS T refers to training on MEWS Teacher
and evaluating on MEWS Ads). Here, only TLMs
were taken into account. The results are determined
with the preference parameter α = 0.2.

In this evaluation setup, DeepMet performs best
on the VUA data, closely followed by the TOEFL
data. On MEWS Ads and MEWS Teacher it per-
forms worst by a large margin.

In the course of the evaluation we observed that
for the two MEWS test datasets the results also
varied greatly across different training folds, while
this was not the case for VUA and TOEFL data.
Table 7 shows the mean and standard deviation
(SD) of precision, recall and F1 across all folds
for the 4 models. Here, precision, recall and F1
are calculated for each fold without using the pref-
erence parameter α.

While the F1 standard deviation for VUA and
TOEFL is lower than 2 F1-points, for MEWS-
MET (trained on MEWS Teacher) it is 10.7 points
and 6.5 (trained on MEWS Ads). During cross-
validation, the test data stays the same, and as 90%
of the training data are used for each fold, the dif-
ference between the individual folds does not vary
largely either. The best guess is that the extreme

6Su et al. (2020) report F1 = 80.4 for VUA-verb and
F1 = 74.9 for TOEFL-verb. We attribute differences to our
results to slightly different GPU settings.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

86



Precision Recall F1

VUA 77.6 ± 2.1 69.6 ± 3.9 73.3 ± 1.6
TOEFL 72.0 ± 4.8 64.9 ± 6.5 67.9 ± 1.8
MEWS T 34.3 ±33.6 8.2 ± 11.1 10.3 ±10.7
MEWS AD 52.0 ± 32.4 4.2 ± 4.3 7.1 ± 6.5

Table 7: Mean and SD scores across precision, recall
and F1 for test data on each training fold without us-
ing the preference parameter α. The folds are identical
with the ones used for Table 6.

differences in training data size account for this
behaviour. In order to see whether the training
dataset is indeed too small for the model to learn
properly, we shrunk the VUA training dataset to
a size comparable to MEWS Teacher; the Mini-
VUA consists of 3600 training instances, of which
100 are tagged as being metaphorical. The result
for training on Mini-VUA and testing on the VUA
test dataset is a precision of 26.6 ± 36.8, a recall
of 0.2 ± 0.5, and an F1-score of 0.4 ± 0.1. These
numbers show that the model does not learn at all
from Mini-VUA. We therefore expect our models
to perform better with a larger amount of training
data, too.

4.2.2 Experiment 2: Model Performance for
Different Training Datasets

As discussed above, larger amounts of training
data are needed for DeepMet to perform well on
MEWSMET. Therefore, we investigated which
training data is most suitable for our task of de-
tecting metaphors in learner language – a very
large corpus based on standard English (VUA),
or a medium-sized corpus based on EFL data
(TOEFL). The evaluation described above was
also applied here; again we used the hyperparam-
eters from the paper (Su et al., 2020) with seed =
12. Whereas for the previous experiment we fo-
cused on TLMs only, here we present the results
for TLMs only versus all metaphorical expressions
(TLMs plus CMs) in Tables 8 and Table 9.

In terms of F1, the best performance for both
test datasets (MEWS Teacher and MEWS Ads)
and for both TLMs and TLMs+CMs was seen
for the model trained on TOEFL. Across both
prompts as well as across TLMs and TLMs+CMs,
precision is higher than recall when training on
MEWSMET. The results are generally higher for
TLMs+CMs than for TLMs only.

4.2.3 Experiment 3: Combining TOEFL with
Target Data

As shown in Section 4.2.2, large amounts of
training data alone do not lead to better results
on MEWSMETS; in-domain training data seems
to be necessary.7 As our dataset is too small
for the model to learn, we next use a combina-
tion of our data (MEWS Teacher) in combination
with the larger TOEFL corpus as training data.
We are mainly interested in detecting TLMs, so
for MEWS Teacher we only considered TLMs as
metaphors. The results are reported in Table 10.
In terms of F1, DeepMet trained on both TOEFL
and MEWS Teacher achieves the best results of all
models for both TLMs and TLMs+CMs.

4.3 Discussion

The results of our experiments yield five main
insights. Firstly, large amounts of training data
are vital for DeepMet to perform well. As is
shown in Table 6, DeepMet performs much better
when training and testing on VUA or TOEFL data
than on MEWSMET. Here, the training datasets
for the VUA and TOEFL experiments are much
larger than for MEWSMET experiment (see Fig-
ure 4). When reducing the amount of VUA train-
ing data to match the size of the MEWSMET cor-
pora, DeepMet fails at the classification task for
the VUA test set (F1 = 0.4).

The second insight is that in-domain training
data is needed. When we increased the train-
ing data by using VUA and TOEFL (see Ta-
bles 8 and 9), and tested on MEWSMET, the
model trained on TOEFL-data outperformed the
model trained on VUA-data. This behaviour
was seen across prompts and for both TLMs and
TLMs+CMs. This shows that large amounts of
training data are needed only to an extent; after
a certain threshold (that has to be determined in
future work), in-domain data becomes more im-
portant than more training data. The importance
of in-domain data was also highlighted by the fact
that the best performance overall was seen when
training on TOEFL and MEWS Teacher, and test-
ing on MEWS Ads.

Thirdly, it became clear that the results for de-
tecting TLMs+CMs are generally higher than for
detecting TLMs only (see Tables 8, 9 and 10).
This means that the models are better at detect-

7By in-domain we mean language that EFL learners used
in argumentative essays for various prompts.
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TLMs only

Precision Recall F1

TOEFL 12.0 80.7 20.8
VUA 8.8 92.7 16.1

TLMs + CMs

Precision Recall F1

17.2 80.5 28.4
12.8 93.3 22.5

Table 8: Performance of DeepMet fine-tuned on TOEFL and VUA, and evaluated on the split of our dataset that is
based on the prompt TV-Ads.

TLMs only

Precision Recall F1

TOEFL 14.6 86.4 24.9
VUA 10.5 90.3 18.7

TLMs + CMs

Precision Recall F1

23.1 88.1 36.6
16.5 91.9 28.0

Table 9: Performance of DeepMet fine-tuned on TOEFL and VUA, and evaluated on the split of our dataset that is
based on the prompt Teacher.

TLMs only

Precision Recall F1

TOEFL+MEWS T 18.7 63.7 28.9

TLMs + CMs

Precision Recall F1

27.4 64.8 38.5

Table 10: Performance of DeepMet fine-tuned on TOEFL-data plus MEWS Teacher, and evaluated on the split of
our dataset that is based on the prompt TV-Ads.

ing metaphors that are comprehensible, but that a
native speaker would not use. This, however, is
problematic, since TLMs can be an indicator of
language proficiency, while CMs apparently can-
not. If metaphors were to be used as features in au-
tomatic essay scoring, an additional module would
be needed that extracts TLMs.

Our fourth insight is that the model tends to
overidentify metaphors, which can be seen by
the high recall and low precision across all ex-
periments that were carried out with a sufficient
amount of training data. One explanation for this
behaviour is that the percentage of metaphorical
expressions in MEWSMET is lower than in VUA
and TOEFL training data (MEWSMET: 2% and
3%, VUA: 30%, TOEFL: 4%, see Figure 4). Also,
the preference parameter α, originally designed to
improve recall, has to be fine-tuned to MEWS-
MET data (we used a value of 0.2 as suggested
by Su et al., 2020).

Lastly, it should be mentioned that a more
reliable metaphor detection method has to be
found, as our best model (trained on TOEFL and
MEWS Teacher, see Table 10) shows a rather
weak F1-score of 28.9 for detecting TLMs only.8

8In addition to the results presented above, we used the

5 Error Analysis

In order to get a clearer picture on why Deep-
Met performs rather poorly on MEWSMET data,
we performed an error analysis. For this we used
the best-performing model – DeepMet trained on
TOEFL-data plus MEWS Teacher – and looked
at the predictions it made for MEWS Ads, taking
into account both TLMs and CMs. The first thing
we noticed is that many differences between the
annotations and the predictions concerned verbs
where the concrete meaning is not the basic mean-
ing (anymore). These verbs include to direct, to
confront, to support, to create, to target, or to ma-
nipulate. For instance, the four example sentences
given for the first listed meaning of to direct in the
Longman Dictionary9 are as follows:

(1) The machine directs an X-ray beam at the
patient’s body.

metaphor detection model by Ma et al. (2021), because it is
in theory able to make reliable predictions with as little as
200 training instances, as has been shown by Hülsing and
Schulte Im Walde (2024) in a multilingual setup. However,
the results we received for our MEWS-data were very poor
(F1 < 14.4), which indicates that the model works well for
standard language, but not for learner language.

9https://www.ldoceonline.com/dictiona
ry/direct, date of access: 15.08.2024
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(2) The new route directs lorries away from
the town centre.

(3) I’d like to direct your attention to para-
graph four.

(4) I want to direct my efforts more towards
my own projects.

As none of these meanings entails sensual per-
ception, the basic meaning is abstract, even though
there might be instances where the word is used
in a concrete way, e.g. to direct the fire extin-
guisher at something. In our guidelines based on
MIP (Pragglejaz Group, 2007) we state that for
metaphorical usage the meaning of a word in con-
text “tend(s) to differ from the basic meaning”,
and we ask the annotators to compare the mean-
ing in a given context to the basic meaning, i.e.
the first meaning mentioned in the Longman dic-
tionary (see guidelines in Appendix A.1.1). There-
fore, the meaning of to direct in a context such as
advertising directed toward young children10 does
not “differ from the basic meaning” and is labelled
as being literal, even though our model labels it as
being metaphorical. This might be due to the fact
that the majority of data used for fine-tuning stems
from the TOEFL-data where the annotation is not
based on MIP (Pragglejaz Group, 2007), but rather
based on the annotators’ intuitions (Beigman Kle-
banov et al., 2018). The following sentences in the
dataset by (Beigman Klebanov et al., 2018) con-
tain the verb to direct, and two out of three labels
are metaphorical11:

(5) At a first sight, it can be inferred that young
people [...] seem to have become more
ego-directed, in order to prevent them-
selves from the duties that a society is ask-
ing them. → literal

(6) it is the nature of the humen, but this in-
trest need to be directed in the right way
but unfortunetlly the same can be directed
by some people whom not civilized.
→ metaphorical (both)

This indicates that the different guidelines account
for differences in classification.

A second source of differences between anno-

10It should be noted that the word directed is used in the
prompt “TV-Ads” and should therefore be excluded when
analyzing the correlation between proficiency level and the
number of metaphors per essay.

11Only the two instances labelled as metaphorical are true
verbs, the other one being a deverbal adjective.

tations and predictions are personifications. In
line with conceptual metaphor theory (Lakoff and
Johnson, 1980b), we explicitly consider person-
ifications as metaphors (cf. Appendix A.1.2).
Therefore, all of the following expressions in
our MEWS data were annotated as being used
metaphorically:

(7) [...] parents think that advertise threatens
their child [...]

(8) If a advertise is made well it teaches the
child something [...]

(9) [...] I saw an advertisement, which was di-
rectly telling children that they should go
to a certain water park [...]

However, the model predicted them not to be
metaphors, which is probably again due to the
different annotation guidelines used for the train-
ing and the testing data. As the guidelines by
Beigman Klebanov et al. (2018) are based on in-
tuition, personifications are not specifically men-
tioned, so it can be assumed that the annotators
did not consider them metaphors. The fact that the
verb entertains was labelled as being used literally
in following sentence from the TOEFL-data con-
firms this assumption:

(10) [...] the computer graphic which
entertains many people in films or TVs
can not invented without computer.

Thirdly, highly conventionalized expressions,
such as to raise a question or to come to the con-
clusion were annotated as being used metaphori-
cally and predicted as being used literally. Even
though neither of these expression could be found
in the training data by Beigman Klebanov et al.
(2018), the following sentence was found where
the word to raise is used similarly:

(11) And even though their usage has raised
certain environmental concerns [...]

Again, raised is not annotated as being used
metaphorically in the TOEFL-data, probably be-
cause it is too conventionalized and did not “help
the author advance her argument” (Beigman Kle-
banov et al., 2018).

These three reasons for misclassifications hint
at the need for training data that was created with
the help of comparable annotation guidelines.
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6 Conclusion

In our study we set out to investigate the relation-
ship between metaphors and essay scores. We
found that EFL learners create new conceptual
mappings, which are perfectly comprehensible for
native speakers in spite of being uncommon (com-
prehensible metaphors, CMs). However, this strat-
egy – which is absolutely serviceable in every-
day life – does not give us any insights into the
proficiency level of a learner, as our results sug-
gest. Rather, language proficiency seems to corre-
late only with the use of metaphors that a native
speaker would use (target language metaphors,
TLMs).

If we want to use the number of metaphors in an
essay as a feature for automatic essay scoring, we
need to detect metaphors automatically. Previous
studies have shown that metaphor detection meth-
ods such as DeepMet (Su et al., 2020) perform
well on EFL learner data by Beigman Klebanov
et al. (2018). However, such methods had not been
extensively validated for younger and less profi-
cient learners as present in our data. We showed
that large amounts of training data are necessary
to train a model that learns to detect metaphors
in MEWSMET, however, standard English data is
not useful, but new in-domain data is needed to
achieve decent model performance. Here, training
and testing data should ideally be annotated under
the same annotation guidelines, as our error anal-
ysis revealed.

We also showed that DeepMet tends to be bet-
ter at classifying CLs than TLMs. This poses a
challenge, since only the number of TLMs per
essay positively correlates with language profi-
ciency. What is needed, therefore, is a method that
reliably differentiates between TLMs and CMs, if
we want to use the number of metaphors as fea-
tures for essay scoring.

7 Outlook

Our MEWSMET dataset allows further analy-
ses: First of all, differentiating between TLMs
and CMs is vital. Pedinotti et al. (2021) use a
dataset consisting of conventional metaphors and
creative metaphors. They matched each of these
metaphors with their literal counterpart and a non-
sensical expression of the same syntactic struc-
ture. They used the pseudo-log-likelihood score
(PLL) by Wang and Cho (2019) to measure the de-
gree of plausibility that BERT attributes to a sen-

tence. In doing so, they show that BERT is able to
discern creative metaphors from nonsense expres-
sions. As future work, we will apply this score to
see whether it can also discern TLMs from CMs.

What has not been taken into account yet is the
degree of conventionalization. Although our an-
notators assigned the labels “creative” and “con-
ventional” to all metaphorical instances that they
believed to be acceptable English (for all oth-
ers they assigned the label “uncommon transla-
tion of a German conventionalized metaphor” or
“non-metaphorical”), these labels should be con-
firmed by native speakers, or checked against a
corpus-based dictionary as is commonly done to
detect creative metaphors (Reimann and Scheffler,
2024b)12. Scores indicating novelty could weigh
the metaphorical labels; after all, metaphors that
the learner has frequently heard or even learnt
from a textbook should be treated differently than
creative metaphors that learners form themselves,
when looking at the correlation with essay scores.

Also, the proximity to German metaphors
should be taken into account when using
metaphors as features for essay scoring. In this
study, we annotated metaphors that are uncom-
mon because they are translated from a German
conventional metaphor (e.g. to build an opinion).
We did not carry out further analyses on these un-
common translations due to their small number;
only 29 expressions were annotated as being un-
common by both annotators, and two were consid-
ered incomprehensible during the check by the na-
tive speakers. However, there are probably many
metaphors that originate from a parallel between
the source and the target language, some that are
incomprehensible but certainly others which are
CMs or even TLMs. One example is das bringt
uns zum nächsten Punkt, which can be translated
word for word into this brings us to the next point.
A learner’s proficiency can be more clearly pre-
dicted when they use metaphors that do not run in
parallel to German metaphors, for example, when
eine Meinung bilden is translated into to form an
opinion instead of to build an opinion.
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A Appendix

A.1 Annotation Guideline
A.1.1 Main Guideline
Look at each essay individually. For each essay
perform the following steps:

1. Read each sentence and pay attention to the
target verbs, which are already tagged.

2. The label “Metaphorical Usage” should be
given to a target verb if you believe that this
word is used metaphorically. Add the label
“Metaphorical Usage” where missing. The
following label descriptions (taken from Mo-
hammad et al., 2016) should help you:

• Literal usages tend to be more basic,
and have a more straightforward mean-
ing; they are more physical and more
closely tied to our senses (vision, hear-
ing, touching, tasting).
Example 1: The enemy shot down our
aircraft.
→ non-metaphorical verb usage, no la-
belling necessary

• Metaphorical usages tend to differ from
the basic meaning and tend to be more
complex and more distant from our
senses. They often are more abstract,
vague, and surprising. Also, they tend
to bring in imagery from a different do-
main.
Example 2: He shot down the student’s
proposal.
→ label: “metaphorical verb usage”

At the end of step 2, all metaphorically used
verbs should have two labels (“Target Verb”
and “Metaphorical Usage”).

3. Assign one of the following labels to each tar-
get verb that you labelled as being metaphor-
ical:

• Label “Conventionalized Metaphor”: If,
in your opinion, the verb represents a
conventionalized metaphor, you recog-
nize it to often be used together with one
or more of the given context words.
Example: Susan often spends her time
at the swimming pool.
→ The word spend is often used to-
gether with the word time.

• Label “Creative Metaphor”: If, in your
opinion, the verb represents a creative
metaphor, you do not recognize the verb
being usually used together with one or
more of the given context words.
Example: The present sews together the
past and the future.
→ The word sew is usually not used
together with words such as present or
past.

• Label “Uncommen Translation Conven-
tionalized”: If the verb represents an un-
common translation of a German con-
ventionalized metaphor, you recognize
a German conventionalized metaphor as
the basis for the translation, but you
think that the English translation is not
common.
Example: eine Meinung bilden, student
translation: to build an opinion.
NB: This label should only be given if
you believe that the underlying German
expression contains a conventionalized
metaphor and if the resulting English
phrase is uncommon or unidiomatic. It
should not be given if the English phrase
is unidiomatic or uncommon, but no
German metaphor is the source for the
error. This label should only be given in
clear cases such as the afore mentioned
phrase to build an opinion.

At the end of step 3, all metaphorically
used verbs should have three labels (“Tar-
get Verb”, “Metaphorical Usage” and one
of the following labels: “Conventionalized
Metaphor”, “Creative Metaphor”, “Uncom-
mon Translation Conventionalized”).

A.1.2 Additional Notes
As we are dealing with authentic, and therefore
noisy text, there will be expressions where the
metaphoricity of a verb is unclear. In order to
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clarify which words should be tagged as being
metaphorical and which should not, the following
examples are given as anchors for the annotation.

• Words such as to direct or to confront should
not be tagged as being metaphorical. These
words can have a straightforward, more phys-
ical meaning (for example to direct the extin-
guisher at the fire), but this is currently not
the basic meaning, as these words are in the
vast majority of occurences used in an ab-
stract way. Therefore, here the abstract mean-
ing is the basic meaning.

• Very frequent verbs such as
have/be/do/make... have not been tagged as
“Target Verbs” in the annotation documents,
because they are mostly used as auxiliary
verbs. In cases where these words occur as
full verbs (e.g. have a conversation), the
metaphorical meaning is determined mainly
by the following noun, while the verb carries
no or little meaning (cf. light verb phrases).
As we are establishing the metaphoricity of
the verbs, it is fair to say that these verbs
carry no metaphorical meaning, and are
therefore excluded.

• Target verbs in expressions such as to spend
time or to cover topics should be tagged
as being metaphorical. The expressions are
highly conventionalized, but – as opposed to
light verb phrases such as have a conversa-
tion – the meaning of the expression does not
only rest on the noun, and therefore the verb
carries some of the metaphorical weight.

• Idioms can be metaphors, too. For exam-
ple, the verb break is used metaphorically in
the expression to break the ice and should
be tagged as being a metaphor. However,
there are many idioms which do not have a
metaphorical origin (break a leg, talk to Huey
on the big white telephone) or where the ori-
gin is unclear (it’s raining cats and dogs).
These should not obtain the label “Metaphor-
ical Usage”.

• Phrasal verbs should be tagged as being
metaphorical only if the basic meaning of the
entire phrasal verb usually is more straight-
forward/physical/... (see example above: to
shoot down). They should not be tagged as

being metaphorical if only the base verb usu-
ally is more straightforward/physical/.... Ex-
ample: to miss out should not be tagged as
being metaphorical, even though the basic
meaning of the base verb (to miss) might be
more straightforward/physical/....

• Personifications should be annotated as
metaphors, too. Example: Money rules the
world.

• If a verb is used as part of an extended
metaphor, it should be tagged as being used
metaphorically. Example: His head was a
dovecote, most thoughts flew out, only some
stayed inside. Here, the target words should
be marked as being used metaphorically.

• If you are unsure what the basic meaning
of a verb is, consult the online version of
the Longman Dictionary: https://www.
ldoceonline.com/dictionary/.
Be aware that there are homonyms, so there
might be more than one basic meaning of a
verb (for example: to lie can refer to the po-
sition of a person or to a person not telling the
truth).

• Dead metaphors, i.e. metaphors that do not
exist anymore because the mapping from
source to target domain can no longer be un-
derstood without historical knowledge (com-
pare Lakoff, 1987), should not be tagged
as being metaphorical. Examples: footage,
pedigree.

B Stop Words

In addition to the commonly used stop words (be,
do, should, can, have, would) we also excluded the
word make, because it is very often used by stu-
dents as a placeholder for a verb they do not know,
for example: because school makes our future or
make good grades.
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Abstract
This paper explores methods to automatically
predict lexical complexity in a multilingual
setting using advanced natural language pro-
cessing models. More precisely, it investigates
the use of transfer learning and data augmen-
tation techniques in the context of supervised
learning, showing the great interest of multi-
lingual approaches. We also assess the po-
tential of generative large language models for
predicting lexical complexity. Through differ-
ent prompting strategies (zero-shot, one-shot,
and chain-of-thought prompts), we analyze
model performance in diverse languages. Our
findings reveal that while generative models
achieve promising performances, their predic-
tive quality varies and optimized task-specific
models still outperform them when they bene-
fit from sufficient training data.

1 Introduction

Lexical complexity prediction consists in assess-
ing the difficulty of a target word in a given con-
text, either as a binary classification (is the word
difficult or not?) or as a continuous numerical
value prediction indicating the degree of complex-
ity. Such a task is potentially useful for computer-
assisted language learning: e.g. for selecting rel-
evant textual materials for learners or for identi-
fying complex words in texts and then providing
enriched information to help the reader’s under-
standing.

Our study explores deep learning methodolo-
gies for multilingual lexical complexity predic-
tion (LCP). We leverage recent advances in natural
language processing models, such as transform-
ers and generative models, to assess lexical com-
plexity across various languages. More precisely,
we first investigate various multilingual methods
like transfer learning and data augmentation using

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

a supervised approach. We then explore the ca-
pabilities of generative pre-trained large language
models (LLMs) to perform LCP applying vari-
ous prompt engineering and ensemble techniques.
The experiments are carried out on multilingual
datasets from two shared tasks: the 2018 Complex
Word Identification task (Yimam et al., 2018a)
for English, French, German and Spanish, and
the Multilingual Lexical Simplification Pipeline
(MLSP) shared task (Shardlow et al., 2024a) for
a subset of languages (English, French, Japanese
and Spanish).

2 Related work

Lexical complexity prediction has been a grow-
ing area of research, with several works contribut-
ing to the development of graded lexical resources
and methodologies aimed at understanding word
complexity from both native and non-native lan-
guage learners’ perspectives. For example, Gala
et al. (2013) laid the groundwork for French lexi-
cal complexity by proposing a lexicon with diffi-
culty measures. Building on this, François et al.
(2014) introduced FLELex, a graded lexical re-
source specifically designed for French foreign
learners. Tack et al. (2018) extended this research
to Dutch with NT2Lex, a graded lexical resource
linked to the Dutch WordNet. Meanwhile, Alfter
and Volodina (2018) focused on predicting single-
word lexical complexity, a task later expanded
by Alfter (2021) to include multi-word expres-
sions, highlighting the evolving nature of com-
plexity prediction tasks. For more details on this
task, North et al. (2023) provided a comprehensive
overview of the computational approaches used.

2.1 Shared tasks

Lexical complexity prediction has also been the
focus of multiple shared tasks over the last decade
that strongly contributed to the advances of the
field through the development of new dedicated
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datasets as well as novel technical methods to per-
form the task.

The 2016 Complex Word Identification (CWI)
task at SemEval highlighted key findings in iden-
tifying complex words, especially for non-native
English speakers. The dataset, dedicated to the
English language, created with input from 400
non-native speakers, showed that complex words
are generally rarer, less ambiguous, and shorter.
Decision trees, ensemble methods, and particu-
larly word frequency were found to be reliable pre-
dictors of word complexity (Paetzold and Specia,
2016). Top systems, such as those by UWB and
LTG, utilized features like document frequency
and contextual language models, achieving high
rankings (Konkol, 2016; Malmasi et al., 2016).
Despite various feature explorations and innova-
tive methods like sequence labeling (Gooding and
Kochmar, 2019), the fundamental effectiveness of
word frequency remained central to CWI success
(Zampieri et al., 2017).

The 2018 Complex Word Identification task,
thereafter CWI 2018, part of the BEA workshop
at NAACL 2018, focused on identifying difficult
words in texts across multiple languages, includ-
ing English, German, Spanish, and French. The
task was divided into binary and probabilistic clas-
sification tracks, attracting 12 teams with various
approaches. Notably, ensemble-based methods
and feature engineering demonstrated strong per-
formance (Yimam et al., 2018a). Systems such as
those by the NLP-CIC team compared deep learn-
ing with feature engineering, showing comparable
results (Aroyehun et al., 2018). Simple models
based on character n-grams also performed com-
petitively, sometimes matching more complex sys-
tems (Alfter and Pilán, 2018). The challenge
highlighted the effectiveness of both traditional
feature engineering and modern deep learning ap-
proaches in CWI.

The 2021 Lexical Complexity Prediction (LCP
2021) task (Shardlow et al., 2021) at SemEval
involved predicting, for the English language,
the complexity of single words and multi-word
expressions in context using a five-point Likert
scale. The competition attracted 198 teams, with
top-performing systems leveraging advanced NLP
techniques such as transformers and ensemble
methods. The winning system used fine-tuned
pre-trained language models with stacking mech-
anisms, achieving high Pearson correlation scores

(Pan et al., 2021). Approaches varied widely, from
logistic regression with linguistic features (De-
sai et al., 2021) to ensemble-based models com-
bining different feature types (Vettigli and Sor-
gente, 2021). The task highlighted the effective-
ness of combining traditional linguistic features
with modern deep learning models to predict lexi-
cal complexity accurately.

Recently, a dataset was developed for the MLSP
2024 shared task (Shardlow et al., 2024a). It in-
cludes 5,624 instances across 10 target languages.
Each instance features a sentence from an educa-
tional text with a specific target word highlighted.
For each target word, there are two types of anno-
tations: an aggregate complexity score (rated on a
scale from 1 to 5 by 10 annotators) indicating the
difficulty level of the word, and a list of possible
substitutions that simplify the sentence while pre-
serving its original meaning.

2.2 Multilingual approaches
Although many studies concentrate on English
due to a relative shortage of resources in other
languages, promising approaches such as trans-
fer learning and data augmentation have been pro-
posed to address this gap. Cross-lingual trans-
fer learning significantly enhances Complex Word
Identification (CWI) by leveraging models trained
in high-resource languages for use in low-resource
languages. Zaharia et al. (2020) demonstrated
the effectiveness of zero-shot, one-shot, and few-
shot learning techniques with state-of-the-art NLP
models, achieving high F1-scores across multiple
languages. Bingel and Bjerva (2018) used cross-
lingual multitask learning, showing that language-
agnostic models could generalize well across dif-
ferent languages. Additionally, Yimam et al.
(2017) employed language-independent features
to train multilingual and cross-lingual models,
achieving comparable performance to monolin-
gual systems.

2.3 Large language models’ capabilities
Large Language Models (LLMs) like ChatGPT,
Mistral, and Llama3 have significantly advanced
natural language processing across various do-
mains. Given that we are currently in the era of
LLMs, it is crucial to compare and assess their
role in our study to understand their impact on
various tasks. They excel in industrial engineer-
ing tasks, such as automation and programming,
though they have limitations with complex physics
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equations (Ogundare et al., 2023). In mathe-
matical problem-solving, LLMs effectively handle
arithmetic tasks using chain-of-thought reasoning
(Yuan et al., 2023). Their ability to use multimodal
tools is enhanced by frameworks like GPT4Tools,
which improve performance in visual tasks (Yang
et al., 2023). Instruction-following datasets and
fine-tuning, as seen with FLACUNA, enhance
their problem-solving skills (Ghosal et al., 2023).
Comprehensive evaluations reveal strengths in di-
verse tasks like question-answering and code gen-
eration, although challenges remain (Laskar et al.,
2023). Techniques like role-play prompting fur-
ther improve their reasoning capabilities, making
LLMs versatile tools for a wide range of applica-
tions (Kong et al., 2023). The ANU team, par-
ticipating in the MLSP 2024 task to predict word
complexity based on context, relied on a prompt-
ing strategy with GPT-3.5 (i.e. GPT-3.5-turbo-
instruct) for the tasks using zero, one, and few-
shot strategies. The zero-shot strategy included
the context and target word while the non-zero
strategies relied on instructing the model with one
or three random samples from the trial data ac-
cording to the prompting template. Overall, the
authors indicate under-performance for the LCP
task, while demonstrating strong performance for
English in lexical simplification (Seneviratne and
Suominen, 2024).

3 Multilingual lexical complexity
prediction based on supervised
learning

In this section, we investigate two main strate-
gies for the task of lexical complexity prediction
(LCP) in multiple languages using a supervised
approach:

1. Monolingual training: the model is trained
on a dataset in the target language; the train-
ing data may be composed of native data in
the target language, data translated to the tar-
get language from a resource-richer language
(English in our case), or a combination of
both where the native data is augmented with
translated data;

2. Multilingual training: the model is trained
on a multilingual dataset including or not data
in the target language; the model is based on
multilingual word embeddings to deal with
transfer learning.

The actual implementation of these approaches
will depend on the dataset on which they will
be experimented, given their different nature and
composition (cf. section 3.1 and section 3.3).

3.1 Datasets

Experiments to evaluate these strategies are per-
formed on two multilingual datasets: CWI 2018
(Yimam et al., 2018b) and MLSP 2024 (Shardlow
et al., 2024a), cf. section 2. The CWI 2018 dataset
provided by (Yimam et al., 2018b) includes data
in English, Spanish, and German for training and
testing, and French solely for testing purposes, cf.
table 1. Our focus is on Spanish, German, and
French. We selected this dataset because it offers
large possibilities of multilingual experiments us-
ing supervised learning. Two types of labels are
available: binary and probabilistic. Our evaluation
is conducted using the binary labels.

Language Train Dev Test
English 27,299 3,328 4,252
German 6,151 795 959
Spanish 13,750 1,622 2,233
French - - 2,251

Table 1: The number of instances for each training, de-
velopment and test set (Yimam et al., 2018b)

Additionally, we performed evaluation on the
MLSP 2024 dataset (Shardlow et al., 2024a),
which includes 5,624 instances across 10 target
languages. The MLSP dataset provides probabilis-
tic labels, where annotations are continuous values
between 0 and 1. This dataset contains only test-
ing and development data, the latter being limited
to around 30 instances per language, i.e. 300 in-
stances in total. We only focus on four languages
(French, English, Japanese, and Spanish) in order
to limit the energetic impact of our experiments
and to focus on the languages studied in our work-
ing environment. Due to the lack of training data,
we have decided to leverage the LCP 2021 dataset
(Shardlow et al., 2021), which provides annota-
tions highly similar to those in the MLSP task, for
the English language.

3.2 The model

In our research, we adopt a recent system that has
proven effective in predicting lexical complexity
for English (Kelious et al., 2024). We replicate
this model in a multilingual version. The model
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combines a pre-trained language model with fre-
quency characteristics based on Zipf’s law. Such
a system is in line with the literature showing that
hybrid models using transformers (encoders) en-
hanced with additional linguistic features deliver
more robust and effective results (Wilkens et al.,
2024).

Figure 1: The overall architecture for predicting lexical
complexity (Kelious et al., 2024).

Figure 1 illustrates the model described with
more details in Kelious et al. (2024). This model
is divided into two main parts. The first part relies
on lexical embeddings: the encoder receives the
target word and its context as input, formatted as
follows: [CLS]Context[SEP]Target Word, where
[CLS] and [SEP] are special tokens used in the
Transformers model for processing texts. The sec-
ond part incorporates five characteristics based on
Zipf’s frequency, processed by a multilayer per-
ceptron (MLP). The whole, i.e. the concatenation
of the two parts, is then processed by an additional
MLP layer. The model’s output is a continuous
value between 0 and 1. To classify this output into
binary classes, we add a sigmoid layer and apply
a decision threshold set at 0.5 to convert the prob-
abilities into binary classes for the experiments on
CWI 2018.

The conversion of this model from monolingual
to multilingual is relatively straightforward: for
the frequency features, it suffices to extract fre-
quency data in the target language from available
corpora. As for the transformer (encoder) part, it is
necessary to implement a multilingual model or a
monolingual model suited to the specific language
we wish to evaluate.

3.3 Experimental settings
The LCP model is based on various language mod-
els for encoding the input context. For multi-
lingual training strategies, we selected the multi-
lingual language model mdeberta-v3-base1. For
monolingual training strategies, we selected Span-
ish BERT for Spanish (Cañete et al., 2020), Ger-
man BERT for German (Chan et al., 2020), De-

1https://huggingface.co/microsoft/mde
berta-v3-base

Berta (He et al., 2023) for English and mdeberta-
v3-base for Japanese. The Zipf frequencies were
computed using the python library Wordfreq2. For
translating data from English to target languages
such as French, German, Japanese and Spanish,
we used the M2M100 model (Fan et al., 2021).

3.4 Experiments on CWI 2018

This section presents and evaluates the multilin-
gual and monolingual training strategies devel-
oped on the CWI 2018 dataset using a supervised
approach.

3.4.1 Evaluated methods

For the multilingual training approaches, the ex-
periments were the following:

• Multilingual (en, de, es): the LCP model is
trained on the training data of all languages
having training data, namely English (en),
German (de) and Spanish (es);

• Multilingual (zero shot): the model is
trained on the training data of all languages
having training data except the target lan-
guage, resulting in a zero-shot scenario.

We also experimented the following monolin-
gual training approaches:

• Monolingual (native data): the LCP model
is trained on the native train dataset of the tar-
get language;

• Monolingual (native + translated data):
the model is trained on the native train dataset
of the target language, augmented with a por-
tion of the English training dataset translated
to the target language;

• Monolingual (translated data): the model
is trained on a portion of the English training
dataset translated to the target language.

The experiments Monolingual (native data) and
Monolingual (native + translated data) were not
performed for French as it has no training data.
The experiment Monolingual (translated data) was
only performed for French.

2https://pypi.org/project/wordfreq/
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3.4.2 Results
Tables 2 and 3 shows F1 scores for Spanish, Ger-
man, and French. For the sake of comparison, we
also provide the results of the CWI 2018 official
baseline, of the best systems of the shared task,
and of a random baseline randomly selecting the
output from {0,1}. We can derive several insights
and make observations regarding the performance
and trends across different types of training strate-
gies:

Multilingual learning. Generally, multilingual
models trained on all languages (but French) have
strong performance across all languages (Spanish
: 0.800, German : 0.7911, French : 0.799).The
zero-shot configuration, which involves using a
model in scenarios where it hasn’t been explicitly
trained on the target language’s data, performed
reasonably well but not as well as multilingual
models trained on all languages (Spanish: 0.746,
German: 0.744), cf. Table 2. The high score for
French 0.799 in Table 3 indicates that the model
benefits significantly from being part of a mul-
tilingual setup where the knowledge from other
languages can be effectively transferred to French
even without direct training. It suggests that the
underlying representations learned by the model
are robust and applicable across languages.

Model Spanish German

Multilingual (es, en, de) 0.800 0.791
Multilingual (zero shot) 0.746 0.744
Monolingual (native data) 0.775 0.761
Monolingual (native data + 4k translated instances)) 0.789 0.781
The highest score in (Yimam et al., 2018b) 0.769 0.745
Baseline, from (Yimam et al., 2018b) 0.723 0.754
Random 0.43 0.44

Table 2: F1 Scores for Spanish and German Language
Models

Model F1 Score

Multilingual (zero shot) 0.799
Monolingual (translated data - 2k) 0.770
Monolingual (translated data - 4k) 0.713
Monolingual (translated data - 10k) 0.751
Monolingual (translated data - 27k) 0.717
The highest score in (Yimam et al., 2018b) 0.759
Baseline, from (Yimam et al., 2018b) 0.634
Random 0.38

Table 3: F1 Scores for French

Monolingual learning. Focused training on a

single language shows competitive results but still
lags slightly behind the multilingual approach:
Spanish: 0.775, German: 0.761, cf. Table 2. Aug-
menting the data with translations from the En-
glish data tends to be useful, as shown in Table 2,
especially with an augmentation of 4k training in-
stances translated from English to the target lan-
guage. Other tested sizes tend to reach lower per-
formance.

Regarding French, the LCP model does not use
native training data but instead relies on data cre-
ated by translating the English training dataset
to French. This method shows varying perfor-
mances as the data size increases (F1 scores: 0.770
with 2k instances, 0.713 with 4k, 0.751 with 10k,
0.717 with 27k, the full training set). The fluctu-
ating performance with different dataset sizes in-
dicates that the quality and consistency of trans-
lated data might vary significantly, impacting the
model’s learning and performance. Simply in-
creasing the dataset size does not consistently im-
prove performance. This approach highlights the
challenges and limitations of relying on translated
data for training language models, where nuances
and context-specific elements of the original lan-
guage might be lost or misrepresented in transla-
tion.

Baseline and Random. The baseline and ran-
dom models provide a clear floor for performance,
with baselines substantially outperforming ran-
dom guessing across all languages (Baseline vs.
Random: Spanish 0.7237 vs. 0.43, German 0.754
vs. 0.44, French 0.634 vs. 0.38). This reflects the
effectiveness of even basic modeling techniques
over uninformed strategies.

The analysis highlights that while multilingual
training on all languages offers robustness and
generalization across languages, targeted strate-
gies such as monolingual training still hold im-
portance, especially when resources are limited.
The fluctuation in performance with different data
sizes and types of augmentation indicates the need
for careful data management and model tuning
specific to each language’s characteristics.

3.5 Experiments on MLSP 2024

In this section, we present the multilingual and
monolingual experiments developed for the MLSP
2024 dataset using a supervised approach.
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English French Spanish Japanese
Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman R2

Multilingual (LCP 2021) 0.80 0.76 0.64 0.52 0.49 0.27 0.67 0.64 0.46 0.63 0.65 0.40
Multilingual (LCP 2021+ Dev) 0.83 0.78 0.69 0.56 0.52 0.31 0.67 0.63 0.45 0.66 0.67 0.43
Multilingual (LCP 2021 + Dev +
2k translated data)

/ / / 0.49 0.47 0.24 0.65 0.64 0.43 0.61 0.61 0.37

Multilingual (LCP 2021 + Dev +
4k translated data)

/ / / 0.51 0.48 0.26 0.63 0.58 0.39 0.63 0.63 0.40

Monolingual (native data) 0.87 0.80 0.72 / / / / / / / / /
Monolingual (translated data) / / / 0.44 0.42 0.19 0.67 0.58 0.39 0.57 0.57 0.32
Baseline MLSP 2024 (Shardlow
et al., 2024b)

0.74 0.74 0.54 0.51 0.52 0.14 0.55 0.52 0.25 0.64 0.66 0.33

Highest mlsp score for English :
(Goswami et al., 2024)

0.84 0.79 0.52 0.31 0.32 0.04 0.24 0.19 0.07 0.17 0.18 0.02

Highest mlsp score for French,
Spanish and Japanese :
(Enomoto et al., 2024)

0.81 0.75 0.51 0.62 0.63 0.27 0.76 0.74 0.49 0.73 0.73 0.41

Table 4: Scores for different languages and methods (Pearson, Spearman, R2)

3.5.1 Evaluated methods
Since we only have test and development data for
the MLSP 2024 dataset, we will use for training
the LCP 2021 dataset (Shardlow et al., 2021) con-
taining 7,662 single-word instances exclusively in
English. The evaluated methods using a multilin-
gual training approach are the following:

• Multilingual (LCP 2021): the LCP model is
based on multilingual word embeddings and
is trained exclusively on English data from
LCP 2021 task;

• Multilingual (LCP 2021 + Dev): the model
based on multilingual word embeddings is
trained on LCP 2021 (English data) aug-
mented with the development data in the 10
languages of the MSLP 2024 task (around 30
instances per language) to improve adapta-
tion to the target languages;

• Multilingual (LCP 2021 + Dev + translated
data): the model based on multilingual word
embeddings is trained on the training data of
Multilingual (LCP 2021 + Dev), augmented
with 2k or 4k instances from LCP 2021 trans-
lated to the target language.

For the monolingual training setting, we evalu-
ated the following approaches for which the LCP
model is specific to each target language:

• Monolingual (native data): the LCP model
is trained on native data in the target lan-
guage; this experiment is only performed for
English using the LCP 2021 as training data.

• Monolingual (translated data): the model
is trained on the translation of LCP 2021

training data (English) to the target language;
this experiment is performed on all languages
but English.

3.5.2 Results
Table 4 presents the evaluation for predicting
word complexity in English, French, Spanish, and
Japanese using the learning methods presented in
section 3.5.1. The evaluation metrics include the
Pearson, Spearman, and R2 scores, as is usually
done for this task (cf. Shardlow et al. (2021)). The
results of the best MSLP 2024 systems and of the
official baseline are also provided for the sake of
comparison:

• Baseline Model: The baseline is based on
linear regression and is trained using log-
frequency on the trial set for each language;

• GMU Team (Goswami et al., 2024): Em-
ployed a weighted ensemble of mBERT,
XLM-R, and language-specific BERT mod-
els. All trial data was used for cross-
lingual training and evaluation. For English,
they augmented the data with the CompLex
dataset (Shardlow et al., 2020).

• TMU-HIT Team (Enomoto et al., 2024):
Used a chain-of-thought based prompting
method employing GPT-4 to generate an in-
struction in English, and subsequently as-
signed complexity scores to target words
across all languages based on the English in-
struction.

In English, the Monolingual method, specific
to the target language, achieved the best scores
(Pearson 0.87, Spearman 0.80, R2 0.72), thanks
to the use of specific annotated data. For French
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and Japanese, Multilingual methods trained ex-
clusively on English outperformed the monolin-
gual method based on translation, indicating that
multilingual training can be beneficial when an-
notated data is limited. Adding small amounts of
multilingual development data (Multilingual (LCP
2021 + dev)) slightly improved performance in
French and Japanese. However, increasing the
data through translation (Multilingual(LCP 2021
+ Dev + 2k or 4k translated data) did not yield
significant improvements. The best scores for
French, Spanish, and Japanese were achieved by
Enomoto et al. (2024), suggesting that their ap-
proach is more effective for these languages.

4 Prompting Large Language Models for
multilingual lexical complexity
prediction

In this section, we focus on assessing the capabil-
ity of generative large language models (LLMs)
to predict the complexity of a word based on its
context. To do this, we use three types of prompt
strategies:

• Zero-shot prompt (base): The model re-
ceives instructions without any specific ex-
amples on how to perform the task, relying
solely on the knowledge acquired during its
training. (See Appendix A)

• One-shot prompt (instruct): This type of
prompt includes some guidelines used during
data annotation, along with an example, thus
providing a frame of reference for the model.
(See Appendix A)

• Chain-of-thought prompt (Advanced
COT): This prompt includes detailed an-
notation instructions, methodological steps
to follow and analysis before delivering an
evaluation, illustrated by an example (See
Appendix A).

4.1 Experimental settings
For this evaluation, we use five different language
models: gpt-4o (June 10, 2024) 3, Llama3 (Dubey
et al., 2024), Mistral (Jiang et al., 2023), Phi3 (Ab-
din et al., 2024), and Gemma (Team et al., 2024).
The last four models are used in their 4-bit quan-
tized versions. It’s important to note that compar-
ing these models might seem unfair if gpt-4o is

3gpt-4o : https://openai.com

included, however, our main goal remains to an-
alyze the effectiveness of each type of prompt ac-
cording to the model. Yet, the comparison in terms
of performance remains relatively fair if gpt-4o is
excluded, considering all other models share the
same type of quantization. Nonetheless, the num-
ber of parameters of each model must be consid-
ered, for example, Phi3 with 3.8 billion parameters
is significantly less than Gemma, which has 9 bil-
lion, while Mistral and Llama are approximately
similar in size. We use Ollama 4, an open-source
tool, to test these different LLMs, keeping the de-
fault settings provided. All the prompts are written
in English, but they explicitly indicate the target
language.

Detailed evaluation of these strategies is first
undertaken using the MLSP 2024 dataset (Shard-
low et al., 2024a). For this task, the generative
models are asked through the prompts to predict
a score on a scale (0, 0.25, 0.5, 0.75, 1) for the
target word in a given context in the target lan-
guage, in order to mimic the human annotators of
the dataset. The evaluation metrics include the
Pearson, Spearman, and R2 scores, as is usually
done for this task (cf. Shardlow et al. (2021)). We
used a subset of the available languages (English,
French, Japanese, and Spanish). In addition, we
also evaluate on the binary classification data from
CWI 2018 in French, German, and Spanish, adapt-
ing the prompts to each task and using the F1 score
for evaluation (See Appendix A).

For the sake of comparison between the super-
vised approach and this one, we also provide the
performance of a model specifically trained on this
task using a multilingual supervised approach.

4.2 Results
In this part, we will evaluate the various prompt
strategies for various LLMs for two different
datasets: LCP 2018 and MLSP 2024.

4.2.1 CWI 2018
Table 5 presents the F1 scores for predicting word
complexity based on context in French, German,
and Spanish. The supervised method achieves the
best results across all three languages. Among
the language models, gpt-4o and Llama3 display
the highest performance. For gpt-4o, the In-
struct prompt yields the best scores in German
and Spanish, while the Base prompt performs bet-
ter in French. The Mistral model shows weak

4https://ollama.com
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Model Version French German Spanish

gpt-4o
Adv COT 0.637 0.694 0.676

Base 0.672 0.628 0.447
Instruct 0.602 0.699 0.683

llama3
Adv COT 0.597 0.654 0.654

Base 0.550 0.630 0.637
Instruct 0.600 0.671 0.603

mistral
Adv COT 0.198 0.183 0.131

Base 0.516 0.646 0.673
Instruct 0.410 0.371 0.281

phi3
Adv COT 0.578 0.667 0.609

Base 0.551 0.642 0.653
Instruct 0.493 0.516 0.395

gemma
Adv COT 0.462 0.577 0.594

Base 0.452 0.563 0.578
Instruct 0.468 0.587 0.608

Supervised (our approach) - 0.799 0.791 0.800

Table 5: F1 score comparison across different languages, models and prompting strategy for CWI 2018

Model Version English French Spanish Japanese
P S R2 P S R2 P S R2 P S R2

gpt-4o
Base 0.736 0.735 0.153 0.505 0.509 0.207 0.659 0.643 0.149 0.595 0.621 0.241

Instruct 0.759 0.665 0.142 0.545 0.555 0.205 0.667 0.645 0.194 0.421 0.404 0.381
Adv COT 0.781 0.670 0.144 0.542 0.554 0.192 0.680 0.654 0.165 0.574 0.594 0.315

Phi3 3.8B
Base 0.230 0.207 0.229 -0.022 -0.036 0.299 0.233 0.214 0.221 0.110 0.210 0.259

Instruct 0.414 0.444 0.166 0.093 0.090 0.250 0.276 0.288 0.171 0.244 0.290 0.219
Adv COT 0.412 0.484 0.151 0.107 0.194 0.284 0.208 0.290 0.244 0.137 0.249 0.259

LLama3 8.0B
Base 0.374 0.418 0.379 0.136 0.146 0.363 0.265 0.278 0.317 0.129 0.158 0.403

Instruct 0.555 0.519 0.147 0.180 0.170 0.229 0.382 0.376 0.152 0.252 0.253 0.184
Adv COT 0.657 0.614 0.134 0.276 0.284 0.225 0.384 0.364 0.165 0.346 0.344 0.283

Mistral 7.2B
Base 0.461 0.489 0.394 0.166 0.149 0.309 0.400 0.397 0.355 0.125 0.122 0.388

Instruct 0.612 0.579 0.139 0.212 0.188 0.220 0.540 0.529 0.152 0.259 0.256 0.153
Adv COT 0.675 0.594 0.160 0.315 0.283 0.213 0.532 0.528 0.191 0.364 0.368 0.163

Gemma 9b
Base 0.123 0.169 0.482 0.038 0.063 0.433 0.175 0.180 0.384 0.137 0.135 0.455

Instruct 0.322 0.360 0.320 0.185 0.189 0.311 0.395 0.407 0.227 0.260 0.270 0.279
Adv COT 0.401 0.440 0.323 0.230 0.253 0.370 0.376 0.394 0.267 0.222 0.227 0.434

Supervised (our approach) - 0.87 0.80 0.72 0.56 0.52 0.31 0.67 0.63 0.45 0.66 0.67 0.43

Table 6: Model performance comparison across different Languages and prompting strategies for MLSP 2024
(P:Pearson, S:Spearman, R2: R2)

performance with the Advanced COT prompt
but significantly improves with the Base prompt.
These findings suggest that the effectiveness of the
prompt type depends on both the model and the
language, highlighting the need to adapt prompt
strategies according to the language and the model
in use.

We then tried to replicate the annotation pro-
cess using LLMs for the CWI 2018 dataset where
an instance is labeled as complex if any annota-
tor finds the word complex, assigning a value of
1, otherwise 0. For this, given a prompt strategy,
each LLM play the role of a single annotator. We
will simulate the annotation process using LLMs,
where 5 LLMs and 3 different prompt strategies
generate a total of 15 annotations. If any of the
annotations equals 1, the final annotation is set to
1, otherwise, it is set to 0. Thereafter, this method
is called AT LEAST 1. For comparison purposes,
we also implemented a majority vote annotation

method (thereafter VOTING MAX), where the fi-
nal label for a given instance corresponds to the
most frequent label among the 15 LLM annota-
tions.

Method Fr De Es
AT LEAST 1 0.45 0.56 0.57
VOTING MAX 0.62 0.69 0.70

Table 7: The F1 scores for French, German, and Span-
ish using two voting strategies.

Table 7 shows that the score obtained using
the single annotation method is significantly lower
than that achieved by majority voting and is also
lower than using a single LLM, gpt-4o (Base).
However, the results from majority voting are rela-
tively close to those of gpt-4o (Base) as seen in Ta-
ble 5. It is also believed that VOTING MAX per-
forms better than AT LEAST 1, as a single vote
out of 15 can lead to errors if an underperform-
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ing LLM votes 1, causing the instance to be an-
notated as 1. Majority voting helps mitigate this
issue by considering the decision of the majority
of the LLMs.

4.2.2 MLSP 2024
Figure 2 displays the Pearson correlation scores
for each prompt type used for each LLM. It shows
certain trends across different languages.

English: There is a progressive improvement
from ”base” to ”advanced COT”. This suggests
better predictions in more complex configurations.
gpt-4o notably performs better than other mod-
els with a score of 0.78. There is also a signifi-
cant difference between the ”base” and ”instruct”
prompts, while the gap between ”instruct” and
”advanced COT” is closer.

French and Spanish: gpt-4o shows continuous
improvement, similarly to the trends observed in
English, although the scores are more moderate.
Nearly all models demonstrate improvement when
going to more complex prompts.

Japanese: There are noticeable drops for com-
plex prompts, which may indicate a sensitivity to
the types of prompts used for Japanese.

Supervised Model (cf. table 6): The su-
pervised multilingual approach described in sec-
tion 3 outperforms in most cases our LLM prompt-
ing strategy, despite the lack of training data for
French, Spanish, and Japanese. This has to be
further investigated given the results of the best
MLSP 2024 system based on a different prompt-
ing strategy with a different LLM.

The analysis of Pearson correlation scores for
predicting lexical complexity (in Figure 2 and ta-
ble 6) reveals a clear trend where the ”advanced
COT” (Chain of Thought) configurations gener-
ally achieve the best performance across various
languages (French, English, and Spanish). This
approach, which incorporates more detailed in-
structions or chain-of-thought reasoning, appears
to better capture the nuances of lexical complex-
ity compared to simpler ”zero shot” and ”one shot
with instruction” approaches. This superiority is
reflected in higher Pearson scores, indicating a
stronger linear correlation between the predictions
and actual values.

Observations made in English, French, and
Spanish do not parallel those in Japanese, which
presents a unique structure that includes mixed-
script writing, the absence of clear word delimi-
tation, and grammatical specificity. This under-

scores the necessity of using specially designed
prompts for this language when predicting lexical
complexity. The distinctive features of Japanese,
such as kanji and grammatical particles, require a
more targeted approach to effectively capture lexi-
cal complexity. By adapting prompts to the partic-
ularities of Japanese, it may be possible to enhance
the accuracy of predictions by accounting for these
variations.

Figure 2: Correlation score for each llm based on the
prompt type.
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4.3 Are large language models (LLMs) a
good alternative for multilingual lexical
complexity prediction ?

While correlation scores are quite good for the
MLSP 2024 dataset, R2 scores, which indicate the
quality of prediction, suggest otherwise, cf. Table
6. Zero-shot generative models are not optimized
for the specifics of a particular task. Although
they can capture a linear relationship, they are less
accurate in explaining the total variance of task-
specific data, resulting in a lower R2 score. More
specifically, asking an LLM to predict a score on
a scale of five discrete values (0, 0.25, 0.5, 0.75,
1) penalizes it with respect to the way the dataset
is annotated where each instance is annotated with
a continuous value between 0 and 1 being the av-
erage of multiple human annotations. An intuitive
method to address this issue with an LLM is to
have it generate multiple outputs and then calcu-
late the average, which might better disperse the
data. Table 8 displays the average scores of gpt-
4o with varying generation counts n (1, 10, 20,
30) for English. We have also included a model
specifically trained for this task to facilitate com-
parison.

Models P S R2
gpt-4o (n=1) 0.781 0.67 0.14
gpt-4o (n=10) 0.789 0.677 0.174
gpt-4o (n=20) 0.796 0.677 0.174
gpt-4o (n=30) 0.792 0.687 0.183
Supervised (ours) 0.87 0.80 0.72

Table 8: Performance metrics of gpt-4o vs Trained
model for English (P:Pearson, S:Spearman, n:number
of generations)

Table 8 indicates that the Pearson correlation
scores do not increase significantly, with only
slight improvements in the R2 score, which re-
mains quite low compared to the 0.72 achieved by
the model trained with a supervised approach.

What are the consequences of a low R2 score
in this task? Let’s take the example of the mul-
tilingual supervised model and gpt-4o (n=30) and
analyze the scatter plot of each one’s predictions.
Graphs 3 and 4 illustrate the relationship between
actual labels and the values predicted by two dif-
ferent models.

Graph 3 for gpt-4o shows a general trend that is
well captured by the regression line, but with dis-
persion concentrated around the values (0, 0.25,

0.5, 0.75, 1), indicating larger prediction errors.
On the other hand, Graph 4 displays a better fit be-
tween the predictions and the labels, with points
more densely clustered around the regression line,
suggesting increased accuracy and superior over-
all performance of the model.

Figure 3: Scatter plot of gpt-4o’s predictions
(R=0.792,R2=0.183)

Figure 4: Scatter plot of trained model predictions
(R=0.87,R2=0.72)

Graphs 5 and 6 display the dispersion of resid-
uals ei around the zero line.

ei = yi − ŷi

Each residual plot exhibits distinct characteristics
reflecting the performance of two different predic-
tion models. In Figure 6, the residuals are primar-
ily concentrated around the mean prediction val-
ues (0.2 to 0.4), with a high density near the zero
line, suggesting enhanced accuracy of the model
within this range. A slight tendency to underesti-
mate higher values is also observed, indicating a
potential bias in the model. In contrast, Figure 5
shows a broader dispersion of residuals across all
prediction values, with significant variations and
distinct peaks at specific points (0.0, 0.2, 0.5, 0.8),
suggesting a poorer fit of the model and reduced
reliability, especially at the extremes.
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Figure 5: Residual plot for gpt-4o (R=0.792,R2=0.183)

Figure 6: Residual plot for trained model
(R=0.87,R2=0.72)

4.4 Can the R2 score be improved with large
language models?

A good R2 score indicates better predictive quality
of the model, with predicted values being closer
to the actual values. In the dataset used, each
instance is annotated by several evaluators who
assess the complexity of a word on a five-point
scale, with the final score being the average of
these assessments. It is known that each evalua-
tor may differ from each others in terms of level,
and the score they assign also depends on their un-
derstanding of the instructions and their thought
process before giving a score. Additionally, they
can make errors. This process is very similar to
that of LLMs: for example, we have seen in previ-
ous experiment that gpt-4o provides better results
compared to others. Thus, we can imagine that the
group of evaluators is analogous to a set of LLMs.

To test this hypothesis, we asked the five LLMs
used in this experiment (gpt-4o , Llama3, Mistral,
Phi3, and Gemma) to predict the score on a five-
point scale (0, 0.25, 0.5, 0.75, 1) using the best
prompt for English (advanced COT). We then cal-
culated the average of these scores.

Table 9 presents the average and weighted av-
erage of LLM models compared to a single LLM
and a model specifically trained for this task. The

Model P S R2

One llm (gpt-4o) 0.781 0.670 0.144
Average All llm 0.710 0.673 0.450
Weighted average 0.792 0.717 0.610
Supervised (ours) 0.870 0.800 0.720

Table 9: Average and weighted average of large lan-
guage models (LLMs) versus one LLM and a trained
model.

weighted average is calculated by arbitrarily as-
signing weights to each LLM based on previously
observed performances, as shown in Figure 2. The
assigned weights are as follows: gpt-4o at 0.5,
Mistral at 0.2, Llama3 at 0.1, Phi3 at 0.1, and
Gemma at 0.1. These weights are used to deter-
mine if performance can be improved. Ideally and
fairly, these weights should be derived from the
training set and applied to the test set. As demon-
strated in Table 9, the average score for all LLMs
significantly improves the R2 score to 0.45, which
is a substantial improvement compared to using a
single LLM that scores 0.14. Performance fur-
ther enhances with the use of a weighted aver-
age of 0.61, approaching the score of the model
specifically trained for this task. These results
strongly support our initial hypothesis. In conclu-
sion, the use of multiple LLMs somewhat simu-
lates the way data is annotated, providing better
results in terms of R2 score.

5 Conclusion

In this study, we explored new methods aiming at
enhancing the prediction of lexical complexity in
a multilingual context using two distinct types of
models: models trained specifically for the task
in a supervised way and generative models not
specifically trained for the task.

Regarding the supervised approach, our find-
ings indicate that models trained on multiple lan-
guages outperform monolingual ones. Zero-shot
models trained on multiple languages but the tar-
get one displayed variable performance compared
with monolingual models. We also observed that
data augmentation through automatic translation
from English to the target language is feasible, al-
though the required amount of augmentation in-
stances may vary depending on the use case. Addi-
tionally, training a model directly from translated
data is possible reasonable alternative, as we did
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for French 3.
We further investigated the capabilities of gen-

erative models to predict lexical complexity on
the MLSP 2024 dataset by varying the prompt
strategy used. The results underscore the im-
portance of prompt selection, with the ”chain of
thought” prompt proving particularly effective in
English, French, and Spanish 2. However, this ap-
proach was not as effective for Japanese, a lan-
guage that significantly differs from the others and
might require a specially adapted prompt due to its
unique complexity evaluation rules. Additionally,
the findings for CWI 2018 reveal that the super-
vised approach outperforms our LLM prompting
approaches. Majority voting further improved an-
notation quality.

Although generative models show good Pearson
correlation scores, the quality of their predictions
remains questionable, often due to very low R2
scores. To address this, we proposed an ensemble
method using several generative models, which is
akin to the human annotation process (cf. table 9).
This opens new research perspectives.
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A Appendix

1- Zero-shot prompt (base)

”””

You will be given a sentence and a word included in the
sentence. Evaluate the complexity of the word in the context
of the sentence, and provide a rating in scale of 0.0, 0.25,
0.5, 0.75, 1.0.

Sentence: ’{sentence}’
Word: ’{token}’
Complexity:

return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word in context.

”””

2- One-shot prompt (instruct)

”””

You are a person without specialized knowledge or expertise
in any specific field.You will receive a sentence containing a
word, your task is to evaluate the word based on one metric.

Evaluation Criteria:

Complexity [0.0, 0.25, 0.5, 0.75, 1.0]: This measures how
difficult it is to understand the word.

1. Carefully examine the sentence and the specified word to
grasp the context in which it is used.

2. Assess the complexity of the word using the criteria
provided

- 0.0: The word is simple and easily understandable to most
people.

- 0.25: The word may have some complexity or be specific to
a certain field, but can still be understood with some effort.

- 0.5: The word is moderately complex and may require some
background knowledge or explanation to understand fully.

- 0.75: The word is quite complex and may be difficult to
understand without significant knowledge or explanation.

- 1.0: The word is extremely complex and likely only
understood by experts or individuals with specialized
knowledge.

Your personal knowledge of a word should not influence your
rating. Instead, rate the word based on the understanding an
average person might have

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’.
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For this example, ’discourse’ might be rated as 0.25.

Please provide a complexity rating for the ’{language}’word
’{token}’.
Sentence: ’{sentence}’
Word: ’{token}’
return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word.

”””

3- Chain-of-thought prompt (Advanced Cot)
”””

You are a person without specialized knowledge or expertise
in any specific field.You will receive a sentence containing a
word, your task is to evaluate the word based on one metric.

Evaluation Criteria:

Complexity [0.0, 0.25, 0.5, 0.75, 1.0]: This measures how
difficult it is to understand the word.

Evaluation steps:

• 1.Understand the Context: - Read the sentence and the
word carefully to understand the context in which the word
is used.

• 2. Analyze the Word’s Frequency and Familiarity: -
Determine how commonly the word is used in everyday
language. - Consider if the word is generally known by
the average person or if it is specialized.

• 3. Evaluate the Morphological Complexity: - Examine the
structure of the word, including its length, composition,
and any prefixes or suffixes.

• 4. Define the Word: - Provide a definition of the word
in its common usage. - Explain the specific meaning of the
word in the given context.

• 5. Assess the Overall Complexity: - Based on the analyses
above, determine the complexity of the word using the
following criteria: - 0.0: The word is simple and easily
understandable to most people. - 0.25: The word may have
some complexity or be specific to a certain field, but
can still be understood with some effort. - 0.5: The
word is moderately complex and may require some background
knowledge or explanation to understand fully. - 0.75: The
word is quite complex and may be difficult to understand
without significant knowledge or explanation. - 1.0: The
word is extremely complex and likely only understood by
experts or individuals with specialized knowledge.

• 6. Assign a Complexity Rating: - Based on your
evaluation, assign a complexity rating to the word.

Your personal knowledge of a word should not influence your
rating. Instead, rate the word based on the understanding an
average person might have
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Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’

1. Understand the Context: The word ’discourse’ is used in a
sentence discussing a professor’s speech.

2. Analyze the Word’s Frequency and Familiarity: ’Discourse’
is somewhat specialized but can be understood by most people
with some effort.

3. Evaluate the Morphological Complexity: ’Discourse’ is a
relatively long word but does not have complex prefixes or
suffixes.

4. Define the Word: - Common usage: ’Discourse’ means
written or spoken communication. - Context-specific: In the
sentence, ’discourse’ refers to the professor’s lecture.

5. Assess the Overall Complexity: Considering its moderate
frequency, moderate morphological complexity, and clear
context-specific meaning, ’discourse’ might be rated as 0.25.

6. Assign a Complexity Rating: For this example, ’discourse’
might be rated as 0.25.

Now, Please provide a complexity rating for the
’{language}’word ’{token}’.
Sentence: ’{sentence}’
Word: ’{token}’
return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word.

”””

4- Zero-shot prompt (base-binary)

You will receive a sentence and a specific word from that
sentence. Evaluate the complexity of the word within the
context of the sentence and return 1 if the word is complex,
or 0 if it is easy.

Sentence: ’sentence’

Word: ’token’

Complexity:

return only the complexity score: 1 or 0.

5- One-shot prompt (instruct-binary)

You are an individual without specialized knowledge or
expertise in a specific area.

You will be given a sentence and a word included in the
sentence.

Your task is to evaluate the complexity of the word in a
binary format (0 or 1).
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Please read and understand these instructions carefully. Keep
this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Complexity (0, 1): Evaluate how difficult the word is to
understand for an average person.

- 0: The word is simple and easily understandable by most
people. - 1: The word is complex and may be difficult for an
average person to understand.

Evaluation steps: 1. Read the sentence and word carefully to
understand the context.

2. Determine the complexity of the word based on the criteria
above.

3. Assign a complexity rating to the word.

Note: Your own familiarity with the word should not impact
your rating. Base your judgment on an average person’s
understanding of the word.

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’.

For this example, ’discourse’ might be rated as 1.

Please assign a complexity rating to the ’lang’ word.

Sentence: ’sentence’

Word: ’token’

Complexity:

return only the number (0 or 1) that corresponds to the
complexity of the word.

6- Chain-of-thought prompt (Advanced COT-binary)

You are an individual without specialized knowledge or
expertise in a specific area.

You will be given a sentence and a word included in the
sentence.

Your task is to rate the word on one metric: complexity.

Please read and understand these instructions carefully. Keep
this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Complexity (0 or 1): the complexity of a word in terms of how
difficult the word is to understand.

Evaluation steps:

1. Understand the Context: - Read the sentence and
the word carefully to understand the context in which
the word is used.
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2. Analyze the Word’s Frequency and Familiarity: -
Determine how commonly the word is used in everyday
language. - Consider if the word is generally known by
the average person or if it is specialized.

3. Evaluate the Morphological Complexity: - Examine
the structure of the word, including its length,
composition, and any prefixes or suffixes.

4. Define the Word: - Provide a definition of the
word in its common usage. - Explain the specific meaning
of the word in the given context.

5. Assess the Overall Complexity: - Based on the
analyses above, determine the complexity of the word
using the following criteria: - 0: The word is simple
and easily understandable to most people. - 1: The
word is complex and may be difficult to understand for
the average person.

6. Assign a Complexity Rating: - Based on your
evaluation, assign a complexity rating to the word.

Note: Your own familiarity with the word should not impact
your rating. This should be based on an average person’s
understanding of the word.

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’

1. Understand the Context: The word ’discourse’ is used in
a sentence discussing a professor’s speech. 2. Analyze the
Word’s Frequency and Familiarity: ’Discourse’ is somewhat
specialized but can be understood by most people with some
effort. 3. Evaluate the Morphological Complexity: ’Discourse’
is a relatively long word but does not have complex prefixes
or suffixes. 4. Define the Word: - Common usage: ’Discourse’
means written or spoken communication. - Context-specific: In
the sentence, ’discourse’ refers to the professor’s lecture.
5. Assess the Overall Complexity: Considering its moderate
frequency, moderate morphological complexity, and clear
context-specific meaning, ’discourse’ might be rated as 0.

Now, apply this method to the given word and sentence.

Please assign a complexity rating to the ’lang’ word.

Sentence: ’sentence’

Word: ’token’

Complexity:

Please return only the number (0 or 1) that corresponds to
the complexity of the word. Do not include any additional
information or explanations.
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Abstract

Reading is an essential life skill and cru-
cial for students’ academic success. Partic-
ularly, the need for students to read in En-
glish as a second language (L2) has grown
due to its global significance. However, L2
readers often have limited opportunities for
meaningful, interactive reading practice with
immediate support. This paper introduces
ARES, a pedagogically oriented, web-based
intelligent computer-assisted language learn-
ing (ICALL) system designed to enhance the
L2 reading experience, developed through an
action research approach involving practition-
ers. ARES offers a range of interactive fea-
tures for students, including not only the
autonomous identification of vocabulary and
more than 650 language means, but also mak-
ing them interactively explorable in the text,
providing detailed explanations and practical
examples in contexts. To support effective
teaching, ARES employs a Large Language
Model (LLM) for generating tailored reading
comprehension questions and answer evalua-
tions, with teachers in the loop, achieving hu-
man and Artificial Intelligence (AI) collabora-
tion. We present the development and appli-
cation of the system from both technical and
pedagogical perspectives to advance L2 learn-
ing research and refine educational tools.

1 Introduction

In today’s increasingly globalized world, the
growing necessity for students to read in L2 En-
glish underscores the importance of proficient L2
reading skills (Vettori et al., 2023). Learning to
read in L2 is complex, as learners must grasp liter-
acy in an unfamiliar language (Verhoeven, 2011).
Thus, it is important to support L2 learners’ read-
ing development, especially in school contexts

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

where L2 learning most often takes place. How-
ever, school teachers often face challenges in pro-
viding interactive and meaningful learning experi-
ences for a large number of students due to lim-
ited time and highly heterogeneous students with
different proficiency levels, native languages, and
learning preferences in the same class.

Digital environments, such as ICALL systems,
offer unique opportunities for new ways of learn-
ing and teaching (Amaral and Meurers, 2011).
These systems have been shown to enhance learn-
ing engagement (Liu et al., 2016) and achieve
better language acquisition (Oberg and Daniels,
2013) through features such as automatic feedback
(Ai, 2017), intelligent tutoring (Choi, 2016), and
personalized support (Heilman et al., 2010). De-
spite these advancements, a lot of previous sys-
tems are falling short on integrating the AI tech-
nologies (e.g., LLMs) or on addressing the practi-
cal day-to-day needs of L2 teachers.

In order to address these gaps and enhance real-
life usage of ICALL systems in classrooms, we de-
signed and developed an ICALL system that sys-
tematically and automatically provides various in-
teractive support for L2 reading, targeting young
learners of English as a foreign/second language
(EFL/ESL). The development of the system is
grounded in theories of text comprehension in sec-
ond language acquisition (SLA), leveraging the af-
fordances of current language technologies. The
general goal of the system is to provide school
teachers with a tool to easily create reading ac-
tivities with interactive and individualized support
for their students. Currently, the system provides
a web-based platform that features (1) provision
of annotations and glossing of vocabulary and lan-
guage means, (2) automatic generation and evalu-
ation of reading comprehension questions, and (3)
easy management of student classes, assignments
and their submissions, as well as feedback on as-
signments. In this article, we introduce the design
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rationale and development of the system with its
different elements in detail. We conclude with an
outlook on the design of a study that investigates
perceptions of the system in German secondary
schools. By exploring these dimensions, we aim
to showcase how the Natural Language Processing
(NLP) and AI technologies can be used to support
L2 reading learning and teaching.

2 Background

2.1 Vocabulary and Grammar Knowledge in
L2 Reading Comprehension

Reading is a complex cognitive activity that re-
quires the integration of information from the text
and the reader’s background knowledge. Suc-
cessful reading comprehension (RC) depends on
skilled processing of the visually presented text
(Verhoeven, 2011). It requires a wide range
of linguistic as well as non-linguistic skills in-
cluding word recognition, linguistic knowledge,
discourse-level meaning making, reading strate-
gies, inferring, and comprehension monitoring
(Grabe, 2014). Current theories on RC typically
involve conceptual representations with several in-
terdependent layers. There is typically a local-
level representation based on text-based informa-
tion (i.e., vocabulary, grammar) and a high-level
representation where the content of the text be-
comes integrated into the reader’s larger concep-
tual structure (i.e., integrating the textual informa-
tion across sentences) (Jung, 2009; Kintsch, 1988;
Kintsch and van Dijk, 1978). During the construc-
tion of semantic structures at these various levels,
a reader’s vocabulary and grammatical knowledge
influences the entire reading process (Jung, 2009).
In particular, the parsing mechanism, driven by
this vocabulary and grammar knowledge, oper-
ates on text segments assembled locally. Con-
sequently, if readers generate inaccurate or in-
complete representations of these local text seg-
ments, their overall comprehension of the text
can be significantly impaired (Jung, 2009; Koda,
2007). Lexical-syntactic knowledge is critical in
the construction of the local-level representation,
where text-based propositions are built to even-
tually support the high-level representation (Choi
and Zhang, 2021; Kintsch, 1988). Knowledge of
vocabulary and grammar thus helps with the con-
struction of text-based information and eventually
facilitates in-depth comprehension.

Following Alderson’s (1984) discussion of

whether L2 reading is a reading problem or a lan-
guage problem, SLA researchers have been inter-
ested in the importance of vocabulary and gram-
mar knowledge in an effort to understand the pro-
cess of L2 RC. A plethora of empirical stud-
ies have been conducted to gain a better under-
standing of how vocabulary and grammar knowl-
edge affect L2 RC, whose results generally sup-
port the primacy of both L2 vocabulary and gram-
mar knowledge in L2 RC (Choi and Zhang, 2021).
For instance, in a longitudinal study examining the
relation of oral language proficiency and decod-
ing skills to L2 RC among Dutch-speaking young
EFL learners, Droop and Verhoeven (2003) found
that both vocabulary and morphosyntactic knowl-
edge had an equally strong correlation to L2 RC,
especially at the initial stage when the learners
had relatively low L2 proficiency. Recent meta-
analyses in L2 RC (Chen and Mei, 2024; Choi and
Zhang, 2021) also demonstrate that L2 vocabulary
and grammar knowledge are the two strongest pre-
dictors of L2 RC. Hence, it is important to accom-
modate both types of knowledge in the design of
teaching of L2 reading. However, vocabulary and
grammar knowledge varies a lot among individ-
uals, requiring support for their development be
highly personalized. From an instructional per-
spective, however, due to the time constraint and
students’ heterogeneity, it is almost impossible for
teachers to pinpoint vocabulary and grammatical
knowledge that each learner does not understand
while they are reading.

2.2 Computer-based Development of L2
Reading Comprehension

Technological applications in L2 reading range
from basic digital texts such as e-readers with
limited interactivity to online dictionaries to col-
laborative annotation. Reviews of L2 RC litera-
ture (Saeidi and Yusef, 2012; Sawaki, 2001) have
shown that specially designed software, ICALL
systems, online lessons, animated texts, use of
multimedia contexts, interactive multi-modal ma-
terials, online dictionaries, e-books and hypertex-
t/hypermedia environments have been used to en-
hance L2 RC. Here, we describe two features that
are highly relevant to our system.

Online Dictionaries Primarily used for looking
up unknown words in reading, writing, and vocab-
ulary learning activities, online dictionaries often
in the form of electronic glossing have been con-
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sidered highly feasible, individual learning ma-
terials (Çolak and Balaman, 2022) as they “pro-
vide controlled opportunities for linguistic input
for the learner and interaction with the computer”
(Chapelle, 2003, p. 25). One of the prominent ex-
amples of electronic glossing is Amazon’s Kindle,
which provides users with a dictionary function
that presents the definitions of words at the bottom
of the screen (Lee and Lee, 2015). Another ex-
ample is Readlang (Ridout, 2013), a commercial
platform that provides instant translation of words
in texts in multiple languages. In fact, it has been
shown that online dictionaries such as glossing en-
hance L2 RC as well as L2 vocabulary acquisition,
as found in a meta-analysis of studies on both elec-
tronic and textual glosses (Taylor, 2009). Studies
also revealed that L2 learners prefer computerized
glossing to its paper counterparts (Bowles, 2004).
Traditional online dictionaries, however, constrain
the selection of an appropriate meaning among all
the possible meanings as well as providing a wider
range of information such as collations, as they
in general list only straight definitions. Previous
literature suggests that examples illustrating syn-
tax, collocation, usage and context are more help-
ful in clarifying meaning than straight definitions
(McAlpine and Myles, 2003). Furthermore, to the
best of our knowledge, there has been no attempt
to integrate a dictionary on language means (i.e.,
explanation of forms) into language learning ap-
plications.

Feedback Feedback is information communicated
to learners to modify their thinking or behav-
iors to close the gap between their actual per-
formance and the target performance (Hattie and
Timperley, 2007), thus aiming to improve learn-
ing (Shute, 2008), as well as enhance emo-
tions and motivation during learning (Fong et al.,
2019). The need for feedback on learner pro-
duction has been well documented in SLA re-
search (Mackey, 2006). Feedback can be cate-
gorized into three types: Knowledge-of-Response
(KOR) feedback that only includes verification,
Knowledge-of-Correct-Response (KCR) feedback
that additionally includes the correct answer, and
Elaborated Feedback (EF) that also includes extra-
instructional information (Swart et al., 2022) such
as explanations (e.g., “In the text, the author does
not state that....”), follow up questions (e.g., “Why
does the author of the text think...?”), location or
hint of the correct information in the text (e.g.,

“Check the part in the text again where the au-
thor mentions....”), or a combination of multiple
types of information (Finn et al., 2018). Among
them, EF can be used to guide and direct the
L2 reader, thereby providing additional support.
Bown (2017), borrowing words from Mitchell
et al. (2013), attests that “from a sociocultural
view of L2 acquisition, this support can be con-
sidered as a form of scaffolding: a ‘process of
supportive dialogue which directs the attention of
the learner to key features of the environment, and
which prompts them through successive steps of a
problem’ (Mitchell et al., 2013, p. 25)”. In fact,
in the field of educational sciences, several meta-
analyses (Bangert-Drowns et al., 1991; der Kleij
et al., 2015; Wisniewski et al., 2020) have demon-
strated positive effects of EF over other simpler
types of feedback. Despite the potential of EF in
L2 RC, only a few attempts have been made to im-
plement it in ICALL systems (Bown, 2017, 2018;
Murphy, 2007, 2010). However, most of these re-
search prototypical systems have not been tested
widely in schools practically.

Overall, there have been several attempts to in-
tegrate features that support L2 RC (e.g., Read-
lang, Bown, 2018; Murphy, 2010), but most exist-
ing systems focus on a single aspect of L2 read-
ing support (e.g., vocabulary) and fall short in
offering comprehensive, pedagogically grounded
support throughout the entire L2 reading process.
This poses challenges for a practical implemen-
tation in classroom settings. Moreover, most of
these systems were research-oriented and not de-
signed for actual widespread classroom usage, fur-
ther complicating their adoption and effectiveness.
Our work seeks to address this gap between re-
search, foreign language pedagogy, and real-life
classroom usage by developing ARES, a pedagogi-
cally oriented, web-based ICALL system designed
to enhance L2 reading experience. In the follow-
ing section, we present the system architecture and
each feature of the system in detail.

3 ARES

ARES (Annotated Reading Enhancement System)
is designed as a multi-layer web application that
strikes a balance between usability and flexibil-
ity. The system implements a responsive design
that adapts the display for all devices and plat-
forms. Therefore, it works seamlessly across mul-
tiple platforms, requiring only a computer, tablet,

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

117



or smartphone with a web browser and internet
access. Using NLP tools, the system supports
students by identifying and providing glossing on
vocabulary and language means with examples,
which they can consult as needed while reading
the assigned texts. For teachers, ARES automates
the process of generating questions for assign-
ments and providing individual feedback to each
student response by implementing a pre-trained
LLM (ChatGPT 4o1), significantly reducing their
workload and allowing them to focus more on
communicative activities in classrooms.

Involving teachers or stakeholders in education
research whose results will be used in schools is
considered very important because schools and
teachers should not only be treated as consumers
of the research results (Farley-Ripple et al., 2018).
Successful research that has a practical impact in
schools is always the outcome of bi-directional ef-
forts. This bi-directional effort is not a one-off
process, but it will involve multiple iterations of
interactions between the researchers and the teach-
ers. Consequently, we decided to use a multi-
cycle action research paradigm to guide the de-
velopment and research process. The action re-
search model (Figure 1) is a systematic, collec-
tive, collaborative, and self-reflective scientific in-
quiry aimed at improving educational practices
and addressing the practical concerns of teachers
(Kemmis and McTaggart, 1988; Rapoport, 1970),
where a key characteristic of action research is the
involvement of stakeholders, including teachers,
students, and researchers.

Figure 1: Action Research Model (Kemmis and Mc-
Taggart, 1988)

In the following subsections, the system that has
been developed in the first phase of the action re-
search paradigm is described in more detail, both
from the teacher perspective and the student per-
spectives.

1https://chatgpt.com/

3.1 System Architecture
Utilizing a software-as-a-service (SaaS) approach,
ARES provides the software through the cloud, al-
lowing system developers to update the applica-
tion with new features and fix bugs without re-
quiring users to download updates from app stores.
The system is built on a Java backend deployed in
a Jetty server. For the display layer, we use the
Bootstrap framework, which provides a highly ex-
tensible component-based design for an optimized
display. In order to enable Learning Analytics,
all user activities such as button clicks, lookups
of language means, reading comprehension ques-
tion attempts, assignment submissions, viewing of
specific feedback messages, and any other rele-
vant user actions are logged through xAPI2, an in-
teroperability specification for recording user in-
teractions, and stored in a Learning Record Store
(LRS).

3.2 Home Interface
Based on discussion with the involved stakehold-
ers, the home pages that users first see when they
log in offer the most commonly used functionali-
ties as a starting point for efficient usage.

Teacher Home There are three main sections that
teachers can select from, described in detail below:

• Classes Teachers can create, delete, edit
classes and manage students.

• Assignments Teachers can manage assign-
ments and check the results of each assign-
ment.

• Texts Teachers can browse, upload, and edit
texts.

To address the challenge English teachers face in
finding texts appropriate for their students’ En-
glish levels, the system includes a “text bank” with
reading materials covering 12 topics (e.g., His-
tory, Travel and Nature, Technology). These ma-
terials are crafted by experienced ESL/EFL teach-
ers ensuring users always have access to relevant
content from a variety of themes, addressing a
need by teachers to search for material to prepare
their lessons. The initial target audience is classes
in German secondary schools (Gymnasium) with
proficiency levels roughly equivalent to A2-B1 ac-
cording to the Common European Framework of

2https://xapi.com/
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Reference for Languages (CEFR) (Council of Eu-
rope, 2020). The texts are tailored to match these
proficiency levels. Additionally, teachers have the
option to upload their own texts, which they can
later edit or delete as needed. When creating an
assignment, teachers receive automatically gen-
erated suggestions for comprehension questions
generated from the LLM. With the goal of keep-
ing teachers in the loop, we designed the system
so that teachers always hold the ultimate decision-
making power, and are supported by the system’s
suggestions and tools. They can post-edit these
suggestions, confirm them, or add their own ques-
tions manually, to ensure that teachers’ expertise
is involved in the process. On the technical side,
we conducted an iterative approach to refine the
prompt for question generation. The full final ver-
sion of the prompt implemented in the system is
attached in the Appendix.

Teachers can decide which annotations on lan-
guage means to show students (section 3.3), al-
lowing them to tailor assignments and annotations
to specific learning goals and ensure appropriate-
ness for their students’ proficiency levels (see Fig-
ure 2). The motivation behind this customization
is that reading texts often contain a wide range of
language means and grammatical structures, and it
is often hard for teachers to selectively control stu-
dents’ focus on a certain language mean in reading
texts. By enabling teachers to customize annota-
tions of language means based on learning goals,
the system ensures that reading materials support
the target structures, making the learning process
more efficient and tailored to pedagogical needs.

Figure 2: Selection of Annotations of Language Means

Student Home The system presents two main op-
tions that students need most on their start page:

• Classes Students can see classes they are en-

rolled and join a class using a 4-digit access
code provided by the teacher.

• Assignments Each assignment card indicates
the status of an assignment using different
background colors and badges (see Figure 3).

Upon clicking or touching the assignment card,
students are forwarded to the reading interface.

Figure 3: Student Assignments Page

3.3 Reading Interface
The main features of the interface are an on-
demand annotation on language means that is
based on the English Grammar Profile (EGP)3 and
an on-demand vocabulary lookup based on the
LLM. Given their relevance to the overall goal
of the system, the following subsections describe
these functions in detail.

3.4 Annotations on Language Means
The annotation function of language means acts as
an instant glossing on forms, allowing students to
click on any word (or section of a sentence) within
a reading text to access its detailed explanation
with example sentences and the corresponding
CEFR level of the grammatical structure. When
a text is uploaded to the system, it is automatically
analyzed and indexed by an NLP tool our research
group has created to extract form-based language
means from the EGP. The EGP is a comprehensive
database listing over 650 language means span-
ning the entire range of CEFR levels. It is based

3https://www.englishprofile.org/engli
sh-grammar-profile/egp-online
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on an extensive analysis of the Cambridge Learner
Corpus, providing insights into the typical gram-
mar usage at each proficiency level (O’Keeffe and
Mark, 2017). For each language mean, we asked
experienced teachers to write an explanation and
examples in both a student-directed and a more
concise teacher-directed way. Along with an in-
dication of the CEFR level, this information is
shown to the users, with the respective variant of
the explanation selected on the user’s role (see Fig-
ure 4).

The pipeline for this function is based on the
further development of the pipeline introduced
in Quimal et al. (2021). It is based on the
Unstructured Information Management Architec-
ture (UIMA, Ferrucci and Lally 2004)4, an open-
source Apache framework used in large-scale text
processing applications. It includes three main
components: an NLP preprocessing module, an
annotator built using UIMA’s Rule-based Text An-
notation (Ruta)5 framework, and an application to
run the pipeline for analyzing texts. The NLP
preprocessing module employs tools like Stan-
dard CoreNLP (Manning et al., 2014)6 and DKPro
Core (de Castilho et al., 2016)7 for tasks such as
tokenization, part-of-speech tagging, and depen-
dency parsing. The Ruta annotator applies regu-
lar expression-based rules after the pre-processing
to identify specific language means, tagging them
with information like construction type and posi-
tion in the text, ensuring robust and scalable text
processing.

3.5 Vocabulary Lookup Function

The system offers an instant vocabulary glossing
for students. It enables students to click on any
word within a reading text and immediately ac-
cess comprehensive vocabulary information about
that word. When a student clicks on a word in
the reading text, the system identifies and extracts
the clicked word as a token and its surrounding
sentence as a context. The LLM is then applied
to analyze the word both as an isolated token and
within the context of the sentence to understand its
specific usage and meaning, including the general
definition, meaning in the specific context, collo-
cations, related vocabulary, morphosyntactic ele-

4https://uima.apache.org/
5https://uima.apache.org/ruta.html
6https://stanfordnlp.github.io/CoreNL

P/
7https://dkpro.github.io/dkpro-core/

ments of the word, and additional information (see
Figure 5). In order to make sure that the students
understand the relevant information of the clicked
vocabulary, there is an option for them to see a
translation of the explanation.

Figure 4: Grammar Lookup

Figure 5: Vocabulary Lookup

3.6 Questions and Rating Functionality
For assignments that accompany RC questions,
these questions are displayed below the text. Stu-
dents have the flexibility to complete the assign-
ment without answering all the questions. At the
end of the assignment, when students click on the
submit button, the system presents a dialogue box
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asking students to rate the difficulty and interest-
ingness of the text using a 5-star Likert scale with
an option to leave free-form comments about the
assignment, which will be provided to the teacher,
offering insights into both the overall and individ-
ual perceptions of the assigned text to teachers,
text authors, and researchers.

Once the students submit the assignment, the
system forwards them to the Assignments page
(section 3.2). However, students keep the right
to access the reading interface even after submit-
ting the responses in order to give them chances
to review the finished assignments and view the
teacher’s feedback.

4 Evaluation Interface

Teacher Evaluation On the selection of the as-
signment in the Teacher Home (section 3.2), the
system directs them to the Evaluation Interface,
which consists of two main sections as shown in
Figure 6. The upper section of the page displays
information about individual student submissions
in a table format, including the time of submis-
sion, automatic score (calculated by the system),
manual score (assigned by the teacher), percent-
age of the feedback read by the student, difficulty
rating, interestingness rating, and comments (see
Figure 6). With the purpose of reducing the teach-
ers’ workload, we equip the system with func-
tionalities that automate grading by integrating the
LLM. Upon clicking the “Grade all automatically”
button above the submission table, all student re-
sponses are sent to the LLM in a parallelized way
for processing. The LLM evaluates the student re-
sponses against a target response for each question
while also provided with the reading text as con-
text. As the output of this process, the teacher sees
a percentage score of correct responses displayed
under the “Automatic score” column. Teachers
can then transfer these automatic scores to the
“Manual score” column by clicking the “Accept
all corrections” button. The full final version of
the refined prompt to the LLM is attached in the
Appendix.

In order to keep teachers in the loop, we al-
low teachers to review and modify the automated
scores by clicking the “Grade” button within the
submission table, which redirects them to the in-
dividual submission page. Here, detailed eval-
uation information (questions, student responses,
target answers, automatic scores, and automatic

feedback) is displayed, allowing teachers to ad-
just scores and feedback as needed. If the teacher
agrees with the automated grading, they may uti-
lize the “Copy all” button to transfer the automated
scores and feedback to the manual grading section.
Alternatively, for more granular adjustments, the
“Copy” button allows for the selective adoption of
scores on an individual question basis. Eventually,
what students see is what teachers confirm at the
end. This way, although we reduce teachers’ bur-
den of grading, we at the same time make sure that
teachers are in full control of what students see.

The lower section of the page provides a sum-
mative assessment of the assignment, including
the number of submissions, average automatic
score, average manual score, average interesting-
ness rating, and average difficulty rating. The av-
erage automatic and manual scores are updated au-
tomatically based on the teacher’s grading of indi-
vidual submissions. The evaluation data of both
the class as a whole and individual students can be
downloaded as a CSV file for the teacher to bring
to class for further review and discussion.

Figure 6: Assignment Grading Overview Page

Student Evaluation Students see only the manual
evaluations confirmed by the teacher during the
grading process. It is important to note that the
evaluation display is only accessible to students
once the teacher has entered the manual evalua-
tion. Each answer is accompanied by different col-
ors and icons to indicate binary feedback (correc-
t/incorrect) (see Figure 7). Under the binary feed-
back icon, a chat button icon is available, which
students can click to open or close the teacher’s
feedback for each response. The system tracks
which feedback has been viewed by the students
and informs teachers about which students have
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read which feedback, providing insight into stu-
dent engagement and enabling more targeted sup-
port.

Figure 7: Feedback for Students

5 Conclusion and Outlook

Grounded in theories of text comprehension in
SLA, and leveraging the affordances of language
and AI technology, we present ARES, a web-
based language learning system designed to sup-
port L2 RC of young EFL/ESL learners with
teachers in the loop. The system provides on-
demand help functions, such as glossing of vo-
cabulary and language means, allowing students
to interactively engage with texts, as well as EF
on RC questions. These features not only aid stu-
dents in understanding English reading texts but
also alleviate teachers’ workloads by automating
time-consuming tasks such as question generation
and evaluation. Furthermore, ARES facilitates di-
rect interaction between students and teachers out-
side the classroom, enabling flexible assignment
and feedback processes.

We acknowledge certain limitations in our sys-
tem. First, there are challenges regarding the clas-
sification accuracy of language means (see Sec-
tion 3.4). To tackle this challenge, a member of
our research team is conducting a study to assess
the system’s classification accuracy by comparing
the results of our automatic classification with la-
bels provided by human annotators. Second, it is
important to note that LLMs still lack the same
level of understanding and context awareness as
humans (Ray, 2023). Although they can perform
a variety of tasks within seconds, LLMs strug-
gle due to tendencies toward hallucination (Nye
et al., 2023). However, this challenge is precisely
why we designed the system to involve teachers

in the process, ensuring they confirm outputs be-
fore students see them, rather than relying solely
on raw LLM-generated results. Although teach-
ers might occasionally miss inaccuracies produced
by the LLM, the system still significantly reduces
their workload, allowing them to focus more on
communicative activities in the classroom. Nev-
ertheless, we are currently working on investigat-
ing the feasibility of leveraging the LLM to gen-
erate short answer questions and feedback. Using
a human-authored evaluation method, we are in-
vestigating the linguistic and pedagogical quality
of these LLM-generated outputs. For the eval-
uation criteria of the questions, we will employ
a nine hierarchical criteria rubric (e.g., Under-
standable, Grammatical, Answerable, Clear) used
in previous studies (Horbach et al., 2020; Moore
et al., 2022; Steuer et al., 2021), which has been
shown to be comprehensive, easy to interpret, and
includes the pedagogical aspects of a question
(Moore et al., 2022). For the evaluation crite-
ria of the feedback, we will employ a four cri-
teria rubric (Readily applicable, Readability, Re-
lational, Specificity) that is formulated based on
previous work on the human-authored evaluation
of the quality of machine-generated feedback (Jia
et al., 2021; Liang et al., 2024; Pinger et al., 2018;
van der Lee et al., 2021).

Since the first version of the system is deployed,
a study investigating teachers’ and students’ per-
ceptions of the system is currently taking place in
two intact English classes at secondary schools in
southwest Germany with the purpose of evaluat-
ing the system’s usability and students’ interaction
with the system. Over a four-week period, stu-
dents will read two texts weekly as part of their
homework assigned by teachers. System percep-
tions will be assessed through a self-report ques-
tionnaire of comprehensive evaluation of technol-
ogy adapted from Lai et al. (2022). In addition to
the survey data, log data will be analyzed to ex-
plore the learning behavior within the context of
real-world ICALL system use.
ARES is currently available under https://
ares.kibi.group.
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Appendix. Prompts for the LLM

Prompt 1. Question Generation
The query template for asking the LLM to pro-
vide two types of reading comprehension ques-
tions (factual and inferential). The placeholder

fields with angle brackets are to be substituted for
the actual data in each query.
You are an EFL teacher who teaches English to non-

native school students between 10-18 years old.
Provide simple one-sentence short-answer
reading comprehension questions based on the
given text to these EFL learners. Do not use
too difficult words. Literal comprehension
refers to an understanding of the
straightforward meaning of the text, such as
facts, vocabulary, dates, times, and locations.
Questions of literal comprehension can be
answered directly and explicitly from the text
with a few words. Inferential questions ask
students to infer information from the passage
where the answer is not directly stated in the
text. The students have to use their background
knowledge to make a logical assumption about
ideas in the passage and normally require a
full sentence to answer, not a few words.

- text: <reading_text>
- number of factual questions: <number>
- number of inferential questions: <number>
Please provide the questions in JSON format as

follows:
{

"questions": [
{

"type": <factual_or_inferential>,
"prompt": "<question>",
"answer": "<correct_answer>"

},
]

};

Prompt 2. Feedback Generation
The query template for asking the LLM to provide
feedback and hint to a student’s response. The
placeholder fields with angle brackets are to be
substituted for the actual data in each query.
For each question, evaluate each EFL student’s

answer as follows using simple language as the
students are non-native and kids:

1. Determine if the answer is correct or incorrect
based on the content only.

2. Provide binary feedback for content ("Correct"/"
Incorrect").

3. Offer short, kind, and friendly feedback on the
content of the answers.

4. Give a concrete hint on the content explaining
why the response was correct or incorrect,
allowing the student to review part of the text
, without revealing the target answer. When
correct, do NOT provide hint.

- text: <reading_text>
Provide evaluation in JSON format using the match of

answer id:
{

"evaluation": [
{

"question": <question>,
"answer_id": <answer_id>,
"answer_text": <student’s_answer>,
"solution": <correct_answer>,
"binary": <binary_feedback>,
"feedback": <content_feedback>,
"hint": <content_hint>

},
]

}
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Abstract

We introduce ILAP, an intelligent language as-
sessment platform and reusable module that
streamlines the creation, administration and
scoring of language proficiency tests sup-
ported by Natural Language Processing (NLP)
technologies. As a first implementation, we
realized an automatic pipeline for the Elicited
Imitation Test (EIT), a popular test format that
has been widely adopted in language learn-
ing research for general proficiency and for-
mative assessments. The platform can be ex-
tended to other test formats and assessment
types. ILAP is a valuable tool for standard-
izing data collection in Second Language Ac-
quisition (SLA) and Intelligent Computer As-
sisted Language Learning (ICALL) research
as well as serving as an application for class-
room assessment. In this paper, we present the
design of the system and a preliminary evalu-
ation of Large Language Models (LLMs) for
generating language errors for EIT items.

1 Introduction

Language assessment is a way for teachers and
researchers to understand the current level of a
learner’s knowledge so that they can adjust their
teaching or understand how language develops in
the learner (Révész and Brunfaut, 2020; McNa-
mara, 2000). Traditionally, language assessment
has been done with tests of various formats, such
as written tests with multiple choice, essay writing
items, or spoken interviews. These tests are typi-
cally created manually, administered and graded
by language teachers or researchers in school or

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

lab settings, except for large-scale standardized
tests such as the Test of English as a Foreign Lan-
guage (TOEFL) or the International English Lan-
guage Testing System (IELTS), which also include
automatic forms of assessment (Evanini et al.,
2015). The complexity of language assessment
and the labor-intensiveness of language test cre-
ation, administration and grading are a major chal-
lenge for teachers and Second Language Acquisi-
tion (SLA) researchers, especially when the need
to assess the students repeatedly and frequently
arises. We therefore address these issues by creat-
ing a comprehensive language assessment system
incorporating NLP. These technologies accelerate
test implementation and scoring, making language
testing feasible for a broader audience.

In the present paper, we demonstrate ILAP (In-
telligent Language Assessment Platform), which
is designed to facilitate the creation, adminis-
tration, scoring, and reporting of results of lan-
guage tests supported by technologies such as Au-
tomatic Speech Recognition (ASR), and genera-
tive AI technologies, in particular Text-to-speech
(TTS) and Large Language Models (LLMs). The
system features easy test creation with NLP lever-
aged item construction, convenient web-based test
deployment, and automatic test response scoring
and reporting. As a first instance, the system’s im-
plementation supports the Elicited Imitation Test
(EIT) format, a popular test format that has been
found to be effective in evaluating learners’ gen-
eral proficiency and to tap into their implicit lan-
guage knowledge. An EIT targeting specific lin-
guistic constructs can potentially also be used as
a formative assessment tool to facilitate adaptive
teaching.

In the following section, we will first justify the
Sarah Löber, Björn Rudzewitz, Daniela Verratti Souto, Luisa Ribeiro-Flucht and Xiaobin Chen. Developing a
Web-Based Intelligent Language Assessment Platform Powered by Natural Language Processing Technologies.
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choice of EIT as a valuable test format to be imple-
mented in an intelligent language assessment sys-
tem by reviewing the research behind the test for-
mat. We will then specify how ILAP supports the
whole procedure of EIT-based assessment and the
above-mentioned technologies used in the system.
Furthermore, we provide a preliminary evaluation
of our automatic scoring and the use of generative
AI for generating ungrammatical test items. The
paper concludes with an outlook of the project and
future work.

1.1 The Elicited Imitation Test

In SLA research, numerous types of tests have
been used to characterize learners’ language pro-
ficiency, implicit or explicit knowledge of a lan-
guage or their cognitive abilities. EIT, a popular
test format among SLA researchers, is a sentence
repetition task that requires the test taker to listen
to the recordings of some sentences one at a time
and then repeat the sentence they have just heard.
Distractor questions (e.g. simple arithmetic calcu-
lations or judgement of the truthfulness of the sen-
tence) are often asked between the audio playback
and the repetition to prevent the test taker from
relying on their phonological memory but rather
require them to make use of their language sys-
tem based on the meaning of the sentence. EITs
have been used in a variety of ways, notably as
a measure of implicit knowledge or general lan-
guage proficiency (Ellis, 2005; Yan et al., 2016).
Several studies corroborate the high validity of the
test (Yan et al., 2016; Kostromitina and Plonsky,
2022), highlighting its efficacy as well as reliabil-
ity. Furthermore, EITs show potential to serve as
a placement test in language education (Yan et al.,
2020) and as a teacher tool to assess second lan-
guage (L2) learners’ oral production skills in lan-
guage classes (Campfield, 2017). Better still, re-
search has found that it is an effective assessment
format for various languages (Wu et al., 2023).

So far, the EIT has been administered in dif-
ferent formats, with different design implementa-
tions. For example, researchers have incorporated
ungrammatical sentences (Erlam, 2006). Care-
fully created ungrammatical sentences are often
used in EITs to test learners’ specific grammatical
knowledge (Spada et al., 2015). That is, whether
a test taker can correct specific grammar errors in
the repetition stage is an indicator of their implicit
knowledge of the grammatical constructs. Scoring

methods also vary: in some tests, items are scored
on a binary basis, for instance, correct or incor-
rect for the use of the target structure only (Er-
lam, 2006), while others use a more fine-grained
5-point scale (Ortega et al., 2002) or even a per-
centage scale (Lonsdale and Christensen, 2011).
Due to the different design implementations of
EITs used in research, it is challenging to compare
proficiency measures across studies. Therefore,
there have been calls to enhance standardization of
the tests (Isbell and Son, 2022; Kostromitina and
Plonsky, 2022).

EIT items can also be designed to target specific
grammar constructs that are the learning targets at
different L2 developmental stages. For example,
third-person singular -s or mass/count nouns are
popular target constructs in previous L2 English
studies (Kim and Godfroid, 2023). This makes
the test an effective tool for formative assessment,
but also poses a challenge to the test creator as
they will need to not only find and write sentences
with the target constructs, but also consider the
sentence length, lexical frequency and other gram-
matical constructs in the sentence prompts. All of
these factors have been found to affect the diffi-
culty of test items as well as the validity of an EIT
(Yan et al., 2016; Hendrickson et al., 2010). Users
of EITs also face challenges from test administra-
tion and scoring, which traditionally requires the
presence of a teacher or researcher in the class-
room or lab to control the test procedure and to
listen to the test responses for scoring. Hence, it
is time-consuming, labor-intensive, and therefore
difficult to scale.

We aim to address these issues by introduc-
ing ILAP, a web-based language assessment plat-
form, where assessments of language proficiency
can be created, administered and scored automati-
cally. The first type of test integrated on the plat-
form is an EIT pipeline.

1.2 Related work

Automating a language test requires automating
several individual components involved in the test-
ing process. While, to our knowledge, there is no
fully automatic pipeline for the EIT developed yet
that allows full flexibility, there have been studies
on automating individual components of the test,
such as item creation (Christensen et al., 2010) or
scoring (Graham et al., 2008; Isbell et al., 2023).
The findings of these studies show promising re-
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sults for the feasibility of automated EITs.
In the case of automatic scoring, studies propos-

ing solutions have focused on transcribing test
takers’ responses with automatic speech recogni-
tion (ASR) and implementing rules for scoring the
transcriptions. For example, utilizing ASR and
transcription scoring metrics based on string edit
distance, Isbell et al. (2023) were able to achieve
high correlations with human scoring (r > .90)
across all items on the Korean EIT. Likewise, Gra-
ham et al. (2008) reported high correlations for a
method using ASR and binary scoring on the syl-
lable level.

Pertaining to the further automation of EITs,
Christensen et al. (2010) utilized a language cor-
pus for the automatic and flexible selection of
elicited imitation test items with their item selec-
tion tool. The automatically selected EIT showed
higher correlations with the speaking language
achievement test (SLAT) than previous EITs.

The EIT is often administered in a lab, as
part of data collection for studies. An alternative
would be to administer the test online, allowing for
more flexibility, easier processing of the responses
and potentially reaching more participants. Some
studies have administered the EIT in this way,
with web-based and lab-based EITs showing no
significant difference in their validity (Kim et al.,
2024). However, Kim et al. (2024) found weaker
correlations, albeit non-significantly, for the web-
based EIT and TOEFL scores than for the lab-
based EIT and TOEFL scores when taking only
ungrammatical items into account. According to
the authors, this could result from a lack of imme-
diate feedback in the web-based EIT. Informed by
and building on previous efforts to automate EIT
creation, administration, and scoring, we imple-
ment the process in a newly developed intelligent
language assessment system that utilizes latest AI
technologies. The next section provides more de-
tails.

2 System overview

ILAP is a web-based application that is mobile-
friendly and compatible with most devices. The
back end is coded in Java, while the web front end
utilizes JavaScript and the Bootstrap framework.
There are two interfaces offered: a test creator in-
terface as well as a test taker view, both of which
require user profiles and accounts with different
roles. In the following, we describe the test cre-

Figure 1: Interface for creating new test items

ation, administration and scoring procedure with
ILAP.

2.1 Test creation

Test creators start by creating a test collection.
This automatically generates a unique and random
4-character access code that the test creator can
give to the participants to take the test. In the next
step, tests can be added to the test collection. The
choice for letting the user add different tests into
the test collection was made with the future inte-
gration of new test types in mind. This will allow
the integration of several separate test components
into one test collection, e.g. an EIT followed by a
reading comprehension test. When adding a new
test, users can specify the name, description and
visibility of the test. Tests with visibility set to
public can be shared among test creators. After-
wards, users can add the test type. In the first step,
we implemented an elicited imitation test type.
Within the created test, users can then manage in-
structions, items and settings or preview their test.
Figures 5, 6, and 7 in Appendix A.1 show the test
creation process.

Instructions The instruction interface allows
the user to add instructions, including their title
and text. Furthermore, users specify at what point
during the test an instruction is shown, e.g. before
practice items or before each item. Test creators
can add any number of instructions for the test,
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with each instruction appearing on a separate page
in the test-taker interface. Figure 8 in Appendix
A.2 shows a screenshot of this interface.

Items Figure 1 shows the item interface from
the test creator perspective, which supports adding
grammatical as well as ungrammatical items. Test
creators can add their own sentences or choose
sentences from the provided sentence corpus. For
the latter case, we annotated about 95.000 ex-
tracted sentences from the Spotlight corpus (Weiss
et al., 2021) with constructs from the English
Grammar Profile (EGP, O’Keeffe and Mark, 2017)
using an in-house EGP annotator. Users can
search, select and import sentences from the cor-
pus, filter by grammatical construct, and also edit
the sentences for their items.

The interface supports both a manual and an au-
tomatic creation of ungrammatical variants of sen-
tences. We implemented a component incorporat-
ing GPT-4o through the OpenAI API (OpenAI,
2024a) to automatically produce ungrammatical
variants of the sentence, i.e. simulating the output
of mal-rules (e.g. Sleeman, 1985) on the correct
sentence. The generated ungrammatical sentence
is based on the user input. Users can enter the cor-
rect sentence and select the “Make ungrammati-
cal” button, upon which the generated ungrammat-
ical sentence is displayed in the “Sentence” field
in the interface. A more elaborate evaluation on
our choice for using GPT-4o for this functional-
ity, including quantitative and qualitative human
assessments on the error generation, is provided in
Section 3.

Furthermore, an item can be classified as prac-
tice or test item. Audio files for items can either
be uploaded or automatically generated. For this
functionality, we are using the text-to-speech ser-
vice from Amazon Web Services (AWS) 1. Lastly,
a note can be added to describe an item.

Settings Test creators can control all settings re-
lated to a test by overriding the default settings of
tests with their own values. For example, they can
control the duration of the recording of responses
by test takers, whether belief statement checks are
shown after items are shown, and more. This in-
terface is displayed in Figure 9 in Appendix A.3.

2.2 Test administration

Each test collection is created with the status “in
editing”. As long as a test has this status, it cannot

1https://aws.amazon.com/

Figure 2: Test taker perspective of item procedure

be started by test takers. In case an access code
for a test collection that is not released is entered,
test takers get a warning message informing them
that the test is not available yet. Test creators can
control the release of a test by updating its sta-
tus to “released”. At this point, the test becomes
available and cannot be edited anymore in order to
avoid problems related to test taker data referring
to an outdated version of the test, ensuring a valid
data collection process.

Test takers can access the released test via the
test taker interface by entering the provided access
code. The item procedure, using the default set-
tings, is shown in Figure 2.

2.3 Scoring and results

To allow for full flexibility for the test creator,
completed EITs can be scored manually as well as
automatically. When a test has been taken by the
user, test creators can access the result overview
via the corresponding test in the “My tests” in-
terface. In this overview, test results are grouped
by the progress of test takers. Tests which have
been started, but not yet finished by the user are
also shown. Responses for finished tests can ei-
ther be scored automatically (all at once or item
by item) or manually in the performance overview,
where the test takers’ audio transcriptions and the
string edit distance measures to the correct sen-
tence, converted to a percentage, are displayed.

For the automatic scoring algorithm, following
the work of Isbell et al. (2023), we use the tran-
scription of the test response and string edit dis-
tance measures to calculate the test score. The
recorded audio files of the test takers are automati-
cally transcribed and the transcription is compared
to the correct sentence for each item specified by
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the test creator. For transcription of test-taker re-
sponses, we are using the Whisper-large-v2
model through the OpenAI transcriptions API
(OpenAI, 2024b). Our choice of Whisper for re-
sponse transcription is based on previous research
(Bear et al., 2023) showing that Whisper has the
lowest word error rate (WER) when compared to
other commercial ASR providers on ungrammati-
cal and grammatical sentences from L2 speakers.

For string edit distance comparison, the system
first normalizes the transcription string as well as
the target string by converting the characters to
lowercase and removing the non-word characters
as well as whitespace characters. We decided on
this process of normalization after noticing that the
ASR would occasionally add punctuation charac-
ters, for example adding a question mark when
raising the voice at the end of a sentence. After
this process, the mean of three string distance mea-
sures is computed: Levenshtein, Jaro-Winkler and
Jaccard distance. We are using the mean of these
measures in order to retain the different measure
characteristics while also making the result more
accessible by offering only one score to the test
creator. For making these scores more intuitive,
the mean of the three measures is converted to a
percentage on the item-level as well as the test-
level, ranging from 0 to 100. Figure 3 shows the
scoring interface on the test-level. The system of-
fers an additional field on the item-level for a man-
ual score in case test creators want to apply their
own scoring metric, e.g. a school grading system.
A screenshot of the scoring interface on the item-
level can be found in Figure 10 in Appendix A.4.

2.4 Preliminary testing of scoring
functionality

For preliminary testing of our scoring implemen-
tation, we manually scored 22 EITs taken with our
system. Scoring each item on a scale of 0-4, we
followed the established scoring scheme of Ortega
et al. (2002), with the sum of all item scores as the
total EIT score. The EITs consisted of 24 items,
resulting in a maximum total score of 96 for the
manual scoring. We then correlated the total man-
ual EIT scores with the total automatic scores of
these 22 tests in ILAP. We achieved a correlation
of r = .95 across items, which is in line with
previous studies employing this approach (Isbell
et al., 2023). Figure 4 shows the correlation of
manual and automatic scores. The x-axis shows

Figure 3: Interface for scoring responses on the test
level

the manual scores, ranging from 0-96 points and
the y-axis shows the similarity score of the target
answer and the learner answer in percentages. The
line shows the fitted linear model with 95% confi-
dence interval.
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Figure 4: Correlation of manual EIT scores and auto-
matic similarity scores. The grey area represents the
95% confidence interval of the fitted linear model.

3 Preliminary evaluation of LLMs for
ungrammatical item generation

In order to evaluate whether the changes intro-
duced by LLMs can be considered realistic errors,
i.e. errors that are plausible to expect from learn-
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ers, we conducted a preliminary evaluation for
our ungrammatical sentence generation function-
ality in ILAP. We compared GPT-3.5-turbo,
GPT-4, GPT-4o and Claude 3 Haiku on
their performance of the generation of ungram-
matical sentences. We used sixteen grammatical
versions of existing EIT items from previous tests
(Erlam, 2006; Spada et al., 2015; Godfroid and
Kim, 2021) and prompted the models by provid-
ing examples from previously used ungrammatical
EIT items and specifying the limit for the amount
of changes to be made in the sentence. Our evalu-
ation focused on quantitative as well as qualitative
aspects.

3.1 Quantitative evaluation

For the quantitative evaluation of the plausibility
of errors, there were no error-annotated learner
corpora available containing specifically the test
items we used. Therefore, we conducted our eval-
uation with the output of a mal-rule-based, gener-
ative approach based on actual learner error pat-
terns. Mal-rules are patterns to parse or generate
learner language that model specific misconcep-
tions or errors (Sleeman, 1985).

An example of extensive mal-rule usage is
the successful FeedBook system (Meurers et al.,
2019), which is an ICALL system for English as
a second language that incorporates an automatic
feedback generation approach capable of generat-
ing a wide range of possible errors based on a well-
formed target answer (Rudzewitz et al., 2018).
The feedback generation component works by it-
eratively applying mal-rules derived from a cor-
pus of actual learner errors to an input string and
thereby automatically generating a wide range of
ill-formed variants of input string along with error
diagnoses (Ziai et al., 2018). Those variants can
then be aligned with answers produced by learn-
ers, and if there is a match, the diagnosis associ-
ated with a generated variant is used to display a
scaffolding feedback message to the learner.

Since the mal-rules included in FeedBook rep-
resent generalizations of actually observed learner
errors, we employed the overlap between the out-
put of the FeedBook feedback generation and the
output of the LLMs as a criterion to assess the
plausibility of the errors generated by the LLMs.
To this end, we let the FeedBook feedback gen-
eration component generate all possible variants
based on ten experimental test items, and com-

puted the degree of overlap between the sentences
from this approach with the sentences generated
by the LLMs. Table 1 shows the results.

Model FeedBook Overlap
GPT-3.5-turbo 27.3
GPT-4 27.3
GPT-4o 81.8
Claude 3 Haiku 63.6

Table 1: Overlap (in percentages) between the output of
different LLMs with the output of the FeedBook mal-
rule-based generative approach

Since not all constructs in all sentences were
covered by the ICALL system’s generative ap-
proach due to the fact that the FeedBook was de-
signed for a specific grade, we restricted the com-
parison to those sentences where the FeedBook
generated alternative variants, which were ten out
of sixteen experimental test items. An example of
generated errors by the four LLMs and FeedBook
can be found in Table 2.

The results show that GPT-4o produced the
highest overlap with the output from the mal-rule
generation approach.

3.2 Human evaluation
We also conducted human evaluation with the sen-
tences generated by the four models. We asked
human raters to evaluate the ungrammatical sen-
tences on 5-point Likert scales on three different
dimensions, namely

• Naturalness of Error (NoE): this sentence
contains an error that is characteristic of an
error produced by language learners

• Retention of meaning: this sentence retains
the meaning of the correct sentence

• Adherence to prompt: the output adheres to
the prompt given to the LLM

Seven human evaluators, all experts in linguis-
tics with teaching experience, rated the same 16
sentences generated by each model without know-
ing which model the sentences were from, result-
ing in a total of 64 sentences per evaluator. Evalu-
ators indicated their agreement to the dimensions
above on a 5-point Likert scale ranging from 1 -
Strongly disagree to 5 - Strongly agree. Table 3
shows the results of the human evaluation 2.

2The data and analysis scripts are available under http
s://osf.io/tjn4v/
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Model Generated error sentence(s)
GPT-3.5-turbo Family names is often changed after marriage.
GPT-4 Family names are often changed after marriage it.
GPT-4o Family name are often changed after marriage.
Claude 3 Haiku Family names are often change after marriage.
FeedBook Family names are often change after marriage.

Family names often changed after marriage.
Family names often changes after marriage.
Family names is often changed after marriage.
Family names be often changed after marriage.
. . .

Table 2: Examples of LLM-generated errors and FeedBook generated error variants on the input sentence “Family
names are often changed after marriage.”. Input sentence taken from Spada et al. (2015).

We performed additional statistical analyses on
the evaluation data in R. Given the small sam-
ple, we conducted Shapiro-Wilk tests to assess the
normality of the distribution for each dimension.
The Shapiro-Wilk tests showed significant devi-
ations from normality, confirming our data were
not normally distributed. Therefore, we opted
for non-parametric tests for further analysis. A
Kruskall-Wallis test showed a significant differ-
ence of means on Naturalness of errors (H(3) =
14, p = 0.002) and Retention (H(3) = 10, p =
0.02). Pairwise Mann-Whitney U comparisons
with Bonferroni corrections were conducted to de-
termine which specific models differed. The re-
sults revealed that GPT-4o significantly outper-
formed GPT-3.5-turbo on Naturalness of errors
(p = 0.01). Furthermore, GPT-4o significantly
outperformed Claude 3 Haiku on Retention (p =
0.03).

Model NoE Retention Adherence
GPT-3.5-turbo 3.41 4.42 4.55
GPT-4 3.79 4.71 4.79
GPT-4o 4.09 4.66 4.83
Claude 3 Haiku 3.88 4.38 4.71

Table 3: Mean ratings of LLM generated ungrammati-
cal sentences on three dimensions.

3.3 Results and discussion

Based on the results of the preliminary evaluation,
we decided to use GPT-4o for generating ungram-
matical variants of sentences in our system. Our
quantitative evaluation shows the high overlap be-
tween GPT-4o output and the mal-rule-based ap-
proach, suggesting that GPT-4o generates plausi-
ble learner errors. The human evaluation strength-

ened this finding, with GPT-4o achieving the high-
est ratings in naturalness of errors as well as ad-
herence (although not significantly). GPT-4 also
seemed to perform well in the human evaluation,
achieving the highest ratings in retention of mean-
ing. However, the quantitative evaluation showed
a low overlap between the mal-rule-based genera-
tive approach and the sentences generated by GPT-
4, which might be due to the ICALL system’s
limited scope in producing more advanced learner
errors, since it only covers specific grammatical
constructs. For example, the sentence “Birthday
cards have been emailed since hundreds of years.”,
with the same error being generated by both GPT-
4 and GPT-3.5-turbo, had no matching variant in
the FeedBook output, but was rated plausibly by
humans. This is possibly due to the since/for con-
struct not being included in the ICALL system.

It is also noteworthy that out of all dimensions,
all models score lowest on the NoE dimension,
meaning that the errors generated by the models
were not rated as highly natural or being highly
characteristic of language learners by the human
evaluators. This observation could indicate that
commercial LLMs might not excel at generat-
ing mal-formed language, but rather have been
demonstrated to be highly effective for grammati-
cal error correction (e.g. Katinskaia and Yangar-
ber (2024)). Better results for error generation
could be achieved with a model fine-tuned for this
specific task (Bryant et al., 2023).

4 Limitations

There are some limitations to our system. First,
the small amount of validation data demands cau-
tiousness when making any claims about the effec-
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tiveness of ILAP or our scoring functionality. For
this reason, we are striving for wider deployment
of the platform to collect data from different and
larger groups, for example in schools or learning
environments. Secondly, questions about the ef-
fect of the use of technology in the creation of the
EIT items remain open. In the future, we plan to
investigate to what extent technology can be used
in creating language proficiency test items and the
effect on test validity. Thirdly, there currently is
a lack of test types in ILAP. We are working on
implementing more test types, which would make
the platform more versatile and adaptable to more
use cases.

Additionally, the system could provide even
more support in the item creation process, for in-
stance an assessment of an item’s difficulty. This
functionality is currently not integrated into the
platform. Arguably, this would make it easier to
create EIT items of varying difficulty. Future re-
search could focus on the automatic item difficulty
prediction of EIT items, where important progress
has been made in the context of computer-adaptive
testing (Settles et al., 2020).

As discussed in Section 3.3, we conducted a
novel but preliminary evaluation for assessing the
output of LLMs for error generation in both a
quantitative and qualitative way. Our quantitative
approach for evaluation is arguably not without
flaws and might benefit from including a larger
set of data as well as more diverse resources and
approaches, such as an error-annotated corpus, in
order to evaluate the generation of ungrammatical
sentences. This would also enable further research
to go beyond the scope of EIT items.

5 Conclusion and future work

We presented a system for automatic language as-
sessment as well as data collection and computer-
assisted scoring. We included a pipeline for
elicited imitation tests, which can be used for
both research and education. Furthermore, we
described our preliminary evaluation of the inte-
grated scoring functionality and presented an ap-
proach for the evaluation of LLMs for generat-
ing ungrammatical sentences. To the best of our
knowledge, this type of evaluation has not been
performed before. With the integration of the
EIT we have made an important first step in en-
abling automatic language assessment and stan-
dardizing proficiency tests in SLA research use-

ful for teachers, researchers and test creators. The
benefit of such a system can be of importance to
other domains, such as ICALL. As Ruiz et al.
(2023) stated, not all ICALL systems currently of-
fer a built-in functionality for collecting test re-
sults for SLA research, leading the authors to em-
phasize the need for reusable modules. Since
ILAP can potentially be integrated into other sys-
tems, it can be used to simplify the process of test-
ing for ICALL systems.

In the future, we will expand the platform with
a teacher dashboard view and implement more
test types to make the system more relevant for
usage in schools. Currently, we have started the
deployment of the system for studies, including
a study to test the effects of automatic speech
synthesis on test validity and other studies on
factors (e.g., speech rate) that might affect test
performance and scoring, and, consequently, the
reliability of EITs. As for our ungrammatical
item generation analysis, we plan to build on and
extend this analysis by increasing the sample size
for the analysis to cover more types of learner
errors. Furthermore, we intend to error-annotate
the output of the LLMs according to annotation
criteria for learner corpora in order to be able
to compare the frequency of the generated error
types with the frequency of the error type in
learner corpora and use this information as an ad-
ditional criterion for the plausibility of the errors
and quality of the LLM output. Additionally, we
plan to explore the effects of fine-tuning a large
language model for this task specifically based on
error-annotated learner corpora.

The ILAP system is currently available at
https://ilap.kibi.group.
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Appendix A

A.1 Test creation process

Figure 5: User interface to create a new test

Figure 6: Add test page with the test type Elicited Imi-
tation

Figure 7: Test component management, where instruc-
tions, items and settings can be edited and added
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A.2 Instructions

Figure 8: Interface for adding instruction pages for
tests

A.3 Settings

Figure 9: Interface for adding test settings

A.4 Item-level scoring

Figure 10: Interface to score responses to individual
items
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Abstract

In this paper, we investigate the question of
how much domain adaptation is needed for the
task of automatic essay assessment by freezing
layers in BERT models. We test our methodol-
ogy on three different graded language corpora
(English, French and Swedish) and find that
partially fine-tuning base models improves per-
formance over fully fine-tuning base models,
although the number of layers to freeze dif-
fers by language. We also look at the effect of
freezing layers on different grades in the cor-
pora and find that different layers are important
for different grade levels. Finally, our results
represent a new state-of-the-art in automatic es-
say classification for the three languages under
investigation.

1 Introduction

Automated essay scoring (AES) is the “process of
evaluating and scoring written prose via computer
programs" (Shermis and Burstein, 2003). Even
though the implied use of computers nowadays
might suggest so, AES is not a recent phenomenon.
Ellis Batten Page, also known as “the father of
AES" (Wresch, 1993), started to develop his ideas
in the 60’s (Page, 1966; Page and Paulus, 1968) and
implemented a rather sophisticated program to ana-
lyze and grade student essays. Even though work
on AES started around 55 years ago, it is still an ac-
tive area of research to this day (e.g. Beigman Kle-
banov and Madnani, 2020; Wilkens et al., 2023;
Lagutina et al., 2023).

When dealing with pretrained language mod-
els, two of the most common approaches are to
fine-tune the whole model or to just train any ex-
tra classification layers that have been added. De-
spite that, there have been studies that show that
partly fine-tuning the models allows for better do-
main adaptation by maintaining part of the original
knowledge of the model while learning domain-
specific features at the same time (Zhu et al., 2021).

The reason for this is that different layers of neural
models encode different kinds of features, with the
first few encoding lower-level features and the later
ones encoding higher-level features.

In this paper we aim to determine how much
domain adaptation is required for AES. We limit
our experiments to BERT models for a couple of
reasons. There has been a lot of studies focusing on
which layers of these models encode which aspects
of linguistic knowledge (e.g. Clark et al., 2019;
Jawahar et al., 2019). On the other hand, the more
recent generative decoder-only models tend to vary
a lot from each other, which can complicate both
comparison among themselves and between differ-
ent languages. Finally, the performance of these
decoder-only models in terms of second-language
assessment has had mixed results so far (Naismith
et al., 2023; Yancey et al., 2023), which in turn
means that BERT-based models are still an impor-
tant part of AES for second language assessment.

Thus we analyze which layers of a pretrained
BERT model are important for the task at hand and
which ones should be fine-tuned. We assume that
the knowledge embedded in the frozen layers (se-
mantics, syntax, grammaticality, etc.) is important
for the model to properly determine the proficiency
level an essay has been annotated as. We further an-
alyze whether this varies depending on the CEFR
level of the essays. That is, we want to determine
whether the same encoded knowledge of the lan-
guage model is equally important for all levels.

We work with the CEFR1 framework (COE,
2001). It is used to evaluate foreign/second lan-
guage learning by assigning one of the six levels
(A1, A2, B1, B2, C1, C2) that determine the profi-
ciency of second language (L2) speakers. Further-
more, we work with three different languages: En-
glish, French and Swedish. While CEFR-labeled

1Common European Framework of Reference for Lan-
guages
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data can be scarce, there is a growing societal need
for automated grading in CEFR terms. An example
of this is how different governments are either plan-
ning to require a language test for applicants for
residence and citizenship or already do so (Code
civil français, 2011; Swedish Government, 2021,
2023; U.S. Citizenship and Immigration Services,
2023; Government of Canada, 2024). Because of
this, we expect that the need for support in AES
will drastically increase in the near future, both
as a way to support self-studying learners and for
high-stakes essay grading.

The rest of our paper is organized as follows.
Section 2 introduces the context for our experiment
in terms of previous research. In Section 3.2 we
describe our approach, as well as the considera-
tions we have taken into account while designing it.
Section 3.1 describes the datasets used for our ex-
periments, while Section 3.3 describes the state-of-
the-art we compare our models to. We present our
results as well as a discussion of these in Section
4. Finally, we present our conclusions in Section 5,
as well as possible directions in which to expand
our work.

2 Related Work

The state-of-the-art in AES has long been dom-
inated by systems using feature engineering and
linguistic variables that measure textual quality,
such as number of words (Shermis and Burstein,
2003; Parslow, 2015), number of grammatical er-
rors (Yannakoudakis et al., 2018; Ballier et al.,
2019), type-token ratio (Vajjala and Lõo, 2014;
Lee and Hasebe, 2020), or lexical density (Hancke,
2013; Hancke and Meurers, 2013; Pilán and Volo-
dina, 2018). It is only recently that deep learning
approaches have begun to set new standards (Hus-
sein et al., 2019; Bestgen, 2020).

Alikaniotis et al. (2016) and Taghipour and Ng
(2016) were the first ones to use deep learning for
AES. Even though they used an LSTM2 architec-
ture (Hochreiter and Schmidhuber, 1997), other
network architectures such as Convolutional Neu-
ral Networks (CNN) and Recurrent Convolutional
Neural Networks (RCNN) have also been success-
fully applied in the past (Dong and Zhang, 2016;
Dong et al., 2017; Dasgupta et al., 2018; Shin and
Gierl, 2021).

Recent experiments using GPT for CEFR classi-
fication have found that GPT-4 (OpenAI, 2024) can

2Long Short-Term Memory

reach performances approaching those of sophis-
ticated automated scoring systems (Banno et al.,
2024), although agreement with human annotators
remained inconclusive (Yancey et al., 2023). Large
Language Models have also been used for other
tasks related to computational approaches to lan-
guage learning, such as learner-adapted definition
generation (Yuan et al., 2022), learner-centered
text simplification (Baez and Saggion, 2023), or
proficiency-adapted text generation (Bezirhan and
von Davier, 2023).

As with most fields in NLP, most of the work in
this field has been done in English (Søgaard, 2022).
A consequence of that is that other languages are
often not paid enough attention to.

For instance, very little work has been done
on essay classification in Swedish, some exam-
ples being Östling et al. (2013) on grading upper-
secondary essays written by native speakers, Pilán
(2018) on CEFR classification of L2 learner essays,
Lilja (2018) on assigning grades to high-school
essays, and Ruan (2020) on assigning grades to
essays written as a part of national exams. Some
of these works use the Uppsala Corpus of Student
Writings (Megyesi et al., 2016). This corpus mainly
consists of native speaker upper secondary level
writings but also contains some texts, around 8%,
written by learners of Swedish as a second lan-
guage. However, it is not aligned with the CEFR
scale.

Both Lilja (2018) and Ruan (2020) use deep
learning to classify these essays by assigned grades.
Lilja (2018) uses an LSTM and explores whether
pre-trained embeddings are better or not than a fine-
tuned version or randomly initialized ones. They
conclude that pre-trained fine-tuned embeddings
produce the best results, but due to high standard
deviations, they are not significantly different from
randomly initialized embeddings.

Ruan (2020), explores the use of hand-crafted
features in combination with deep neural networks.
The feature categories are virtually identical to
those in Pilán (2018), namely count-based, mor-
phological, syntactic and lexical. Semantic fea-
tures were not included. The chosen architecture
is a recurrent neural network. Using each feature
group separately, they find that all feature groups
perform similarly, although each feature group sep-
arately performs better than using all features simul-
taneously. Overall, they find that a feature-based
system outperforms the word embeddings based
system by Lilja (2018).
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A similar situation presents itself for French,
with a limited number of studies on essay classi-
fication. For non-L2 French, Lemaire and Dessus
(2001) use Latent Semantic Analysis to grade a lim-
ited number of student essays (31), and Zaghouani
(2002) presents a conceptual design for grading
essays using a multi-agent system. Parslow (2015)
presents a preliminary study on automatic grad-
ing of L2 French essays written by Swedish native
speakers using feature-based methods and Naive
Bayes classifiers. Finally, Ranković et al. (2020)
use CamemBERT to extract word-level features
and a deep recurrent network to grade essays writ-
ten by French learners in German-speaking parts
of Switzerland.

Mayfield and Black (2020) argue that the move
to deep neural models for AES comes with consid-
erable computational costs while producing perfor-
mance comparable to the classical models. Their
conclusions indicate, however, that there is a fur-
ther need to explore deep learning approaches.

3 Materials and Methods

Second language assessment is a high-stakes situ-
ation, given that its outcome can affect the educa-
tional and professional opportunities that a student
has available to them. While deep learning mod-
els tend to out-perform feature-based models, they
tend to be obscure, with little to no explanation
both of where specific predictions come from and
which kind of features they focus on (Guidotti et al.,
2018).

In this section, we first introduce the datasets
we used in Section 3.1, followed by our approach
to obtain a more explainable BERT (Devlin et al.,
2019) model in Section 3.2. Finally, we talk about
the state-of-the-art we compare our approach to in
Section 3.3.

3.1 Datasets

3.1.1 English Dataset
We are using the EFCamDat corpus (Geertzen et al.,
2013) for experiments on English. The corpus con-
sists of essays collected from the EF Education
First online platform. The essays were assigned a
grade on a 16-level scale with equivalents to some
of the major standards in L2 language learning, in-
cluding CEFR levels. However, it should be noted
that the grades were assigned according to the level
the students reached in the platform as opposed to
direct evaluation of the essays themselves.

Level # essays # train # valid # test

A1 192K 2,299 767 767
A2 130K 1,555 518 518
B1 62K 738 246 246
B2 18K 218 73 73
C1 5K 62 20 20
C2 0 0 0 0

Total 406K 4,872 1,624 1,624

Table 1: Number of essays in the English L2 learner
corpus (EFCamDat) for each of the CEFR levels. The
letter K denotes that the numbers we are dealing are in
the thousands. Note that there are no C2 level essays
in the corpus. We randomly sample a small percentage
of the corpus for faster training while keeping the label
distributions the same.

The corpus contains over 400,000 essays from
CEFR levels ranging from A1 to C1, as seen in
Table 1. The students are placed into one of the
platform’s 16 levels either through a placement test
or by progressing through the course. Each level
has eight possible writing tasks, which gives a wide
array of possible topics for each CEFR level. Given
that we are training the models several times, we
sampled 2% of the data to keep the use of com-
putational resources within a reasonable margin.
The essays were randomly sampled and stratified
by CEFR level, to maintain the proportion of each
label. Moreover, this leaves us with a dataset of a
comparable size to TCFLE-8, the French corpus
we are using.

3.1.2 French Dataset

For French, we use the recently released TCFLE-
8 corpus (Wilkens et al., 2023). This is a corpus
based on the French language certification exam
TCF (test de connaissance du français ‘French
knowledge test’) administered by the France Édu-
cation International. It is the biggest French corpus
for AES to date with over 6.5k essays and covers a
wide variety of prompts.

All essays are graded by at least 2 professional
raters and cover all six levels of the CEFR scale, as
seen in Table 2. Different data cleaning and quality
assurance steps were taken by the corpus creators
to ensure that the corpus contains representative
samples at each level.
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Level # essays # train # valid # test

A1 689 413 138 138
A2 1,375 825 275 275
B1 1,466 880 293 293
B2 1,427 856 285 285
C1 1,127 676 226 226
C2 485 0 0 0

Total 6,569 3,650 1,217 1,217

Table 2: Number of essays in the French L2 learner cor-
pus (TCFLE-8) for each of the CEFR levels. Note that
this is the only corpus of the three that we are working
with that contains C2 level essays. We have removed
the essays of this level to allow for better comparison
across languages.

Level # essays # train # valid # test

A1 59 35 12 12
A2 143 85 29 29
B1 86 52 17 17
B2 105 63 21 21
C1 96 58 19 19
C2 7 0 0 0
Missing 6 0 0 0

Total 502 293 98 98

Table 3: Number of essays in the Swedish L2 learner
corpus (Swell-Pilot) for each of the CEFR levels. Note
that there are very few essays of level C2 in the corpus
and that some are missing a level.

3.1.3 Swedish Dataset
For Swedish, we use the Swell-pilot corpus (Volo-
dina et al., 2016a; Volodina, 2024). It consists of
three subcorpora of L2 Swedish learners (see be-
low) and is annotated with CEFR levels. All CEFR
levels are well represented in the corpus, with the
exception of C2 level (advanced) essays, as seen in
Table 3. Thus we remove the C2 essays as their low
number would not be representative of the model’s
classification capabilities. Moreover, there are six
essays that lack a level which have been ignored
for the purposes of this experiment.

SpIn consists of 256 essays from a course for
refugees that had recently arrived to Sweden. The
course was introductory in nature and the essays
were part of a mid-term exam.

SW1203 consists of 141 essays from a prepara-
tory course for foreign students that intended to
study an undergraduate program in Sweden.

TISUS consists of 105 essays from the written
part of the Test In Swedish for University Studies
(TISUS)3. The essays are argumentative, the topic
being “stress".

3.2 Methodology
In order to classify the essays, we use language-
specific versions of BERT. For the experiments
themselves, we explore how freezing different lay-
ers of BERT during training affects its performance.
We freeze the layers in a bottom-up manner, given
that lower layers learn more basic linguistic fea-
tures such as surface-level features, while higher
layers learn more task-specific features, such as se-
mantic and contextual features (Clark et al., 2019;
Jawahar et al., 2019). Thus, we compare differ-
ent configurations ranging from a completely fine-
tuned model to one where only the classification
layer was trained.

For the classification task itself, we truncate the
essays to fit the maximum token length of BERT
and feed them to the model.4 We then take the top
layer representation of the [CLS] token and feed
it to a linear layer for classification. Taking the
output of the same layer all the time allows us to
compare the differences between how the models
are learning depending on how many layers we
have frozen.

In terms of hyperparameters, we explore using
different learning rates5 and find that the best per-
forming on average is 5e-5. We also run the experi-
ments for 10 epochs, loading the best performing
checkpoint at the end.

Given that none of the corpora used has standard
train/test splits, we run our experiments five times,
generating new train/validation/test splits with a
60/20/20 distribution each run to account for vari-
ance. We maintain the proportions of the different
CEFR levels across the splits. The number of each
label per level can be seen in Tables 1, 2, and 3.

As for our models, we use specific versions of
BERT according to the language.

For English, we use the original version of
BERT6 (Devlin et al., 2019). It was trained us-
ing BooksCorpus (Zhu et al., 2015) and an English
Wikipedia dump. Note that we are using the cased

3https://www.su.se/tisus/english/
4Note that we are not using Longformer as it is not avail-

able in all of the languages we are working with.
5We experimented with learning rates of 1e-4, 5e-4, 1e-5,

5e-5, 1e-6, 5e-6, and 1e-7.
6https://huggingface.co/google-bert/bert-bas

e-cased
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version of BERT as the Swedish model has no un-
cased version available.

We use CamemBERT7 (Martin et al., 2020) for
French, which is based on RoBERTa (Liu et al.,
2019) rather than on vanilla BERT. It was trained
using the French section of the OSCAR corpus
(Suárez et al., 2019), a language annotated version
of CommonCrawl.8

The final model we use is Swedish BERT9

(Malmsten et al., 2020), a Swedish version of
BERT implemented by KBLab at theNational Li-
brary of Sweden10. It was trained on a combination
of corpora containing newspapers, social media,
official reports from the Swedish government, legal
documents, and Wikipedia in Swedish.

3.3 State-of-the-art

In this section we talk about the current state-of-
the-art in AES within the context of the datasets
we are using. These results are summarized in the
top row of Table 4.

3.3.1 English
The most similar work to our own for English is
by Schmalz and Brutti (2021) who use BERT for
the classification of the EFCamDat data. They also
work on subsets of the whole data (10k, 50k, 100k)
due to space and computational constraints with
using the whole corpus. We report their best results
as state-of-the-art.11

3.3.2 French
Wilkens et al. (2023) perform a series of essay
classification experiments on the TCFLE-8 corpus
in order to establish some first baselines: (1) a
transformer-based approach using CamemBERT,
(2) a feature-based approach using XGBoost, and
(3) a simple logistic regression. For the feature-
based algorithm in (2) and (3) they use a set of 119
features – distilled from over 5k features – from
nine subcategories: errors, graded lexicons, lexical
diversity, lexical frequency, lexical sophistication,
orthographic neighbors, morphology, tenses, likeli-
hood, and word length. They find the transformer-

7https://huggingface.co/almanach/camembert-b
ase

8https://commoncrawl.org/about/
9https://huggingface.co/KB/bert-base-swedish

-cased
10https://www.kb.se/in-english/research-colla

boration/kblab.html
11It would arguably be fairer to compare against the results

they obtained with the smallest subsample, approaching our
own sample size.

based model to perform best, followed by XGBoost.
For brevity, we will only report results from their
best-performing model (i.e., the transformer-based
model) as state-of-the-art.

3.3.3 Swedish
For Swedish, we compare our model with a feature-
based approach to be able to draw a comparison
between performance and explainability. Pilán et al.
(2016) and Volodina et al. (2016b) use a feature
set of about 60 features divided into five subcate-
gories: length-based, lexical, morphological, syn-
tactic, and semantic features. They use an SVM to
classify the data. Both studies found that lexical
features perform the best.

Pilán and Volodina (2018) specifically investi-
gate the importance of features for the classification
of (1) sentences, (2) reading texts from textbooks,
and (3) learner essays from SweLL-pilot. Using
analysis of variance (ANOVA), they determine the
most predictive features for each of the three sub-
genres of text. In general, this study corroborates
findings from Crossley and McNamara (2011) for
L2 English in that lexical diversity and lexical fre-
quency are strong predictors in both studies, and
Vajjala and Lõo (2014) who also found verb vari-
ation and lexical variation to be strong predictors
for L2 Estonian.

3.4 Evaluation
We evaluate our system both in terms of accuracy
and of “adjacent accuracy". The idea behind ad-
jacent accuracy is that an A1 essay misclassified
as A2 is a smaller mistake as opposed to it being
misclassified as a B2 essay.

In more formal terms, we say that a prediction
is correct in terms of adjacent accuracy if: (1) our
classes are ordinal and (2) the prediction is either
the correct class or the immediate predecessor or
successor of it.

Moreover, we use F1 score calculated using both
usual and adjacent accuracy. We report both macro
and weighted F1 scores as they aggregate the F1
scores for the individual classes assuming either
that the classes are equally important (for macro
averaging) or that the number of examples for each
class matter (for weighted averaging).

4 Results and Discussion

4.1 Performance Across Languages
In this section we present the results of our exper-
iments, noting the performance across languages
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Layers Frozen English French Swedish

State-of-the-art 0.974 0.56 0.23

None 0.975 ± 0.000 0.555 ± 0.003 0.722 ± 0.018
All layers 0.319 ± 0.000 0.443 ± 0.005 0.188 ± 0.001

Embedding Layer 0.971 ± 0.000 0.526 ± 0.005 0.727 ± 0.008
1 Encoder Layer 0.974 ± 0.000 0.517 ± 0.011 0.731 ± 0.019
1 and 2 0.974 ± 0.000 0.524 ± 0.010 0.744 ± 0.011
1 to 3 0.974 ± 0.000 0.538 ± 0.002 0.718 ± 0.006
1 to 4 0.977 ± 0.000 0.529 ± 0.011 0.720 ± 0.003
1 to 5 0.972 ± 0.000 0.537 ± 0.008 0.725 ± 0.010
1 to 6 0.966 ± 0.000 0.532 ± 0.017 0.705 ± 0.006
1 to 7 0.967 ± 0.000 0.542 ± 0.018 0.671 ± 0.009
1 to 8 0.962 ± 0.000 0.548 ± 0.006 0.664 ± 0.020
1 to 9 0.957 ± 0.000 0.552 ± 0.004 0.612 ± 0.011
1 to 10 0.946 ± 0.000 0.564 ± 0.004 0.596 ± 0.013
1 to 11 0.919 ± 0.000 0.572 ± 0.001 0.541 ± 0.004

Table 4: Weighted F1 scores for the different languages. Even though the number of layers to freeze to obtain the
best-performing model varies across languages, the best model is always partially fine-tuned.

and CEFR levels. More detailed tables and results
for each language can be found in Appendix B for
the metrics based on accuracy and in Appendix C
for those based on adjacent accuracy. Table 4 com-
pares the weighted F1 scores among languages.

First of all we can notice that all BERT models
that were even partially fine-tuned performed better
than the fully frozen model. That is, fine-tuning
even one layer led to large improvements in the
performance.

Even though the best performing model was al-
ways partially fine-tuned, which layers should be
frozen varied depending on the language. For in-
stance, for English, the only model that performed
better than the fully fine-tuned one was the one
where we froze all layers up to the fourth encoder
layer, indicating a reliance on surface-level features
for classification. Meanwhile, the French model
showed a preference towards fine-tuning just the
last few encoder layers, indicating that a broad
range of linguistic features may be necessary to
accurately classify the essays. Finally, the Swedish
model worked the best when few of the encoder
layers were frozen, which again points to the impor-
tance of surface-level features for AES in Swedish.

Based on this, we can assume that maintaining
basic knowledge of the language within the model
is an important part of automated essay grading.
This sounds reasonable, given that second language

learners tend to demonstrate an imperfect usage
of the language. Moreover, we would prefer not
to have this usage of the language overwrite the
knowledge of the model.

Something notable is that when the model mis-
classified an essay, it usually assigned that essay to
one of the adjacent levels. Even though the CEFR
levels are ordinal to us humans, this information
was not provided to the model at any point during
training. This points to the model learning how
to identify the level of the essay according to the
linguistic characteristics, as students from adjacent
levels are more likely to create similar texts than
those for levels that are farther apart.

4.2 Performance Across CEFR Levels
Figures 1, 2, and 3 show how the different levels
react to fine-tuning different layers of the models.
We have cut-off the values that are below a certain
threshold for each of the plots as they do not help us
identify which layers are important for that specific
class. Nevertheless, the full figures can be found in
Appendix A.

For French and for Swedish we notice that the
levels where the model performs the best are those
that are closer to the edges of the CEFR scale, re-
gardless of the language. This points to these levels
being easier to classify as they are the most likely
to be different from the other essays. On the other
hand, levels B1 and B2 are the ones that have lower
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Figure 1: Performance per CEFR level when freezing
different layers of BERT. Note that the performance
tends to drop as the levels increase.

F1 scores. This might be due to them being more
similar to their adjacent levels and thus harder to
properly identify.

In more language specific notes, we see that the
different levels tend to follow the same trend as the
overall performance of each model.

We begin by looking at how the English BERT
behaves across levels in Figure 1. We can note that
the performance is inversely correlated to the level.
That is, lower levels get higher F1 scores, while
higher levels get lower F1 scores. This might be
due to the prompts given to the students. For exam-
ple, A1 essays have an almost perfect classification.
However, most of them begin with a salutation (hi,
hello, etc.) and address someone called Anna. This
could in turn lead to leakage, which would explain
the high performance seen in Table 4 compared to
French and Swedish. Moreover, the levels are in-
ferred from the course level, which Muñoz Sánchez
et al. (2024b) argue is not necessarily a good proxy
for CEFR levels. As for the individual levels, we
notice that the general trend is for their accuracy to
drop the more layers we freeze. Even though there
are some layers that have either higher or lower
perplexity, they do not seem to follow a pattern.

When looking at the French model in Figure
2 we notice that most of the levels have a slight
increase in their performance as we approach the
latter layers. However, different levels behave dif-
ferently. For instance, the performance for level C1
is mostly stable with a very slight decrease when
freezing just the first few layers and a very slight
increase when fine-tuning just the last few layers.

Figure 2: Performance per CEFR level when freezing
different layers of CamemBERT. Note that even though
all levels perform differently, most of them have a slight
uptick in performance when we finetune only the last
few encoder layers.

Meanwhile, level A1 has its highest performance
when fine-tuning all of the model and another in-
crease when freezing layers up to the ninth or tenth
encoder layers, which points to the importance of
a broad range of features. With levels A2, B1, and
B2 we see a similar pattern: fine-tuning the whole
model leads to higher performance but fine-tuning
just the final encoder layer leads to the highest
performance for these levels. Thus, we can as-
sume that low-, mid- and high-level features play
an important role in French AES. Even though the
performance of our best model is similar to the
one reported by Wilkens et al. (2023), we still see
an increase in performance when freezing layers
compared to fully fine-tuning the base model.

Finally, we take a look at Swedish BERT in Fig-
ure 3. Here we notice that there are two humps in
the performance for levels A1 and A2. The first
is when freezing just the first few layers and the
second one is when freezing up to the first four or
five encoder layers. This points to the importance
of lexical and syntactic features. A similar pattern
can be observed for level B1, albeit in a more er-
ratic manner. For levels B2 and C1 we notice that
freezing the first two decoder layers leads to the
highest performance, pointing to the importance of
lexical features.

5 Conclusions and Future Work

In this study we analyzed different fine-tuning
strategies for AES using BERT-based models.
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Figure 3: Performance per CEFR level when freezing
different layers of Swedish BERT. Note that even though
all levels perform differently, most of them have a sharp
drop in performance when we finetune only the last few
encoder layers.

Even though there was no unified pattern across
languages on which layers are crucial, we show that
the best-performing modes are ones that have gone
through domain adaptation by partial fine-tuning.
We also show that even though the importance of
layers when taking into account the performance
on each individual class differs, it tends to closely
follow that of the whole model.

There are several directions in which our work
can be expanded upon. The most immediate one
would be to expand the languages used, as this
would allow to identify if there are patterns depend-
ing on language families. On a similar note, we
would be interested in seeing the effects of the L1
of a student on which layers and/or features are
more important for the assessment.

Another important follow-up of our work would
be to determine whether freezing specific layers
leads to more fair systems. The idea behind this
would be that a fair model should focus on the
knowledge and skills of the students as opposed to
spurious correlations such as (indirectly) using de-
mographic data for classification. Human graders
do tend to show slight biases based on these char-
acteristics (Aldrin, 2017) and study on how deep
learning models deal with these has been limited
to perceived ethnicity of names (Muñoz Sánchez
et al., 2024a).

Finally, we consider that it is important to do
a deeper analysis both of the terms appearing in
the essays and of the kinds of prompts given to

the students. As we mentioned, almost all of the
essays in the A1 level in the English dataset include
salutations as their first word. This is because the
prompts for this level ask the students to greet or to
introduce themselves to someone in specific. This
can lead to a dataset in which it is not easy to iden-
tify whether our model is behaving as we expect or
if it is looking as spurious correlations.

We consider that this work is an important step
towards understanding which features are impor-
tant when using transformer-based models for AES.
This will in turn help create better and more inter-
pretable models for this task, as well as will con-
tribute to their fairness.

Limitations

The present work only reports on works for the au-
tomatic assessment of written language. It should
be mentioned that there is a substantial body of
work done on automatic assessment of speech as
well. Speech has its own specificities, for example
fluency. Fluency is the rate at which one speaks,
as operationalized in the Complexity, Accuracy,
Fluency (CAF) framework (Skehan et al., 1998).

On top of that, the datasets and the approach we
use in this paper aggregate several characteristics
such as the grammar, vocabulary, relevance, among
others into a single label for the whole essay. Nai-
smith et al. (2023) note that this can lead to issues
when automatically assigning a level to the essay,
as some of these characteristics are harder to cap-
ture computationally, such as discourse coherence.

Another thing to note is that the models we
used were originally trained using vastly differ-
ent amounts of data. This could lead to differences
in how they model language. For example, the
models performed extremely well for the English
dataset, while the performance was lower for both
the French and the Swedish datasets. We recom-
mend further analysis and cross-examination to
ensure that none of these datasets were included in
the training data for any of these models. On top
of that, the French model is based on RoBERTa
not on BERT, which might affect the results. To
the best of out knowledge, CamemBERT is the
most commonly used model derived from BERT in
French.

Ethics Statement

It is important to note that our model should not
be used as a substitute for expert human graders.
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As noted during the results, not even our model
achieves perfect accuracy, which could impact the
lives of students. Thus, we suggest always keeping
a human-in-the-loop approach with this kind of
technology.
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Figure 4: Performance per CEFR level when freezing
different layers of the English model. Note that level A1
is the best performing one, while C1 is the worst.

A Performance Depending on the CEFR
Level

In this appendix we present the figures for the F1
scores for the different languages. Figures 4, 5, and
6 show the effect of different degrees of fine-tuning
of the BERT models across CEFR level in English,
French, and Swedish, respectively.

B Detailed Results per Language

In this appendix we present tables with the usual
metrics for each language. The ones based on adja-
cent accuracy are in Appendix C. Thus, Tables 5, 6,
and 7 show the performance of different degrees of
fine-tuning of the BERT models in English, French,
and Swedish, respectively.

C Adjacent Metrics per Language

In this appendix we present tables with the met-
rics calculated using adjacent accuracy for each
language. The ones based on standard accuracy are
in Appendix B. Thus, Tables 8, 9, and 10 show the
performance of different degrees of fine-tuning of
the BERT models in English, French, and Swedish,
respectively. Note that most of the experiments
achieve very high results using these metrics.

Figure 5: Performance per CEFR level when freezing
different layers of the French model. Note that level C1
is the best performing one in general, followed by A1.

Figure 6: Performance per CEFR level when freezing
different layers of the Swedish model. Note that levels
A2 and C1 are the best performing ones in general,
followed by A1.
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Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Schmalz and
Brutti, 2021)

0.974 n/a n/a

None 0.975 ± 0.000 0.923 ± 0.000 0.975 ± 0.000
All layers 0.475 ± 0.000 0.137 ± 0.000 0.319 ± 0.000

Embedding Layer 0.972 ± 0.000 0.914 ± 0.000 0.971 ± 0.000
1 Encoder Layer 0.974 ± 0.000 0.914 ± 0.000 0.974 ± 0.000
1 and 2 0.974 ± 0.000 0.922 ± 0.000 0.974 ± 0.000
1 to 3 0.975 ± 0.000 0.866 ± 0.000 0.974 ± 0.000
1 to 4 0.977 ± 0.000 0.911 ± 0.000 0.977 ± 0.000
1 to 5 0.973 ± 0.000 0.884 ± 0.000 0.972 ± 0.000
1 to 6 0.969 ± 0.000 0.838 ± 0.000 0.966 ± 0.000
1 to 7 0.969 ± 0.000 0.852 ± 0.000 0.967 ± 0.000
1 to 8 0.964 ± 0.000 0.820 ± 0.000 0.962 ± 0.000
1 to 9 0.962 ± 0.000 0.749 ± 0.000 0.957 ± 0.000
1 to 10 0.952 ± 0.000 0.737 ± 0.000 0.946 ± 0.000
1 to 11 0.924 ± 0.000 0.699 ± 0.000 0.919 ± 0.000

Table 5: Results of the various setups of English BERT model on the validation set using accuracy and macro and
weighted F1. Note that the only result that outperforms a fully fine-tuned model was when freezing up to the fourth
encoder layer. On top of that, the confidence interval was low enough for it to be considered practically zero.

Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Wilkens
et al., 2023)

0.57 n/a 0.56

None 0.560 ± 0.004 0.571 ± 0.003 0.555 ± 0.003
All layers 0.473 ± 0.005 0.402 ± 0.006 0.443 ± 0.005

Embedding Layer 0.533 ± 0.006 0.543 ± 0.004 0.526 ± 0.005
1 Encoder Layer 0.525 ± 0.011 0.534 ± 0.011 0.517 ± 0.011
1 and 2 0.533 ± 0.010 0.541 ± 0.012 0.524 ± 0.010
1 to 3 0.545 ± 0.003 0.553 ± 0.003 0.538 ± 0.002
1 to 4 0.538 ± 0.011 0.542 ± 0.014 0.529 ± 0.011
1 to 5 0.546 ± 0.008 0.549 ± 0.011 0.537 ± 0.008
1 to 6 0.542 ± 0.017 0.547 ± 0.020 0.532 ± 0.017
1 to 7 0.552 ± 0.018 0.557 ± 0.020 0.542 ± 0.018
1 to 8 0.559 ± 0.008 0.562 ± 0.010 0.548 ± 0.006
1 to 9 0.563 ± 0.006 0.567 ± 0.007 0.552 ± 0.004
1 to 10 0.573 ± 0.006 0.577 ± 0.007 0.564 ± 0.004
1 to 11 0.578 ± 0.003 0.582 ± 0.002 0.572 ± 0.001

Table 6: Results of the various setups of the French CamemBERT model on the validation set using accuracy and
macro and weighted F1. Note that the best result on average is achieved when finetuning only the last encoder layer.
More in general, finetuning the latter layers seems to lead to better results than also finetuning the earlier ones.
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Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Pilán et al.,
2016)

0.18 0.16 0.23

None 0.727 ± 0.016 0.712 ± 0.021 0.722 ± 0.018
All layers 0.324 ± 0.004 0.138 ± 0.001 0.188 ± 0.001

Embedding Layer 0.731 ± 0.008 0.716 ± 0.008 0.727 ± 0.008
1 Encoder Layer 0.735 ± 0.020 0.723 ± 0.020 0.731 ± 0.019
1 and 2 0.749 ± 0.012 0.733 ± 0.011 0.744 ± 0.011
1 to 3 0.720 ± 0.008 0.710 ± 0.005 0.718 ± 0.006
1 to 4 0.724 ± 0.000 0.712 ± 0.003 0.720 ± 0.003
1 to 5 0.729 ± 0.012 0.718 ± 0.010 0.725 ± 0.010
1 to 6 0.710 ± 0.008 0.695 ± 0.005 0.705 ± 0.006
1 to 7 0.678 ± 0.008 0.656 ± 0.011 0.671 ± 0.009
1 to 8 0.673 ± 0.020 0.642 ± 0.021 0.664 ± 0.020
1 to 9 0.641 ± 0.016 0.569 ± 0.007 0.612 ± 0.011
1 to 10 0.649 ± 0.012 0.533 ± 0.014 0.596 ± 0.013
1 to 11 0.612 ± 0.000 0.476 ± 0.005 0.541 ± 0.004

Table 7: Results of the various setups of Swedish BERT model on the validation set using accuracy and macro
and weighted F1. Note that the best result on average is achieved when finetuning the layers above the second
encoder layer. Despite that, freezing some of the intermediate layers also leads to better results than those of the
state-of-the-art.

Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Schmalz
and Brutti, 2021)

n/a n/a n/a

None 0.996 ± 0.000 0.997 ± 0.000 0.996 ± 0.000
All layers 0.799 ± 0.000 0.382 ± 0.000 0.721 ± 0.000

Embedding Layer 0.998 ± 0.000 0.998 ± 0.000 0.998 ± 0.000
1 Encoder Layer 0.996 ± 0.000 0.987 ± 0.000 0.996 ± 0.000
1 and 2 0.998 ± 0.000 0.998 ± 0.000 0.998 ± 0.000
1 to 3 0.996 ± 0.000 0.986 ± 0.000 0.996 ± 0.000
1 to 4 0.994 ± 0.000 0.984 ± 0.000 0.994 ± 0.000
1 to 5 0.994 ± 0.000 0.986 ± 0.000 0.994 ± 0.000
1 to 6 0.993 ± 0.000 0.964 ± 0.000 0.992 ± 0.000
1 to 7 0.993 ± 0.000 0.971 ± 0.000 0.993 ± 0.000
1 to 8 0.994 ± 0.000 0.988 ± 0.000 0.994 ± 0.000
1 to 9 0.995 ± 0.000 0.991 ± 0.000 0.995 ± 0.000
1 to 10 0.995 ± 0.000 0.990 ± 0.000 0.995 ± 0.000
1 to 11 0.996 ± 0.000 0.986 ± 0.000 0.996 ± 0.000

Table 8: Results of the various setups of English BERT model on the validation set using adjacent accuracy and
the macro and weighted F1 scores that derive from it. Note that the best performance is achieved when freezing
either just the embedding layer or by freezing up to the second encoder layer. This is the only model in which the
best-performing does not match when using the usual accuracy and adjacent accuracy.
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Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Wilkens
et al., 2023)

0.98 n/a n/a

None 0.976 ± 0.002 0.976 ± 0.002 0.976 ± 0.002
All layers 0.952 ± 0.005 0.955 ± 0.005 0.952 ± 0.005

Embedding Layer 0.965 ± 0.001 0.966 ± 0.001 0.964 ± 0.001
1 Encoder Layer 0.958 ± 0.004 0.959 ± 0.003 0.958 ± 0.004
1 and 2 0.960 ± 0.002 0.961 ± 0.002 0.960 ± 0.002
1 to 3 0.965 ± 0.002 0.966 ± 0.002 0.965 ± 0.002
1 to 4 0.962 ± 0.001 0.963 ± 0.001 0.962 ± 0.001
1 to 5 0.960 ± 0.003 0.962 ± 0.002 0.960 ± 0.003
1 to 6 0.957 ± 0.004 0.958 ± 0.004 0.957 ± 0.004
1 to 7 0.960 ± 0.005 0.961 ± 0.005 0.960 ± 0.005
1 to 8 0.969 ± 0.002 0.970 ± 0.002 0.969 ± 0.002
1 to 9 0.972 ± 0.002 0.972 ± 0.002 0.972 ± 0.002
1 to 10 0.976 ± 0.004 0.976 ± 0.003 0.976 ± 0.004
1 to 11 0.976 ± 0.002 0.976 ± 0.002 0.976 ± 0.002

Table 9: Results of the various setups of French CamemBERT model on the validation set using adjacent accuracy
and the macro and weighted F1 scores that derive from it. Note that the best result on average is achieved when
finetuning either the final encoder layer or the final two.

Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Pilán et al.,
2016)

0.59 0.54 0.66

None 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
All layers 0.627 ± 0.012 0.585 ± 0.016 0.544 ± 0.015

Embedding Layer 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
1 - 10 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
1 to 11 0.992 ± 0.004 0.993 ± 0.003 0.992 ± 0.004

Table 10: Results of the various setups of Swedish BERT model on the validation set using adjacent accuracy
and the macro and weighted F1 scores that derive from it. Note that the best result on average is achieved when
finetuning the layer above the third encoder one.
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Abstract

The current paper addresses the need for lan-
guage students and teachers to have access to a
large number of pedagogically sound contexts
for vocabulary acquisition and testing. We
investigate the automatic derivation of con-
texts for a vocabulary list of English for Spe-
cific Purposes (ESP). The contexts are gener-
ated by contemporary Large Language Mod-
els (namely, Mistral-7B-Instruct and Gemini
1.0 Pro) in zero-shot and few-shot settings,
or retrieved from a web-crawled repository of
domain-relevant websites. The resulting con-
texts are compared to a professionally crafted
reference corpus based on their textual char-
acteristics (length, morphosyntactic, lexico-
semantic, and discourse-related). In addition,
we annotated the automatically derived con-
texts regarding their direct applicability, com-
prehensibility, and domain relevance. The
’Gemini, zero-shot’ contexts are rated most
highly by human annotators in terms of peda-
gogical usability, while the ’Mistral, few-shot’
contexts are globally closest to the reference
based on textual characteristics.

1 Introduction

The development of a wide vocabulary is a funda-
mental component of foreign language acquisition
as it underpins the development of all other lan-
guage skills (Ardasheva et al., 2019; Gorjian et al.,
2011). To pursue this aim, learners are typically
encouraged to exploit multiple strategies, such as
studying from traditional mono- or bilingual vo-
cabulary lists or making use of technology-based
resources such as digital flashcards or vocabulary

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

learning apps (Restrepo Ramos, 2015).
Research shows that new vocabulary items are

better acquired when encountered in authentic and
informative contexts (Huckin and Coady, 1999;
Restrepo Ramos, 2015; Godwin-Jones, 2018).
However, looking for or coming up with high-
quality contexts, especially more advanced and
specialised ones, presents a serious challenge to
teaching professionals in terms of time and effort.
Therefore, the use of contemporary Natural Lan-
guage Processing (NLP) techniques to come up
with a large number of pedagogically sound con-
texts would present a significant benefit to both
teachers and learners.

Against this backdrop, this paper presents our
detailed experiments in deploying NLP methods
to generate or retrieve contexts to help the acquisi-
tion of specialised English vocabulary by French-
speaking university students reading science and
agronomy. We used two Large Language Mod-
els (LLMs) of different sizes, namely Mistral-7B-
Instruct and Gemini 1.0 Pro (in the context of both
a zero-shot and a few-shot setting) and a custom-
made web-based scientific corpus to produce con-
text sentences for a predefined vocabulary list of
100 items belonging to CEFR levels B1-B2 in
those two specialised domains. Our ultimate goal
is to use the issuing contexts in the creation of ex-
ercises of the ’gapfill’ and ’multiple-choice’ types
(see Fig. 1).

In this context, this paper addresses the three
following research questions:

1. Which derivation method (web retrieval or
LLM-generated) results in contexts for ESP
vocabulary learning that are closer to profes-
sionally crafted ones in terms of textual char-

Iglika Nikolova-Stoupak, Serge Bibauw, Amandine Dumont, Françoise Stas, Patrick Watrin and Thomas François.
Generating Contexts for ESP Vocabulary Exercises with LLMs. Proceedings of the 13th Workshop on Natural
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1. Climate models have traditionally shown considerable inaccuracy in their simulations of the Arctic. This
sh is particularly troubling nowadays, because the Arctic is the region expected to undergo the
most extreme climate changes in the future.

2. Climate models have traditionally shown considerable inaccuracy in their simulations of the Arctic. This
is particularly troubling nowadays, because the Arctic is the region expected to undergo the most

extreme climate changes in the future.

a. cluster b. shortcoming c. assertion d. insight e. endeavour

Figure 1: Examples of relevant ’gapfill’ (1) and ’multiple-choice’ (2) questions.

acteristics?

2. To what extent is it possible to guarantee
the pedagogical quality of the issued contexts
and their ready application in the classroom?

3. Is there a perceivable correlation between
the contexts’ textual characteristics and their
pedagogical qualities as evaluated by teach-
ing professionals?

The paper is organised as follows: Section 2
discusses related work regarding the pedagogical
qualities of educational texts, automatic derivation
of teaching materials, as well as their evaluation,
with a particular focus on materials for the ac-
quisition of EFL vocabulary. Section 3 explains
our methodology for assembling and evaluating
the examined corpora, and Section 4 presents the
results of our experiments. We discuss our main
findings in Section 5 and finally offer a conclusion
and future directions in Section 6.

2 Background

2.1 Pedagogical Characteristics of Texts

There exists a variety of theories and perspectives
when it comes to the definition of what makes a
text suitable for a pedagogical setting, particularly
in the context of foreign language learning. Sire-
gar and Purbani (2024) draw attention to a num-
ber of narrow grammatical features as a guaran-
tee for pedagogical suitability, such as the lack of
nominalisations and extensive modifiers and the
use of simpler patterns, such as noun + preposi-
tion or single clauses. Pedagogical qualities may
also be dependent on the specific classroom ad-
dressed. Targeting younger learners, Morais and
Neves (2010) underline the importance of inter-
disciplinarity in learning materials and tasks. Yet,
most researchers agree that the essential prerequi-
site for any input in language acquisition is that

it should be ”contextualised and comprehensible”
(Tomlinson, 2012, 156).

Much emphasis has been placed on a text’s au-
thenticity as a pedagogical quality. A text is seen
as authentic if it has been produced to serve a so-
cial purpose rather than a pedagogical one (Little
et al., 1989). As a document’s feature, authentic-
ity has, hence, commonly been equated to a lack of
adaptation, to the retaining of a text’s original goal
or context (Besse, 1981; Crossley et al., 2007).
Yet, the superiority of authentic texts is still a sub-
ject of debate. Text simplification, for instance,
has been shown to provide clear pedagogical ad-
vantages in textual characteristics (Crossley et al.,
2007) and in comprehension and vocabulary learn-
ing effects (Rets and Rogaten, 2021). The emer-
gence of generative AI also opens new debates on
what qualifies as authentic, as such applications
produce texts that are neither pedagogical nor the
product of genuine human communication.

2.2 Automatic Derivation of Teaching
Materials

The large amount of available data and the au-
tomatisation opportunities that recent technology
offers have been used extensively in the composi-
tion and presentation of teaching materials, par-
ticularly in the English as a Foreign Language
(EFL) classroom. Various types of texts are de-
rived from the web and typically adapted for use in
a specific learning setting (Litman, 2016; Meurers
et al., 2010). For instance, Heilman et al. (2008)
gather a web-based textual corpus meant for vo-
cabulary and reading practice as well as devise a
user-friendly system (REAP Search) that enables
the selection of elements from the corpus based
on a list of relevant constraints.

In the past few years, LLMs have also been
exploited in the language classroom due to their
revolutionary ability to produce language based
on personalised instructions. Expectedly, due to
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its popularity and ease of access, ChatGPT has
been receiving particular attention. A number
of experimental studies have been conducted in-
ternationally in an attempt to define and esti-
mate the chatbot’s potential to aid students in the
ESL classroom. Following interaction with Chat-
GPT, learners of various age and proficiency lev-
els are commonly discovered to have been moti-
vated by the tool; furthermore, their academic re-
sults have been objectively improved, notably in
the field of vocabulary acquisition, thanks to activ-
ities such as conversational practice and work with
automatically generated text (Young and Shishido,
2023a,b; Shaikh et al., 2023; Songsiengchai et al.,
2023; Aktay and Uzunoglu, 2023; Lou, 2023).

2.3 Evaluation of Automatically Derived
Teaching Materials

Jeon and Lee (2023) sum up LLMs’ applicability
to language education as belonging to four discrete
roles, namely interlocutor, content provider, teach-
ing assistant, and evaluator. As per their last role,
LLMs are claimed to be able to automatically eval-
uate the quality of student- and teacher-produced
materials, as well as of automatically generated
ones. Yet, such an evaluation by LLMs has not
been substantially addressed due to its qualita-
tive nature, and consequently, more traditional
NLP techniques, especially related to readability
or, otherwise, textual complexity in its different
aspects, are typically applied to estimate textual
quality and/or suitability. For instance, Loiseau
et al. (2005) proposed an NLP-based system for
pedagogical indexation where, upon insertion of a
text or extract and indication of the intended learn-
ers’ level, its difficulty is estimated, and elements
that may need to be adapted, such as complex
grammatical tenses or vocabulary items, are high-
lighted. Aiming at consistent and large-scale eval-
uation of adapted internet materials, Hussin et al.
(2010) performed a correlation analysis between
the difficulty of texts as estimated by teachers and
their readability characteristics, discovering statis-
tical significance in relation to average sentence
length, average word length and the coverage of
the first 2000 high-frequency words.

Relevant human-based counterparts of gener-
ated materials have also been utilised as ground
truth against which to evaluate them. For instance,
Yunjiu et al. (2022) specifically addressed the
evaluation of vocabulary exercises; more specif-

ically, in Chinese as a target language. They
evaluated the quality of AI-generated distractors
(non-correct answers) for multiple-choice ques-
tions based on a combination of semantic and
visual similarity to the correct answer. Results
and qualitative reflections of the test takers sug-
gested that the automatically generated distrac-
tors are more complicated, possibly for reasons in-
cluding the semantic similarity between them and
their absence from textbooks used by the students.
In a study related to the present one, Nikolova-
Stoupak et al. (2024) generated and retrieved a
number of contexts around ESP vocabulary list
items and evaluated them based on their closeness
to a gold standard of professionally crafted con-
texts in terms of a number of atomic readability-
related features. Generated teaching materials for
vocabulary acquisition have also been evaluated
quantitatively in terms of compactness or infor-
mativeness. Paddags et al. (2024) generated sen-
tences aimed at the teaching of Danish vocabulary
using a few-shot LLM setting and consequently
evaluated their quality based on their density in
terms of the number of target words (based on a
defined vocabulary list) that fit into a single sen-
tence.

3 Methods

We conducted a series of experiments in deploy-
ing NLP methods to generate and retrieve contexts
around a predefined vocabulary list of 100 items
belonging to CEFR levels B1-B2 and the domains
of general science and agronomy1. Each item is
associated with a gold standard context as hand-
picked by teaching professionals and previously
used in a classroom for testing purposes (gapfill or
multiple-choice questions). In particular, we gen-
erated contexts using two Large Language Mod-
els (LLMs) of different sizes, Mistral-7B-Instruct
and Gemini 1.0 Pro, in both a zero-shot and a few-
shot setting. In addition, we composed a corpus of
scientific articles from relevant web sources and
formulated a pipeline to extract relevant context
sentences from them.

An important part of our work was to devise
methods that guarantee that the derived contexts
are of high educational quality and are thus di-
rectly applicable in an ESP classroom setting. Via

1the items were selected based on a larger pre-selection
verified by teaching professionals; a balance between parts
of speech was sought
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hand-crafted rules, we ensured that the derived
contexts resemble the gold standard defined by
Nikolova-Stoupak et al. (2024) in terms of lin-
guistic characteristics (as represented by common
readability features). Additionally, we limited
output to the appropriate scientific domain and
CEFR level with the help of prompt engineer-
ing and classifier-based filters. The contexts is-
sued from the different derivation methods were
then manually annotated by experienced teachers
of ESP from the Catholic University of Louvain
in terms of their educational quality. Using in-
sights from this human evaluation, we classified
the contexts and, by extension, the methods be-
hind their derivation, discussing their qualities and
drawbacks and drawing conclusions about the in-
terdependence between their automatable linguis-
tic characteristics and their pedagogical qualities.

This section elaborates on the automatic deriva-
tion of the corpora (for an illustration of the pro-
cess, see Figure 2) as well as on the methods ap-
plied in their evaluation.

3.1 Retrieval of Web-Crawled Contexts

Firstly, all accessible articles from a list of the-
matic websites as defined by a team of ESP
teachers (see Appendix 1: List of Crawled Web-
sites) were retrieved through web-crawling Python
tools, such as beautifulsoup42 and newspaper3

and shaped into a database along with metadata
including the textual format, date, the source web-
page and its associated domain4. The derived text
underwent a simple cleaning pipeline, such as the
removal of non-alphanumeric symbols and non-
English text. Context sentences associated with
the predefined vocabulary list were then extracted
from the database using a pipeline of hand-crafted
rules. The articles were surveyed to determine
the occurrence of the target vocabulary items or
their alternative forms. When the search form was
mapped, consistency was sought with the item’s
domain and part of speech.

Several filters were then applied, ensuring that
the target item is present in the sentence only a
single time, that the sentence can be considered
as scientific, that its CEFR level closely matches

2Version 4.12.3; https://pypi.org/project/b
eautifulsoup4/

3Version 0.2.8; https://pypi.org/project/n
ewspaper3k/

4Among the three following domains: science, agronomy,
and technology.

the intended level, and, eventually, that its linguis-
tic characteristics5 resemble those of a set of pro-
fessionally crafted contexts sampled from the ref-
erence dataset of Nikolova-Stoupak et al. (2024).
More precisely, this proximity was measured as
Euclidean distance over the set of features and data
points of up to two standard deviations from the
values computed on the reference corpus were re-
tained6.

3.1.1 CEFR Level Classifier

It was important to guarantee that the contexts that
were retrieved closely matched the CEFR level as-
sociated with the vocabulary list items that they
were mapped with. Upon experimentation with
established and readily available tools designed
for estimation of the CEFR level of texts, such
as Textinspector7 and English CEFR Level Predic-
tor8, it was observed that these solutions do not
work well when faced with text that is a single
sentence of length. Therefore, a custom classifier
was trained to determine the extracted sentences’
CEFR levels. We built a corpus of sentences
annotated with their CEFR level by concatenat-
ing Arase et al. (2022)’s WikiAuto- and SCoRE-
based corpora, which were annotated by two expe-
rienced teaching experts9 and the sentences avail-
able through the English Profile website (Salam-
oura and Saville, 2010), which are originally taken
from the Cambridge Learner Corpus10 and ex-
emplify discrete CEFR levels with their charac-
teristics. We then used this corpus, which to-
talled 13,378 sentences, to finetune a BERT model

5The set of characteristics that we considered in this work
is: the number of words, the number of letters per word, the
number of punctuation signs, the number of noun phrases,
the percentage of non-stem words, the number of first-person
pronouns, the number of proper nouns, the number of pro-
nouns, and the number of anaphora-denoting words. Please
refer to Appendix 3: Features Used in Corpus Comparison
for details about these characteristics.

6For some features, the value was increased or reduced
based on observations. Sentence length was thus limited to
1.5 standard deviations from the reference, and the percent-
age of non-stem words was relaxed to 3 standard deviations.
When present, negative values were rounded to 0.

7https://textinspector.com/api-develop
ers/

8https://github.com/AMontgomerie/CEFR
-English-Level-Predictor

9where the two annotators’ estimations differed, we took
the higher CEFR level as it is less problematic for students to
be provided with text that is slightly below their current level

10https://www.sketchengine.eu/cambridg
e-learner-corpus/
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Figure 2: Collection procedure for the examined corpora

with a classification layer11. The derived classifier
achieved 63% of accuracy12, the majority of mis-
takes being associated with the marginal A1 and
C2 proficiency levels, which are absent from our
reference vocabulary list. When adjacent levels
were considered, the accuracy went up to 98%.
Given the qualitative nature of CEFR levels and
the lack of full agreement between the used cor-
pus annotators, candidate web-crawled sentences
were retained if they belonged to the associated
course’s level or differed from it by a single level.
Ultimately, only a small portion (around 10%) of
the candidate sentences were discarded based on
the CEFR-level filter.

3.1.2 Scientific Domain Classifier

As the web-crawled articles do not consist of
scientific text in their entirety (e.g. there may
be isolated informal sentences or even metadata
within them), a binary SVM classifier model13

was trained to label sentences that belong to a
broad scientific domain. At first, the training cor-
pus was composed of 2k scientific and 14k non-
scientific sentences (2k ’law’, 2k ’business’, 2k
’sports’, 2k ’world news’, 2k ’law’, 2k ’infor-
mal communication’, and 2k ’literature’), taken at
random from the following sources: respectively,
PubMed14 (the ’scientific’ label); the Caselaw
Access Project15; the AG News Classification
Dataset’s Business News, Sports News and World

11BERT was opted for in this task due to its strong lan-
guage understanding and generation abilities

12Arase et al. (2022)’s associated classifier reaches a
macro-F1 score of 84.5% as a result of elaborate techniques
especially aimed at the correct recognition of sentences be-
longing to the rarer and marginal CEFR levels

13the choice of model was based on experiments with a few
models that are strong in binary classification tasks

14https://pubmed.ncbi.nlm.nih.gov/
15https://case.law/docs/

News subcorpora16, Reddit’s API17, and an as-
sembled corpus of full and abridged classical liter-
ary texts as freely available online. The classifier’s
performance was then tested on a random 100-
sentence sample extracted from our web-crawled
corpus, and a bias toward complex sentences, as
well as an underrepresentation of certain scien-
tific fields, such as chemistry, were detected. In
order to improve the classifier, 1000 sentences
with a length of up to 2 standard deviations from
the reference value for the feature (as defined by
Nikolova-Stoupak et al. (2024)), which were also
manually confirmed to be scientific, were added to
the training corpus’s ’scientific’ label. The newly
derived classifier achieved 93% accuracy, and its
performance was verified against the 100 man-
ually labelled sentences and judged to act satis-
factorily as a filter. The resulting classifier was
used in the extraction of web-crawled context sen-
tences, and non-scientific sentences (which turned
out to be about one-third of the candidate sen-
tences) were disregarded.

3.2 Generation of Contexts by LLMs

Two discrete contemporary LLMs were used for
context generation: Mistral-7B-Instruct and Gem-
ini 1.0 Pro. The former is a compact model whose
performance compares to and occasionally sur-
passes that of LLaMA (Jiang et al., 2023), whilst
the latter is a 600B variety of Gemini, a model that
achieves state-of-the-art results in a number of key
NLP tasks (Team et al., 2024) and is characterised
with fast performance. For this experiment, Mis-
tral was used through the ’LM studio’ interface,
and Gemini was accessed through the Google AI
Studio developer tool, as freely available within a

16https://www.kaggle.com/datasets/aman
anandrai/ag-news-classification-dataset

17https://www.reddit.com/wiki/api/
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given quota at the time of writing. Following ex-
periments, Mistral’s temperature setting was ad-
justed to 0.8, as below this value, the output was
highly homogeneous and commonly consisted of
definitions of the target vocabulary. The experi-
mental setup featured an 11th Gen Intel Core i7
CPU with 8 cores, and TigerLake-LP GT2 inte-
grated GPU.

Both models were instructed to provide con-
text examples based on the vocabulary list’s items,
parts of speech and domains in both a zero-shot
setting and a few-shot setting. Within the latter,
five examples of paired vocabulary items of var-
ious parts of speech and corresponding reference
contexts as provided by teaching professionals
were added to the prompts. For the full prompts
utilised, please refer to Appendix 2: Prompts used
for LLM Generation.

In addition, generation for a vocabulary item
was iterated through until a number of conditions
pertaining to the output were satisfied. As with
the retrieval of web-crawled contexts, it was en-
sured that the target item was only present in the
example a single time and that the example was
of proximity to the gold standard sampled from
Nikolova-Stoupak et al. (2024) as measured with
Euclidean distance based on a selection of read-
ability features18. We confirmed that the output
was in English as well as the compatibility of the
its part of speech and the absence of metatextual
information (e.g. explanations of use) in addition
to context examples.

3.3 Human Annotation

For the purpose of annotation, each of the five
methods described above (generation with Mistral
and Gemini in a zero-shot and few-shot setting
and retrieval from a web-crawled database) was
used to generate one context for each of the 100
words in our vocabulary list. This amounted to a
total of 500 contexts, which were assigned unique
IDs before being shuffled and information about
their generation method being removed. Two ESP
teachers with substantial experience were asked
to evaluate the contexts for the following three
pedagogical features: ’ready to use’, ’comprehen-
sible’ and ’in-domain’. A ’ready to use’ con-
text was defined as being directly applicable for
classroom use and assessment purposes without
editing; ’comprehensibility’ referred to a context

18The same ones as referred to in section 3.1.

being self-explanatory and understandable if en-
countered in isolation; finally, ’in-domain’ meant
that the contexts’ field of specialisation is appro-
priate for students in the intended specialisation
(i.e. science or agronomy). A Likert scale from
1 to 5 was utilised for the annotation, 5 signify-
ing maximal possession of the quality in question.
The annotators were also invited to leave com-
ments in free text in relation to each of the eval-
uated contexts.

Initially, the annotators were given the first 100
contexts to annotate independently of each other,
following which the inter-rater agreement between
them was calculated. The ’ready to use’ and ’com-
prehensible’ categories are marked with moderate
agreement according to Cohen’s Quadratic Kappa
but demonstrate good scores for exact agreement
(respectively 65% and 87%). The ’in-domain’ cat-
egory comes with a low Cohen’s Kappa value in
combination with 97% exact agreement, a phe-
nomenon caused by the heavily skewed ratings to-
wards a maximal number of points for the cate-
gory (Pontius Jr and Millones, 2011). As a next
step, the annotators gathered to adjust the annota-
tion guidelines and agree on a gold value for the
items where their initial annotation differed. The
remaining 400 contexts were then split between
the two teachers to annotate.

3.4 Context Evaluation

The 500 contexts, as well as the 100 reference
ones, were evaluated based on readability-related
textual characteristics (see Appendix 3: Features
Used in Corpus Comparison). An analysis identi-
cal to the one defined by Nikolova-Stoupak et al.
(2024) followed. That is to say, firstly, the non-
parametric Mann-Whitney U test was used to mea-
sure the significance of the difference between the
reference corpus and contexts for each of the five
collection methods (retrieval from a web-crawled
corpus and generation by Mistral and Gemini in a
zero-shot and few-shot setting). In turn, statistical
significance was assigned to one of three levels,
corresponding to p-values of 0.001, 0.01, and 0.05.
In addition, the global distance between the refer-
ence corpus and each of the five context corpora
was determined through the use of Euclidean dis-
tance between the totality of characteristics as hav-
ing undergone min-max normalisation. The five
associated derivation methods were ranked based
on their closeness to the reference corpus. As
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an additional experiment, the examined vocabu-
lary items were divided into CEFR levels B1 (56
items) and B2 (44 items) and all textual charac-
teristics were evaluated once again in an attempt
to reveal the derivation methods’ sensitivity to the
CEFR level at hand.

The derived corpora were also ranked based on
their pedagogical qualities, as estimated by the hu-
man evaluation. For this purpose, each corpus was
given a percentage value representing the num-
ber of points received for all evaluated categories
assembled (’ready to use, ’comprehensible,’ and
’in-domain’) compared with the total number of
points possible.

Ultimately, the two rankings were compared in
an attempt to reveal a potential link between the
contexts’ linguistic and pedagogical qualities. It
was assumed that the most highly rated method in
the annotation process objectively has the highest
pedagogical value.

4 Results

4.1 Automatic Evaluation

The corpus discovered to be globally closest to
the reference one in terms of Euclidean distance
based on all examined numeric textual charac-
teristics is ’Mistral, few-shot’ (3.82), followed
by ’Gemini, few-shot’ (4.86), ’Mistral, zero-shot’
(4.99), ’Web-crawled’ (5.46) and ’Gemini, zero-
shot’ (5.65). The ’Mistral, few-shot’ model re-
mains closest when the four categories of textual
characteristics are considered separately, and the
rest of the models mostly keep their place. The
’Mistral, zero-shot’ model varies from second (for
lexico-semantic and discourse-based characteris-
tics) to fourth place (for length-based characteris-
tics). The ’Web-crawled’ corpus is closest to the
reference in relation to length-based characteris-
tics.

Table 1 shows a summary of the most relevant
results of the corpus comparison based on atomic
textual characteristics. For a comparison of all fea-
tures, please refer to Appendix 4: Detailed Results
of the Comparison between Corpora based on Tex-
tual Features.

The reference corpus is generally associated
with the highest ranges (i.e. distances between the
maximal and minimal values) as well as the high-
est standard deviation for continuous characteris-
tics. The ’Mistral, few-shot’ corpus often comes
closest to the reference in these aspects (e.g. in

relation to the number of words per sentence, the
number of noun phrases per sentence, and the per-
centage of non-stem words per sentence).

The total number of words in the ’Mistral, few-
shot’ sample is closest to the reference and the
only one larger. When length-based textual char-
acteristics19 as well as morphosyntactic character-
istics20 are considered, the ’Gemini, few-shot’ cor-
pus presents the least deviation from the reference.
In the latter category, the ’Mistral, few-shot’ cor-
pus often comes closest to the reference, such as in
terms of number of punctuation signs per sentence
and the variety in end-of-sentence punctuation.
The least statistical deviation when it comes to
lexico-semantic characteristics is associated with
the ’Mistral, zero-shot’ corpus21. The most fre-
quent words encountered in the ’Web-crawled’
corpus strike as very generic and unrelated to the
scientific domain compared to those in other cor-
pora (e.g. ’would,’ ’could,’ ’said’). Within the
’Mistral, zero-shot’ corpus, the personal pronoun
’I’ is uniquely featured among the most frequent
words when stop words are retained. Finally,
discourse-related characteristics demonstrate little
deviation from the reference, with the exception
of those related to cosine distance, where statisti-
cal significance is smallest with the ’Web-crawled’
sample. When subcorpora associated with CEFR
level B1 are considered, the ’Mistral, few-shot’
corpus demonstrates the lowest deviation from the
reference corpus (only 4 features exhibiting statis-
tical significance). In contrast, statistical signifi-
cance is present in a minimum of 7 features for
the others22. The two CEFR levels are also as-
sociated with different domains (’science’ for B1
and ’agronomy’ for B2), and this additional focus
is reflected in the most used words for some of
the corpora (e.g. the word ’scientists’ is present
for all LLM-based B1 subcorpora and the words
’crop’ and ’soil’ for the ’Gemini, zero-shot’ and
both Mistral B2 subcorpora).

4.2 Human Annotation

For a distribution of the values given to the corpora
in the annotation in relation to the three character-

19The only (highly) significant deviation is for the average
number of words per sentence.

20one significant deviation with moderate significance: the
number of punctuation signs per sentence

21one instance of statistical significance of high value, for
the number of proper nouns per sentence

22a number shared by the ’Web-crawled’, ’Mistral, zero-
shot’ and ’Gemini, few-shot corpora’
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Feature Ref. Web-
crawled

Mistral,
0-shot

Mistral,
f-shot

Gemini,
0-shot

Gemini,
f-shot

words in sample 3787 2267 2823 4091 2345 2638
words / sentence 13.33 11.11*** 11.67*** 13.73 11.17*** 11.32***
letters / word 5.2 5.37 5.57*** 5.4* 5.84*** 5.21
noun phrases / sentence 5.76 6.34* 6.08 6.29** 6.26* 5.68
non-stem words / s-ce 31.91 34.2 38.06*** 35.2** 40.09*** 33.28
punctuation signs / s-ce 1.51 0.98* 1.06** 1.29 1.09 0.97**
verbs / sentence 2.45 2.92** 2.67 2.72* 2.72* 2.47
adj. and adv. / sentence 2.77 2.91 2.51 2.69 2.95 2.5
1st-person pron. / s-ce 0.11 0.01* 0.08 0.06 0.02* 0.02*
proper nouns / sentence 0.99 0.51 0.09*** 0.32*** 0.15*** 0.23***
hapax legomena 25.69 32.33 20.61 19.3 27.25 25.05
concreteness 2.48 2.42 2.46 2.44 2.37 2.4
pronouns / sentence 0.95 0.64 0.87 0.88 0.66 0.73
anaphora words / s-ce 10.28 9.93 9.2 9.46 11.95 12.72
cos. distance btwn s-ces 0.12 0.1* 0.18*** 0.15*** 0.14*** 0.14***
Euclidean distance from ref. - 5.46 4.99 3.82 5.65 4.86

Table 1: Comparison of the corpora based on a sample of textual features. The average values of continuous
characteristics are indicated in italics, and the statistical significance of their divergence from the reference corpus
is marked with * (lowest), ** and *** (highest). The ’Mistral, few-shot’ corpus is represented in bold to denote
its highest global closeness to the reference.

istics, please refer to Appendix 5: Distribution of
Pedagogical Qualities per Corpus.

The corpus that is rated highest in the anno-
tation process is ’Gemini, zero-shot’, followed
by ’Gemini, few-shot’, ’Mistral, zero-shot’, ’Mis-
tral, few-shot’ and ’Web-crawled’ (see Table 2).
The performance gap is largest between the web-
crawled corpus (rated worst) and the second worst
corpus, ’Mistral, few-shot’, whilst the LLM-
generated corpora exhibit higher similarity to one
another. The figure in Appendix 5: Distribution
of Pedagogical Qualities per Corpus clearly shows
that the ’Web-crawled’ corpus is the most frequent
one to not receive the total number of point for all
three investigated categories.

Interestingly, both corpora derived in zero-shot
settings are rated more highly than their few-shot
counterparts. The ’Gemini, few-shot’ corpus is as-
sociated with the highest percentage of full points
(71% of all contexts), followed by ’Gemini, zero-
shot’ (69%), ’Mistral, zero-shot’ (61%), ’Mistral,
few-shot’ (60%) and ’Web-crawled’ (29%). When
the ’in-domain’ characteristic is regarded in iso-
lation, ’Gemini, few-shot’ performs highest (by a
small margin), and the rest of the classification re-
mains the same. In turn, ’Mistral, few-shot’ per-
forms slightly better than ’Mistral, zero-shot’ in

relation to the ’ready to use’ characteristic.This is
also the characteristic for which the models shows
largest variance in terms of the attribution of the
highest number of points (see Appendix 5: Distri-
bution of Pedagogical Qualities per Corpus).

In the free text notes, Mistral-generated text was
surprisingly judged to have negative qualities that
were explicitly addressed during the generation
and filtering process: contexts were judged as too
long in 8 cases in the zero-shot setting and 5 in
the few-shot setting, a definition or explanation
was provided instead of or along with the con-
text (6 vs 2 instances), the pronoun ’I’ was men-
tioned to have been used extensively (in 4 vs 2
examples), and the target word was said to have
been closely repeated in one example (in the zero-
shot setting). Therefore, the robustness of the ap-
plied filters should be examined. Other problems
linked with examples generated by the model in-
clude lack of clarity (4 vs 1 instance), lack of infor-
mativeness (3 instances in the zero-shot setting),
scientifically unsound text (3 instances in the zero-
shot setting) and different meanings of the target
word addressed (2 instances in the zero-shot set-
ting). Perceivably fewer problems are noted in
relation to the few-shot setting. In contrast, the
issues noted in relation to Gemini-generated text,
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while smaller in number, are not clearly reduced
by way of the few-shot setting. Some contexts
are judged to be too long (2 vs 5 instances), too
generic (4 vs 4 instances) or unclear (2 vs 1 in-
stances). Also, definitions or explanations were
featured (2 vs 2 instances), and target words were
used with a different meaning to the intended one
(1 vs 3 instances). Finally, web-crawled exam-
ples were criticised for including quotations (4 in-
stances), containing textual processing mistakes (2
instances) and being unclear (2 instances).

5 Discussion

Human evaluation rates the ’Gemini, zero-shot’
corpus highest, while automatic comparison ranks
’Mistral, few-shot’ first. In the case of Mistral,
the few-shot setting seems to be efficient in reduc-
ing problems that make contexts not directly ap-
plicable in a classroom setting. Thus, the different
corpora and, by definition, the derivation methods
behind them are associated with different qualities
and drawbacks.

Table 3 shows a juxtaposition of the contexts
derived through all five described methods for
the same ESP vocabulary item. The only con-
text that did not receive the maximal number of
points in the annotation was the web-crawled one,
which was evaluated as not being entirely ready
to use. Possible reasons could be its beginning
with ’and’, instances of complex grammar (’and
though’, ’those cases that did occur’), and the use
of the definite article (’the procedure’) when the
reference is unknown to the reader. The web-
crawled context is the longest, the ’Gemini, few-
shot’ the shortest, and the other three display sim-
ilar length (19-20 words), which is also equal or
close to that of the reference context (20 words).
In the ’Mistral, zero-shot’, ’Gemini, zero-shot’
and ’Gemini, few-shot’ contexts, the target word
appears very close to the sentence’s beginning,
which is not the case with the reference. One could
assume, therefore, that the ’Mistral, few-shot’ set-
ting has benefited from the proposed professional
examples. Another specificity in the latter is the
presence of a named entity (’The Second Law of
Motion’). In terms of qualitative characteristics,
one can claim that the reference context is scien-
tifically sound and can serve an interdisciplinary
purpose, and the same can interestingly be said
about the two zero-shot LLM settings, which of-
fer surprisingly similar examples, implying at the

same time that the models’ training suffices for a
pedagogically apt formulation and that high simi-
larity of output can be expected in the absence of
narrow prompts and provided examples.

On the first research question, comparing web
retrieval and generative AI, we observed that
LLMs, when instructed using relevant prompt en-
gineering and filtering techniques, are capable of
providing contexts for the practice of ESP vocabu-
lary that are evaluated by teaching experts as more
pedagogically sound than counterparts retrieved
from a corpus of scientific articles. In addition,
examples of use generated by LLMs tend to share
more textual characteristics with the ones hand-
crafted by professionals. The second research
question also receives a positive reply as a large
number of automatically derived contexts (290 out
of 500) score maximally in terms of their pedagog-
ical qualities based on human evaluation. In par-
ticular, 435 contexts received the maximum Lik-
ert value for the ’ready to use’ quality. Finally,
no clear correlation can currently be established
between automatically derived contexts’ textual
characteristics and their pedagogical qualities (re-
search question 3), as the two methods led to fully
different classifications of the derivation methods.

The presented experiments and analyses extend
current findings pertaining to the ability of LLMs
to generate pedagogical contexts for the learning
of foreign language vocabulary (such as the ones
exposed by Paddags et al. (2024)) through the ex-
ploration of the models’ few-shot abilities and the
juxtaposition of human-based (qualitative) and au-
tomatic (quantitative) evaluation.

6 Conclusion

In this study, we demonstrated that high-quality
contexts for an ESP vocabulary list can be ob-
tained through contemporary NLP methods, in
particular via LLM-based generation with prompt
engineering. A possible problem is the reduced
range and standard deviations that are associ-
ated with the derived contexts’ measurable tex-
tual characteristics, which in turn may relate to
a limited textual variety. A simple mitigation
method would be the application of a variety of
LLMs and generation settings to different vocabu-
lary items, as they show different degrees of vari-
ation and adaptability to instructions. Other fu-
ture directions of improvement may include the
further adaptation of textual filters, such as a mod-
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Corpus In-domain Comprehensible Ready to Use Overall

Web-crawled 89.2% 88.4% 78.4% 85.33%
Mistral, zero-shot 99.4% 97.8% 87.0% 94.73%
Mistral, few-shot 97.0% 95.8% 87.6% 94.37%
Gemini, zero-shot 97.2% 99.0% 94.4% 96.87%
Gemini, few-shot 97.6% 98.6% 90.4% 95.53%

Table 2: Percentages given to the derived corpora based on the human annotation process (as a portion of the total
number of points possible).

Corpus Sample context In-d.* Compr.* RTU*

Reference The Second Law of Motion states that the rate of change
of momentum is directly proportional to the force ap-
plied.

- - -

Web-
crawled

And though the rate of deaths associated with the proce-
dure remained statistically flat, those cases that did occur
were found with older patients.

5 5 4

Mistral,
zero-shot

The rate of photosynthesis in plants depends on many
factors such as temperature, light intensity and carbon
dioxide concentration.

5 5 5

Mistral,
few-shot

When calculating population growth rates, scientists use
statistics to estimate the number of births and deaths in a
given region.

5 5 5

Gemini,
zero-shot

The rate of photosynthesis is influenced by the intensity
of light, the availability of carbon dioxide, and the tem-
perature.

5 5 5

Gemini,
few-shot

The rate at which the climate changes is affected by hu-
man activity.

5 5 5

Table 3: Contexts for the item ’rate’ (CEFR level B1, domain ’science’) from the reference corpus and all auto-
matically derived ones as well as the points the latter received in the human annotation. * Rating criteria: In-d. =
In-domain; Compr. = Comprehensible; RTU = Ready to use.
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ification of the permitted sentence lengths and do-
main filters that go beyond a binary classification
of scientific vs non-scientific sentences. Finally,
we are planning to make available a user-friendly
online interface that facilitates the automatic gen-
eration of contexts based on selected ESP vocabu-
lary items by teachers and students.
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Appendix 1: List of Crawled Websites

https://climate.ec.europa.eu/climate-change_en

https://climate.ec.europa.eu/eu-action_en

https://climate.ec.europa.eu/index_en

https://climate.nasa.gov/

https://engineeringdiscoveries.com/

https://newatlas.com

https://sciencedemonstrations.fas.harvard.edu/

https://sustainability.stanford.edu/

https://world-nuclear.org

https://www.advancedsciencenews.com

https://www.computerworld.com/

https://www.eurekalert.org/

https://www.green.earth/

https://www.iea.org/

https://www.ipcc.ch

https://www.livescience.com/

https://www.nationalgeographic.org/society/

https://www.nature.com/

https://www.ncbi.nlm.nih.gov/

https://www.networkworld.com/

https://www.newscientist.com/

https://www.npr.org/sections/science/

https://www.pcworld.com

https://www.pewresearch.org/topic/internet-technology/

https://www.pewresearch.org/topic/science/

https://www.popularmechanics.com/

https://www.science.org/

https://www.sciencealert.com/

https://www.sciencedaily.com/

https://www.scienceopen.com/

https://www.scientificamerican.com
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https://www.triplepundit.com/

https://www.un.org/en/

https://www.un.org/en/climatechange

https://www.usgs.gov/programs/earthquake-hazards/

https://www.wwf.org.uk

Appendix 2: Prompts used for LLM Generation

Zero-shot setting:

Here is a sentence23 at CEFR level {level} showing how you use the {pos if
verb/noun/adverb/adjective; else ’word’ or ’expression’} ”{item}” in the domain of {domain}
({lower24}-{upper} words):

Few-shot setting, level B1:

Please provide an example at level B1 showing how you use the {pos} ’{item}’ ({domain}). Please
use between {lower} and {upper} words.

Examples:
the adjective ’scarce’: ”As the planet continues to warm, resources such as freshwater, land, and food
are becoming increasingly scarce.”
the noun ’poaching’: ”As rhino populations decline rapidly due to habitat loss and poaching, the
challenges for conservationists to protect these endangered species have never been more important.”
the noun ’rate’: ”The carbon cycle is a complex process, and changes in land use and deforestation can
affect the rate at which carbon is exchanged between the atmosphere and terrestrial ecosystems.”
the verb ’reclaim’: ”The Great Green Wall is both an initiative for ecological restoration, and part of the
fight against hunger and food insecurity in Africa. In existence since 2007, the wall is above all part of
an immense effort to reclaim land lost to desertification.”
the noun ’strain’: ”Before an earthquake occurs, tectonic plates accumulate strain along fault lines,
gradually building up stress until it is released in a sudden rupture.”

Few-shot setting,, level B2:

Please provide an example at level B2 showing how you use the {pos} ’{item}’ ({domain}). Please
use between {lower} and {upper} words.

Examples:
the noun ’spore’: ”Why some mushrooms are bioluminescent remains uncertain, but a study using LED

23The reason for ’sentence’ to be used rather than ’example’, even though some of the gold standard examples consist of
more than a single sentence, is that using ’example’ tends to result in the rendition of extensive explanations instead of or in
addition to an example of use. This problem does not persist with the few-shot setting, for which the word ’exmaple’ is used
instead

24’Lower’ and ’upper’ denote a range of example lengths, which differs for the different CEFR levels (8 to 43 words for B1
and 20 to 87 words for B2). The ranges are defined as +/- 1.5 standard deviations from the average value per level. This value
as well as the addition of information about length itself was decided upon following a process of trial and error based on the
behaviour of 20 sample examples in comparison to the reference’s counterparts.
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lights adds to the evidence they attract insects that help the fungus disperse its spores.”
the adjective ’bulbous’: ”Most of the evidence comes from soil fungi, many of which spend much of
their life cycle as microorganisms, but also produce the bulbous fruiting bodies we know as mushrooms,
toadstools, bracket fungi and the like. These are easy enough to spot, so they are often used as surrogates
for the state of forest biodiversity, especially of the underground mycorrhizae – fungi that form symbiotic
relationships with tree roots, taking sugars and supplying plants with water and mineral nutrients in
return.”
the noun ’shrub’: ”More recently, botanists in Brazil discovered six previously unknown species of
fungus growing on the leaves of a tropical shrub, Coussapoa floccosa, which until recently was thought
to be extinct. If and when the last specimen dies, those fungi will disappear too.”
the verb ’undergo’: ”Nearly three-quarters of hammer coral colonies annually alternate between male
and female. They are the only animal species known to undergo this change on such a regular schedule.”
the noun ’brood’: ”Two species of bird have been observed raising offspring together. Such cooperative
breeding between different species has never been documented before, says Rosario Balestrieri at the
Stazione Zoologica Anton Dohrn of Naples, Italy. “It is a very strange and rare situation, in which the
brood is mixed between the two species,” he says.”

Appendix 3: Features Used in Corpus Comparison

Length-Based total number of examples in the sample
total number of words in the sample
average/min/max/SD number of words per sentence
average/min/max/SD number of syllables per sentence
average/min/max/SD number of letters per word
average/min/max/SD number of syllables per word

Morphosyntactic average/min/max/SD number of noun phrases per sentence
average/min/max/SD percentage of non-stem words per s-ce
percentage of sentences ending in question mark
percentage of sentences ending in exclamation mark
average/min/max/SD number of punctuation signs per s-ce (excluding end-of-s-ce punct.)
morphological richness

Lexico-Semantic average/min/max/SD number of verbs per sentence
average/min/max/SD number of adj. and adv. per s-ce
average/min/max/SD number of 1st-person pronouns per s-ce
average/min/max/SD number of proper nouns per sentence
percentage of words not present in the Dale-Chall list
percentage of hapax legomena
type-to-token ratio (word-based)
type-to-token ratio (lemma-based)
average concreteness (as per Brysbaert et al. (2014)’s list of 40k English lemmas)
10 most frequent words (excluding stop words)
10 most frequent words (including stop words)

Discourse-Related average/min/max/SD number of pronouns per sentence
average/min/max/SD % of anaphora-denoting words per sentence
average/min/max/SD cosine distance between sentences

Table 4: Description of the linguistic features used in corpus comparison. The features marked in italics are
representative continuous ones used in filters at the automatic derivation of contexts.
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Appendix 4: Detailed Results of the Comparison between Corpora based on Textual
Features
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Entire Sample

Feature Reference Web-
Crawled

Mistral:
zero-shot

Mistral:
few-shot

Gemini:
zero-shot

Gemini:
few-shot

Total # examples in sample 100 100 100 100 100 100
Total # words in sample 3787 2267 2823 4091 2345 2638
Avg. # words / s-ce 13.33 11.11*** 11.67*** 13.73 11.17*** 11.32***
Min. 4 1 9 2 10 8
Max. 55 33 34 44 32 34
SD 8.48 4.82 5.08 5.79 5.34 6.08
Avg. # syllables / s-ce 20.76 18.25*** 19.99* 22.54* 19.89*** 17.94
Min. 6 1 14 4 15 14
Max. 85 60 63 64 62 56
SD 14.29 9.39 9.53 9.86 10.53 10.05
Avg. # letters / word 5.2 5.37 5.57*** 5.4* 5.84*** 5.21
Min. 1 1 1 1 1 1
Max. 18 23 19 16 22 17
SD 2.8 3.02 3.06 2.93 3.2 2.87
Avg. # syllables / word 1.56 1.64*** 1.71*** 1.64*** 1.78*** 1.58
Min. 0 0 1 1 1 0
Max. 7 9 6 5 6 6
SD 0.88 0.99 1.0 0.93 1.04 0.92
Avg. # noun phrases / s-ce 5.76 6.34* 6.08 6.29** 6.26* 5.68
Min. 1 0 3 1 2 2
Max. 16 11 11 14 11 11
SD 2.75 1.95 1.85 2.08 1.93 1.96
Avg. % non-stem words / s-ce 31.91 34.2 38.06*** 35.2** 40.09*** 33.28
Min. 5.88 0.0 11.11 7.14 17.39 7.14
Max. 61.54 63.64 66.67 72.22 69.23 54.55
SD 10.69 11.26 9.28 10.42 10.1 9.07
% s-ces ending in “?” 0.54 0.0 0.0 0.51 0.0 0.0
% s-ces ending in “!” 0.54 0.0 0.0 0.0 0.0 0.0
Avg. # punct. signs / s-ce 1.51 0.98* 1.06** 1.29 1.09 0.97**
Min. 0 0 0 0 0 0
Max. 6 2 4 6 4 4
SD 0.54 0.35 0.43 0.49 0.4 0.4
Morphological richness 0.02 0.02 0.02 0.02 0.02 0.02
Avg. # verbs / s-ce 2.45 2.92*** 2.67 2.72* 2.72* 2.47
Min. 0 0 0 0 0 0
Max. 7 5 8 7 6 6
SD 1.51 1.04 1.38 1.36 1.13 1.17
Avg. # adj. and adv. / s-ce 2.77 2.91 2.51 2.69 2.95 2.5
Min. 0 0 0 0 0 0
Max. 8 6 7 7 7 7
SD 1.83 1.56 1.47 1.49 1.57 1.5
Avg. # 1st-person pron. / s-ce 0.11 0.01* 0.08 0.06 0.02* 0.02*
Min. 0 0 0 0 0 0
Max. 2 1 1 1 2 1
SD 0.43 0.1 0.28 0.23 0.19 0.12
Avg. # proper nouns / s-ce 0.99 0.51 0.09*** 0.32*** 0.15*** 0.23***
Min. 0 0 0 0 0 0
Max. 11 4 2 6 2 3
SD 1.96 0.8 0.33 0.87 0.45 0.61
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% words not
in Dale-Chall
list

44.71 46.18 46.09 45.61 50.36 43.48

% hapax
legomena

25.69 32.33 20.61 19.3 27.25 25.05

Type-to-token
ratio (words)

0.37 0.45 0.32 0.31 0.39 0.36

Type-to-token
ratio (lem-
mas)

0.35 0.42 0.3 0.29 0.37 0.34

Average con-
creteness

2.48 2.42 2.46 2.44 2.37 2.4

10 most fre-
quent words
(excl. stop
words)

water, cli-
mate, change,
species,
world, people,
new, plants,
global, could

would, could,
said, people,
water, also,
international,
may, must,
new

crop, soil,
crops, farm-
ers, scientists,
agriculture,
water, yields,
new, order

soil, crop,
farmers,
agriculture,
crops, yields,
practices,
water, agri-
cultural,
climate

crop, soil,
new, scien-
tists, farmers,
crops, prac-
tices, yields,
scientist,
sustainable

water, soil,
farmers,
crops, crop,
plant, species,
food, prac-
tices, yields

10 most fre-
quent words
(incl. stop
words)

the, of, and,
to, in, a, is,
that, are, for

the, of, and,
to, in, a, that,
for, be, is

the, to, of,
and, in, a,
that, I, for,
can

to, the, of,
and, in, a,
that, is, can,
as

the, of, to, a,
and, in, for,
crop, soil

the, of, to,
and, in, a, for,
is, that, are

Avg # pron. /
s-ce

0.95 0.64 0.87 0.88 0.66 0.73

Min. 0 0 0 0 0 0
Max. 4 3 3 3 3 3
SD 1.1 0.7 0.79 0.94 0.75 0.76
Avg.% anaph.
words / s-ce

10.28 9.93 9.2 9.46 11.95 12.72

Min. 0.0 0.0 0.0 0.0 3.23 0.0
Max. 27.27 22.73 23.81 30.77 25.0 25.0
SD 6.08 5.77 5.8 5.99 5.52 5.51
Avg.cos.d-ce
btwn s-ces

0.12 0.10* 0.18*** 0.15*** 0.14*** 0.14***

Min. -0.18 -0.19 -0.17 -0.17 -0.20 -0.20
Max. 0.70 1.0 0.80 0.79 0.84 0.84
SD 0.12 0.11 0.16 0.14 0.15 0.13
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Per Level: B1 (domain ‘Agronomy’)

Feature Reference Web-
Crawled

Mistral:
zero-shot

Mistral:
few-shot

Gemini:
zero-shot

Gemini:
few-shot

Total # examples in sample 56 56 56 56 56 56
Total # words in sample 1382 1179 1030 1581 971 892
Avg. # words / s-ce 10.63 10.34*** 8.8* 11.21 8.67*** 7.82***
Min. 4 1 11 2 10 8
Max. 41 27 26 31 26 25
SD 7.49 4.63 3.34 5.06 3.36 4.32
Avg. # syllables / s-ce 16.65 16.88*** 14.93 18.57 15.36 12.45*
Min. 6 1 14 4 15 14
Max. 76 60 43 54 48 44
SD 12.69 9.34 6.47 8.58 7.22 7.54
Avg. # letters / word 5.19 5.34 5.41 5.4 5.8*** 5.26
Min. 1 1 1 1 1 1
Max. 16 23 15 15 22 17
SD 2.82 3.11 3.01 2.98 3.25 2.85
Avg. # syllables / word 1.57 1.63 1.7** 1.66* 1.77*** 1.59
Min. 0 0 1 1 1 1
Max. 7 9 5 5 6 6
SD 0.89 1.01 1.0 0.94 1.04 0.91
Avg. # noun phrases / s-ce 5.08 5.75* 5.15 5.62* 5.05 4.41
Min. 1 0 3 1 2 2
Max. 12 10 9 9 9 8
SD 2.38 1.73 1.28 1.65 1.41 1.24
Avg. % non-stem words / s-ce 33.07 34.38 37.04* 35.49 39.57*** 34.56
Min. 10.0 0.0 16.67 14.29 17.39 15.79
Max. 61.54 61.54 56.25 53.85 66.67 54.55
SD 10.2 10.69 8.73 9.2 9.89 9.54
% s-ces ending in “?” 0.0 0.0 0.0 1.16 0.0 0.0
% s-ces ending in “!” 1.33 0.0 0.0 0.0 0.0 0.0
Avg. # punct. signs / s-ce 1.16 0.86 0.57* 1.01 0.77 0.55*
Min. 0 0 0 0 0 0
Max. 6 2 3 3 2 2
SD 0.49 0.32 0.28 0.38 0.29 0.25
Morphological richness 0.02 0.01 0.02 0.02 0.02 0.02
Avg. # verbs / s-ce 2.15 2.67** 2.2 2.26 2.2 1.97
Min. 0 0 1 0 0 0
Max. 6 4 4 5 4 4
SD 1.33 1.06 0.96 1.08 0.96 1.03
Avg. # adj. and adv. / s-ce 2.48 2.75 2.15 2.43 2.27 2.09
Min. 0 0 0 0 0 0
Max. 6 6 6 6 5 5
SD 1.56 1.67 1.44 1.39 1.14 1.22
Avg. # 1st-person pron. / s-ce 0.15 0.02 0.15 0.13 0.0* 0.03
Min. 0 0 0 0 0 0
Max. 2 1 1 1 0 1
SD 0.51 0.13 0.36 0.34 0.0 0.18
Avg. # proper nouns / s-ce 0.77 0.49 0.15*** 0.17*** 0.14*** 0.19**
Min. 0 0 0 0 0 0
Max. 6 3 2 2 2 3
SD 1.28 0.73 0.4 0.47 0.4 0.51
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% words not in Dale-
Chall list

44.21 44.7 43.79 45.86 49.02 43.83

% hapax legomena 34.9 38.59 32.06 29.77 38.35 37.51
Type-to-token ratio
(words)

0.46 0.5 0.44 0.42 0.49 0.48

Type-to-token ratio
(lemmas)

0.45 0.49 0.42 0.4 0.47 0.46

Average concreteness 2.5 2.37 2.4 2.39 2.33 2.43
10 most frequent
words (excl. stop
words)

climate, wa-
ter, change,
earth, new,
tempera-
ture, world,
plants, two,
greenhouse

development,
may, next,
many, eu-
ropean,
climate,
resources,
would,
human, pos-
sible

scientists,
temperature,
climate,
change,
growth,
chemical,
used, new,
effects, plant

scientists,
change,
use, due,
climate, sci-
ence, world,
around, uni-
verse, new

scientists,
research,
experiment,
new, study,
researchers,
temperature,
significant,
scientist,
effects

scientists,
climate,
due, change,
study, used,
light, energy,
earth, human

10 most frequent
words (incl. stop
words)

the, of, to,
in, and, is, a,
on, are, that

the, to, of,
and, a, in,
that, is, will,
be

the, to, of,
and, in, a,
that, scien-
tists, for, can

the, to, of,
and, in, is, a,
that, for, sci-
entists

the, of, to,
and, in, a,
that, is, sci-
entists, can

the, of, to,
in, is, and,
scientists, a,
can, are

Avg # pron. / s-ce 0.8 0.61 0.8 0.86 0.52 0.55
Min. 0 0 0 0 0 0
Max. 4 2 3 3 2 2
SD 1.1 0.59 0.79 0.84 0.6 0.6
Avg.% anaph.
words / s-ce

10.01 11.34* 11.42 9.7 13.65* 13.05

Min. 0.0 0.0 3.85 0.0 4.35 4.55
Max. 27.27 22.73 22.22 30.77 25.0 25.0
SD 6.86 5.4 5.38 5.65 5.99 5.25
Avg.cos.d-ce btwn s-
ces

0.118 0.115** 0.151*** 0.138*** 0.136*** 0.137***

Min. -0.185 -0.145 -0.166 -0.167 -0.171 -0.200
Max. 0.701 1.000 0.765 0.751 0.584 0.758
SD 0.126 0.105 0.129 0.125 0.125 0.129
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Per Level: B2 (domain ‘Science’)

Feature Reference Web-
Crawled

Mistral:
zero-shot

Mistral:
few-shot

Gemini:
zero-shot

Gemini:
few-shot

Total # examples in sample 44 44 44 44 44 44
Total # words in sample 2405 1088 1793 2510 1374 1746
Avg. # words / s-ce 15.62 12.09*** 14.34*** 15.99 14.02*** 14.67***
Min. 5 15 9 8 18 12
Max. 55 33 34 44 32 34
SD 8.85 4.09 5.02 5.74 3.59 4.9
Avg. # syllables / s-ce 24.23 19.98*** 24.73** 26.11* 25.06*** 23.19*
Min. 10 26 16 14 29 17
Max. 85 55 63 64 62 56
SD 15.0 7.89 9.46 9.98 7.8 8.31
Avg. # letters / word 5.21 5.39 5.67*** 5.41* 5.87*** 5.18
Min. 1 1 1 1 1 1
Max. 18 15 19 16 17 16
SD 2.79 2.94 3.09 2.91 3.16 2.89
Avg. # syllables / word 1.55 1.65*** 1.72*** 1.63* 1.79*** 1.58
Min. 0 0 1 1 1 0
Max. 6 6 6 5 6 5
SD 0.87 0.96 0.99 0.92 1.04 0.93
Avg. # noun phrases / s-ce 6.22 7.09* 6.79 6.8 7.52*** 6.65
Min. 1 3 3 2 4 2
Max. 16 11 11 14 11 11
SD 2.89 1.96 1.91 2.23 1.56 1.85
Avg. % non-stem words / s-ce 31.25 34.01 38.63*** 35.01* 40.47*** 32.62
Min. 5.88 9.09 11.11 7.14 25.0 7.14
Max. 58.06 63.64 66.67 72.22 69.23 53.85
SD 10.97 12.09 9.65 11.29 10.36 8.69
% s-ces ending in “?” 0.91 0.0 0.0 0.0 0.0 0.0
% s-ces ending in “!” 0.0 0.0 0.0 0.0 0.0 0.0
Avg. # punct. signs / s-ce 1.75 1.14* 1.42 1.51 1.43 1.29*
Min. 0 0 0 0 0 0
Max. 4 2 4 6 4 4
SD 0.57 0.39 0.51 0.55 0.49 0.48
Morphological richness 0.02 0.02 0.02 0.02 0.02 0.02
Avg. # verbs / s-ce 2.66 3.25** 3.02 3.07* 3.26** 2.85
Min. 0 1 0 0 1 0
Max. 7 5 8 7 6 6
SD 1.59 0.92 1.54 1.44 1.05 1.14
Avg. # adj. and adv. / s-ce 2.96 3.11 2.78 2.88 3.65** 2.83
Min. 0 1 0 0 0 0
Max. 8 5 7 7 7 7
SD 1.98 1.4 1.44 1.53 1.65 1.61
Avg. # 1st-person pron. / s-ce 0.09 0.0 0.04 0.0** 0.04 0.0*
Min. 0 0 0 0 0 0
Max. 2 0 1 0 2 0
SD 0.37 0.0 0.19 0.0 0.27 0.0
Avg. # proper nouns / s-ce 1.14 0.55 0.05*** 0.43* 0.17** 0.25**
Min. 0 0 0 0 0 0
Max. 11 4 2 6 2 3
SD 2.31 0.87 0.27 1.07 0.5 0.68
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% words not in Dale-
Chall list

44.99 47.79 47.41 45.46 51.31 43.3

% hapax legomena 29.88 40.86 20.83 22.35 29.53 28.07
Type-to-token ratio
(words)

0.42 0.53 0.33 0.34 0.41 0.39

Type-to-token ratio
(lemmas)

0.4 0.51 0.31 0.32 0.39 0.37

Average concreteness 2.47 2.47 2.5 2.48 2.4 2.38
10 most frequent
words (excl. stop
words)

water,
species,
trees, car-
bon, could,
wild, forests,
researchers,
reef, world

could, de-
velopment,
climate,
change, in-
ternational,
benefits,
health,
people, re-
sponsibility,
study

soil, crop,
agriculture,
farmers,
crops, prac-
tices, use,
sustainable,
farming,
growth

soil, crop,
farmers,
crops, water,
use, growth,
used, agri-
culture,
levels

crop, soil,
water, agri-
cultural,
farmers,
growth,
drought,
conditions,
practices,
yields

species, soil,
plant, plants,
fungi, new,
crop, crops,
water, nutri-
ents

10 most frequent
words (incl. stop
words)

the, of, and,
to, in, a, is,
that, are, for

to, the, and,
of, a, in,
with, that,
for, or

and, the, to,
of, soil, can,
in, crop, a,
agriculture

and, the, to,
of, soil, can,
in, crop, a,
for

the, of, and,
to, for, in,
a, crop, as,
their

the, of, and,
to, a, in, that,
is, for, as

Avg # pron. / s-ce 1.05 0.68 0.91 0.9 0.81 0.87
Min. 0 0 0 0 0 0
Max. 4 3 3 3 3 3
SD 1.1 0.83 0.79 1.0 0.85 0.84
Avg.% anaph.
words / s-ce

10.47 8.1 7.53 9.27 10.19 12.46**

Min. 0.0 0.0 0.0 0.0 3.23 0.0
Max. 25.0 20.69 23.81 27.78 20.69 25.0
SD 5.52 5.78 5.57 6.26 4.38 5.72
Avg.cos.d-ce btwn s-
ces

0.14 0.11*** 0.38*** 0.24*** 0.32*** 0.24***

Min. -0.15 -0.17 -0.01 -0.10 -0.10 -0.08
Max. 0.63 1.00 0.80 0.79 0.84 0.84
SD 0.12 0.12 0.14 0.16 0.14 0.13

Features in italics have been tested for statistical significance, and the extent of the significance is marked with *, ** and ***
from lowest to highest. The few-shot Mistral corpus is marked with bold when the entire corpora are considered to denote its
highest global similarity to the reference corpus.
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Appendix 5: Distribution of Pedagogical Qualities per Corpus
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Abstract

Text simplification aims to improve the read-
ability of a text while maintaining its orig-
inal meaning. Despite significant advance-
ments in Automatic Text Simplification, par-
ticularly in English, other languages like Ital-
ian have received less attention due to lim-
ited high-quality data. Moreover, most Au-
tomatic Text Simplification systems produce
a unique output, overlooking the potential
benefits of customizing text to meet specific
cognitive and linguistic requirements. These
challenges hinder the integration of current
Automatic Text Simplification systems into
Computer-Assisted Language Learning envi-
ronments or classrooms. This article presents
a multifaceted output that highlights the po-
tential of Automatic Text Simplification for
Computer-Assisted Language Learning. First,
we curated an enriched corpus of parallel
complex-simple sentences in Italian. Second,
we fine-tuned a transformer-based encoder-
decoder model for sentences simplification.
Third, we parameterized grammatical text fea-
tures to facilitate adaptive simplifications tai-
lored to specific target populations, achieving
state-of-the-art results, with a SARI score of
60.12. Lastly, we conducted automatic and
manual qualitative and quantitative evalua-
tions to compare the performance of ChatGPT-
3.5, and our fine-tuned transformer model.
By demonstrating enhanced adaptability and
performance through tailored simplifications
in Italian, our findings underscore the pivotal
role of ATS in Computer-Assisted Language
Learning methodologies.

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1 Introduction

The increasing access of digital information
underscores the critical need to ensure univer-
sal access to knowledge, regardless of indi-
viduals’ literacy levels or backgrounds. Au-
tomatic Text Simplification (ATS) is the Nat-
ural Language Processing (NLP) task aimed
at reducing linguistic complexity of texts,
while preserving their original meaning (Bott
and Saggion, 2014; Shardlow, 2014b). ATS
emerges as a promising solution to enhance
text accessibility and readability, aiming to
transform complex texts into versions that
are more comprehensible, thus holding sig-
nificant potential for fostering communica-
tion across diverse audiences and address-
ing gaps in information accessibility (Štajner,
2021). In recent years, research on ATS has
focused on developing approaches to make
texts simplified adapted for individuals fac-
ing cognitive disabilities or language impair-
ment (Bott and Saggion, 2014; Rello et al.,
2013; Aluisio et al., 2010). This development
could have a significant impact on computer-
assisted language learning (CALL), where
adaptive learning technologies can personal-
ize instruction based on individual learner
progress and needs, ensuring a tailored and ef-
fective educational experience.

The emergence of large language models
(LLMs) has significantly advanced automatic
text simplification, among other NLP tasks.
While their success in many benchmarks and
challenges has been demonstrated (Anschütz
et al., 2023; Sun et al., 2023; Engelmann
et al., 2023; Shaib et al., 2023), it is impera-
tive to ensure that the outputs of these mod-
els are truly suitable, especially before de-
ployment in sensitive domains such as edu-
cation or health (Kasneci et al., 2023). Fur-

Francesca Padovani, Caterina Marchesi, Eleonora Pasqua, Martina Galletti and Daniele Nardi. Automatic Text
Simplification: A Comparative Study in Italian for Children with Language Disorders. Proceedings of the 13th
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thermore, there is limited research being con-
ducted to investigate how LLMs can specifi-
cally be adapted to the needs of each user, in-
cluding individuals with low literacy levels or
cognitive and linguistic impairments, by pro-
viding adapted output (Demszky et al., 2023).
The training data for large language models
(LLMs) primarily comprises text created by
individuals without language disabilities. This
could potentially lead to a limited exposure to
the varied linguistic patterns and communica-
tion styles exhibited by individuals with lan-
guage impairments (Fiora et al., 2024; Guo
et al., 2024).

Finally, most of the existing systems, focused
on the English language. However, languages
like Italian remain relatively under-explored in
this domain, primarily due to data scarcity and
poor data quality. Despite efforts to address
this gap (Brunato et al., 2015, 2016, 2022;
Tonelli et al., 2016, 2017), the availability of
Italian simplification datasets remains limited,
with only a few manually curated datasets and
one large corpus assembled through a data-
driven approach.

This paper aims to address these gaps by (I)
creating a robust corpus by merging and clean-
ing existing resources (II) training a sequence-
to-sequence neural model, (III) incorporating
an adaptive component to control simplifica-
tions for specific target populations. Our most
successful model achieves a SARI score of
60.12 and a BLEU score of 50.30 on the test
set. Moreover, we present an experiment eval-
uating the suitability respectively of our fine-
tuned model and Chat-GPT 3.5 for automatic
text simplification specifically focused to the
disability domain.

2 Related Work

ATS can occur at different levels of granular-
ity: sentence-level, paragraph-level, or even at
the level of entire documents and articles. In
this work, we focus on a sentence-level auto-
matic text simplification task. Consequently,
our attention is solely directed towards exist-
ing work related to sentences.

Sentence-level simplification is often ap-
proached as a monolingual form of machine
translation (MT). For years, attempts have
been made to tackle this task using rule-
based models capable of handling both lexi-
cal simplification and morpho-syntactic sim-
plification. These techniques rely on manu-
ally crafted rules (Bott et al., 2012; Shard-
low, 2014a; Siddharthan, 2011). Manually cu-
rated data offer several advantages. They en-

sure clear and consistent data labeling, non-
redundant metadata recording, and structured
presentation of contextual linguistic phenom-
ena associated with text simplification. Nev-
ertheless, constructing such models demands
extensive investment of time and resources
on experts in language knowledge. Moreover
these systems suffer from a notable drawback:
limited portability and scalability to new sce-
narios.

Authors Description Approach

Yatskar et al. (2010) Context similarity to extract simplifica-
tion rules.

DD

Siddharthan (2011). Simplification and regeneration from
typed dependencies

RB

Biran et al. (2011) The first data-driven system available
for English

DD

Bott et al. (2012). First model and data for Spanish RB
Shardlow (2014a). Errors identification and classification

scheme
RB

Glavaš and Štajner (2015) Based on word vector representations,
cased.

DD

Paetzold and Specia (2015) Modeling words and POS tags. DD
Nisioi et al. (2017) Two LSTM layers incorporating global

attention.
DD

Zhang and Lapata (2017) Utilized LSTM, added lexical con-
straints, and combined with reinforce-
ment learning.

DD

Scarton and Specia (2018) Enhanced the encoder by incorporating
external information.

DD

Zhao et al. (2018) Transformer-based approach supple-
mented with a paraphrase database.

DD

Qiang et al. (2020) Extension to BERT. DD

Table 1: Models for Sentence Simplification from the
least recent to the most recent, along with descriptions
of the systems and an indication of whether it’s rule-
based (RB) or data-driven (DD).

Most sentence simplification models are avail-
able for English, primarily due to the availabil-
ity of extensive supervised training datasets
containing pairs of complex and simple sen-
tences that are aligned in structure and mean-
ing (Wubben et al., 2012; Martin et al., 2020).
However, efforts have also been made to ex-
plore languages beyond English, including
Brazilian Portuguese (Aluı́sio et al., 2008),
Spanish (Saggion et al., 2015), (Glavaš and
Štajner, 2015), Italian (Brunato et al., 2015;
Tonelli et al., 2016), Japanese (Goto et al.,
2015; Kajiwara and Komachi, 2018; Katsuta
and Yamamoto, 2019), and French (Gala et al.,
2020).

Moreover, the emergence of LLMs and, par-
ticularly, GPT has brought about a revolution
in the field of NLP. Its impressive text gen-
eration capabilities, supported by pre-trained
knowledge and fine-tuning adaptability, make
it a versatile tool for various NLP tasks, in-
cluding automatic text simplification. Despite
their success in many benchmarks and chal-
lenges (Anschütz et al., 2023; Sun et al., 2023;
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Engelmann et al., 2023; Shaib et al., 2023), it’s
important to verify that the outputs of these
models can be suitable before deployment also
in sensitive domains, such as for use with chil-
dren who have language disabilities.

3 Dataset selection, curation and
augmentation

Three main datasets are available for auto-
matic sentence simplification in Italian: (1)
Terence & Teacher (Brunato et al., 2015), (2)
SIMPITIKI (Tonelli et al., 2016), (3) PaCCSS-
IT (Brunato et al., 2016).

Terence & Teacher was introduced as the in-
augural Italian Corpus for Text Simplification.
Comprising around 1500 sentence pairs, it in-
tegrates two sub-corpora: Terence, consisting
of 32 simplified children’s stories crafted by
experts across three linguistic dimensions, and
Teacher, which features 24 pairs of texts man-
ually simplified by a teacher targeting L2 stu-
dents.

In 2016, SIMPITIKI was created by gathering
simplification pairs from Wikipedia edits des-
ignated as “simplified”. The pairs were then
manually annotated and filtered, leading to a
final set of 575 pairs out of the initially scraped
2, 671 pairs. Additionally, employing a similar
methodology, a second corpus was created by
simplifying documents from the Trento Mu-
nicipality pertaining to building permits and
kindergarten admissions. This corpus, focused
on public administration, adhered to the same
annotation schema and encompassed an addi-
tional 591 pairs.

Finally PaCCSS-IT includes 63, 000 pairs of
sentences classified by their readability score.
The corpus was constructed through mono-
lingual sentence alignment techniques, align-
ing original sentences with their simplified
counterparts using metrics like TF/IDF scores
or similar methods assessing word similarity.
Each pair includes the cosine similarity, ac-
curacy of automatic classification for predict-
ing sentence alignment, and readability level.
Even though the dataset is quite large, the
authors gathered a substantial amount of text
from the web to initiate the process and reduce
costs, which carried the risk of generating oc-
casional errors, repetitions, and other issues.

For this reason, we propose an augmented
dataset composed by PaCCSS-IT, SIMPITKI
and a translated one. The corpus creation
pipeline can be seen in Figure 1. We started by
cleaning the larger available corpus, PaCCSS-
IT (Brunato et al., 2016), through a pre-

Figure 1: The steps we took to construct the Aug-
mented Dataset

Figure 2: Some examples of the composition of the
Augmented Dataset

processing step similar to the one conducted
in Palmero Aprosio et al. (2019). We delib-
erately retained both capital letters and punc-
tuation within sentences to preserve meaning
and convey grammatical and semantic cues.
Punctuation was selectively removed primar-
ily at the beginning and end of sentences, and
identical pairs of parallel sentences were elim-
inated to prevent redundancy. However, we re-
tained complex sentences that underwent dis-
tinct simplifications to ensure computational
models learned the variability in simplifying
the same sentence.

Additionally, we excluded complex sentences
consisting of two tokens or fewer and those
with low cosine similarity values compared to
their simpler counterparts. More specifically,
we disregarded sentences with cosine similar-
ity less than 0.05. This value was chosen af-
ter a manual inspection which identified pairs
of simple and complex sentences with signifi-
cantly different meanings.

Lastly, we also addressed the issue of sen-
tences containing numbers with no corre-
sponding counterpart in the simple sentences.
This adjustment ensured consistency not only
in alphabetical tokens but also in numerical
values. After cleaning, the curated version
of the PaCCSS-IT corpus comprised 32, 650
pairs of complex and simple sentences. Some
examples of the senteces in the augmented cor-
pus can be seen in Figure 2.

In a later stage, we integrated the Terence
& Teacher (Brunato et al., 2015) and SIMPI-
TIKI (Tonelli et al., 2016) datasets to the cu-
rated version of PaCCSS-IT, conducting spe-
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cific parsing and pre-processing to allineate
with the format in PaCCSS-IT. Our corpus at
this stage consisted of 33, 891 parallel sen-
tences. The curated version incorporating the
three datasets showed an increase in aver-
age sentence length due to the inclusion of
sentences from Terence&Teacher, and SIMPI-
TIKI datasets.

Finally, we augmented the curated versions
by translating sentences from parallel En-
glish datasets. This was done with two main
goals (I) enhance data variety and (II) improve
the model generalization. For doing that,
we used the DeepL API to translate around
5000 sentences pairs from a parallel English
datasets. We decided to translate the Hu-
man Simplification with Sentence Fusion Data
Set (Schwarzer et al., 2021) and few sentences
translated by the first version of the Wikipedia
dataset (Kauchak et al., 2022). The aug-
mented version exhibited increased linguistic
complexity in both complex and simplified
sentences compared to the initial PaCCSS-IT
dataset or its curated counterpart, as it can be
seen in Table 2. The average sentence length
slightly increased in the augmented version,
with complex sentences averaging 9.14 words
and simplified sentences 8.21 words. The
use of conjunctions in simplified sentences
showed a progressive increase from PaCCSS-
IT to the curated and augmented datasets, sug-
gesting greater cohesion in simplified con-
structs. Overall, both the curated and aug-
mented datasets displayed higher linguistic de-
tail and richer language use compared to the
initial PaCCSS-IT dataset. The average length
of complex sentences increased to 8.42, and
that of simple sentences to 7.63 as it can be
seen in Table 2.

Metric PaCCSS-IT Curated Augmented

AV G words complex 8.26 8.42 9.14
AV G words simplified 7.34 7.63 8.21
SV O complex 0.57 0.54 0.55
SV O simplified 0.54 0.50 0.52
CONJ complex 0.23 0.25 0.28
CONJ simplified 0.26 0.27 0.29
SUBJ complex 0.03 0.05 0.06
SUBJ simplified 0.025 0.04 0.05
stop words complex 4.5 4.78 5.08
stop words simplified 2.76 3.02 3.25

Table 2: Normalized metrics for three dataset varia-
tions. The Curated dataset combines three existing
distinct datasets, while the Augmented Dataset incor-
porates the three existing resources together with sen-
tences translated from English parallel corpora. “AVG”
stands for average. “SVO” for subject-verb-object.
“SUBJ” for subordination conjunctions. “CONJ” for
coordination conjuctions”.

4 Methods

In this section, we present the architecture de-
tails of the two models used in this study,
respectively a BERT-based architecture fine-
tuned for the task of sentence simplification
for Italian and the details of the prompting
to Chat-GPT 3.5. In Section 5, we detail
the specifics of the BERT-based architecture’s
fine-tuning and usage used in our experiments.

Proprietary System architecture Our
model consists of both an encoder and a
decoder component. We employ a BERT-
based model fine-tuned for textual simplifica-
tion tasks. The encoder checkpoints were ini-
tialized using pre-trained checkpoints tailored
specifically for the Italian language1 model
available in the Hugging Face Hub repository.
Conversely, the decoder checkpoints were ini-
tialized randomly. When making our architec-
ture choice, it was crucial to consider our tar-
get language, namely Italian. At the time of
implementing our model, the T5 pre-trained
version (Sarti and Nissim, 2022) for Italian
was not available. In a second version of
our model, we integrated an adaptive com-
ponent, enabling semi-supervised learning of
the model by encoding five numerical values
within complex sentences. Following the ap-
proach outlined in (Megna et al., 2021; Mar-
tin et al., 2019), we incorporated a discrete
parametrization mechanism that allows ex-
plicit control of the generation. Additionally,
we opted to include the Word Ratio parameter
proposed by (Sheang and Saggion, 2021). As
illustrated in Table 3, these features encompass
sentence length (both in terms of characters
and tokens), as well as lexical and syntactic
complexity. We selected these five parameters
because, as highlighted in previous studies,
they significantly contribute to the comprehen-
sion challenges faced by individuals with read-
ing comprehension deficits (Oakhill and Yuill,
1996; Nation and Snowling, 2000, 2004; Gal-
letti et al., 2023).

LLM architecture To showcase the capa-
bilities of Large Language Models (LLMs),
we selected ChatGPT-3.5 (Madaan et al.,
2022) due to its proficiency in zero-shot learn-
ing scenarios and user-friendly interface ac-
cessible through the OpenAI platform, which
allows for easy integration and experimenta-
tion.

1namely the bert-base-italian-xxl-cased
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Token Value Description

Word Ratio 0.20 Ratio of words in the complex sentence to
words in the simplified sentence.

Character Ratio 0.20 Ratio of characters in the complex sentence to
characters in the simplified sentence.

Word Rank 0.90 Ranking of words based on frequency or im-
portance.

Lev Similarity 0.90 Levenshtein similarity between the complex
and simplified sentences.

Dependency Tree 1 Degree of similarity in dependency trees be-
tween the complex and simplified sentences.

Table 3: Description of parameters with values used in
the adaptive component for simplification.

5 Experiment Settings

This section outlines the parameters for model
fine-tuning (Subsection 5.2), and discusses the
evaluation metrics (Subsection 5.3) used.

5.1 BERT-based model Fine-Tuning

For the fine-tuning process, we utilized Op-
tuna, an open-source framework for hyper-
parameter optimization to dynamically build
the search space for selecting the optimal pa-
rameters for our work. We configured a batch
size of 4 for both training and evaluation loops,
set a maximum token length of 300, estab-
lished a learning rate of 3e − 4, configured an
Adam epsilon of 1e−8, implemented a warm-
up ratio of 0.10, and conducted 20 epochs.
The remaining parameters were kept at their
default values from Transformers library. For
dividing the three dataset into train and test
we used a standard 0.80 split for training and
0.20 for testing. As explained in Section 6,
we maintained this fine-tuning parameters for
both the two version of our model —the one
with the adaptive component and the one with-
out.

5.2 GPT’s Prompting

We accessed the ChatGPT-3.5 model through
the open-access model available. For our
experiment, we utilized GPT in zero-shot
mode. At the time this work was conducted,
ChatGPT-3.5 had only very recently been re-
leased. As a result, we couldn’t fully explore
different prompt engineering techniques and
we were constrained on relying solely on us-
ing -3.5 in a zero-shot mode. Specifically, we
presented the model with a list of complex sen-
tences and tasked ChatGPT 3.5 with simpli-
fying them for school children aged 8 to 11
with a reading comprehension deficit. Sub-
sequently, we computed our evaluation scores
based on the simplified answers generated by

ChatGPT, comparing them to the ground truth
provided in our annotated corpus.

5.3 Evaluation Metrics

For assessing the performance of both models,
we employed well-established metrics for both
automatic machine translation and text simpli-
fication evaluations, SARI (Xu et al., 2016)
and BLEU (Papineni et al., 2002), on our test
corpus. We qualitatively inspected the output
data to examine the results from each model.
Finally, we involved experts specialised in lan-
guage disabilities to conduct a human evalua-
tion.

SARI and BLEU were chosen for assessing
the performance of both models, because of
their use in previous work (Van den Bercken
et al., 2019; Monteiro et al., 2022; Cardon and
Grabar, 2020). SARI (System-level Automatic
Reviewer for Machine Translation) is a met-
ric designed to assess the quality of machine-
generated sentences, particularly within the
context of machine translation. It centers
on evaluating the fluency and preservation
of meaning in the generated sentences when
compared to reference sentences. In contrast,
BLEU (Bilingual Evaluation Understudy) is
a widely used metric for evaluating machine-
generated sentences, primarily within machine
translation contexts. It quantifies the similar-
ity between the generated sentence and one or
more reference sentences through an n-gram
overlap comparison.

These metrics however have several draw-
backs to evaluate text simplification output,
as pointed out in the literature (Sulem et al.,
2018; Al-Thanyyan and Azmi, 2021). We
thus also included qualitative human evalua-
tion of the results by qualitatively inspecting
the output data to examine the results from
each model. We gathered a panel of experts
specialized with domain-specific expertise, i.e.
speech and language therapists at a partner
specialised center in the rehabilitation of Neu-
rodevelopment2 to conduct a human evalua-
tion, with a specific focus on young children
diagnosed with language disabilities. The cri-
teria for selection was their expertise in lan-
guage learning and disabilities. All annota-
tors were provided with detailed information
regarding the study’s purpose, their role in
the evaluation and the nature of the data that
they were scoring. The experts were not reim-
bursed financially; however, their participation
was voluntary and they were provided with

2https://www.crc-balbuzie.it/

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

180

https://optuna.org/
https://optuna.org/
https://chat.openai.com/
https://www.crc-balbuzie.it/


informed consent before the beginning of the
study.

The evaluation of the quality of the text sim-
plification corpus was made possible through
the utilisation of a Google Form available at
this link 3. The form evaluated scales from
0 to 5 (being 0, the lowest and 5, the high-
est values) concerning grammatical correct-
ness, maintenance of meaning, and level of
simplicity gained as similar work in the liter-
ature (Xu et al., 2016). We selected 10 sen-
tences to represent both the highest and lowest
cosine distances between the sentences gener-
ated by ChatGPT-3.5 and our model. Specif-
ically, we selected five pairs with the highest
cosine distances and five pairs with the low-
est. These sentences have been put at disposal
to the ten experts who participated in the users
studies. Several considerations prompted this
approach: firstly, we needed a manageable
sample size feasible for evaluation within our
available annotators. Secondly, by including
both the most divergent and the most similar
cases, we aimed to ensure robustness in ex-
treme scenarios and reduce bias in our eval-
uation method.

6 Results

In this section we report results on the auto-
matic and human evaluation conducted.

Dataset SARI BLEU

Palmero Aprosio et al. (2019) 49.49 N/A

(A) Fine-tuned + Original PACCS-IT Dataset 57.10 46.00
(B) Fine-tuned + Merged and Cleaned Dataset 55.64 49.78

(C) Fine-tuned + Augmented Dataset 51.51 47.40
(D) Fine-tuned + Augmented + Adaptive Component 60.12 50.30

ChatGPT-3.5 40.51 15.00

Table 4: SARI and BLEU scores for all our fine-tuned
models with the combinations of the different datasets.

6.1 Automatic Evaluation

In our work, we conducted three different fine-
tuning runs using the same fine-tuned model
and equivalent hyper-parameters using three
different training data, as it can be seen in Ta-
ble 4. These three models correspond to model
(A), (B) and (C) in the table.

The first fine-tuning of the model, i.e. (A), was
done using the original version of PaCCSS-
IT. It resulted in a SARI score of 57.10 when
evaluated on the test corpus. This score was

3Click here to access the Google Form

higher than the current state-of-the-art for Ital-
ian language Automatic Text Simplification
task (Palmero Aprosio et al., 2019). Given
the errors manually noticed, it was hypothe-
sized that the high SARI score achieved during
fine-tuning resulted from over-fitting to poor-
quality data, representing a learning fallacy.
To investigate this hypothesis, we fine-tuned
our model using the curated version of our
dataset, i.e. (B). In this case, SARI fell by two
points (55.64). This improvement may be at-
tributed to the inclusion of three merged cor-
pora (Teacher, Terence, and Simpitiki), which
provided the model with more diverse mate-
rial to learn from and thus greater flexibility in
the generative phase. The lower SARI value
could precisely reflect this behavior and shed
light on the previous over-fitting. Following
the previous result, we conduct the final fine-
tuning with the Augmented dataset,i.e. (C). At
this stage, we note that SARI is another 4 per-
centage points lower than in the last training
(51.51). Finally, we fine-tuned an additional
model (D), adding the adaptive component de-
tailed in section 4 and using our augmented
dataset. Our model obtains a SARI score equal
to 60.12 and a BLEU score of 50.30 on the
same test set, achieving the best results over
the four fine-tuned models.

GPT-3.5 exhibited notably lower performance,
yielding a SARI score of 40.51 and a BLEU
score of 15.00 on the same test set4. GPT-
3.5’s notably lower performance in compari-
son to the fine-tuned transformer model within
the context of text simplification can be at-
tributed to several factors. Firstly, the fine-
tuned transformer model likely benefited from
training data and therefore domain adaptation
while, GPT-3.5 was used in a zero-shot mode.
Secondly, the fine-tuned transformer model’s
architecture and parameters were carefully
adapted to the nuances of text simplification,
a step that might have been omitted in GPT’s
preparation. Finally, the ability to control the
level of simplification plays a vital role in
effective text simplification (Nishihara et al.,
2019; Xu et al., 2016). The nuanced interplay
of these factors contributes to the observed
performance disparities in the presented con-
text and it pushed us to perform also a qualita-
tive evaluation. All the results are presented in
Table 4.

However, despite this good performance on
the standard formal metric, a manual and vi-
sual evaluation of the generated simplifica-

4The test corpus is available for exploration via the fol-
lowing link
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Input Test Set Chat GPT Best Performing Model

A cosa è dovuto ciò Perché è successo? A cosa è dovuto?
What is this due to Why did it happen? What is it due to?

Beh, questo è tutto un altro discorso Beh, questa è tutta un’altra storia É tutto un altro discorso
Well, that’s a whole other story Well, that’s a whole other story That’s a whole other speech

Ma non ne farei un dramma Non dovremmo preoccuparci troppo di questa cosa Ma non faceva un dramma
But I wouldn’t make a drama out of it We shouldn’t worry too much about it But it wasn’t a drama

Tutti erano nell’atmosfera della festa Tutti erano felici e festosi Era nell ’ atmosfera della festa
Everyone was in the party mood Everyone was happy and festive It was in the party mood

Ma questo è vero solo in teoria Ma questa teoria è vera solo sulla carta Questo è vero in teoria
But this is only true in theory But this theory is only true on paper This is true in theory

Table 5: Example of some simplifications on the test corpus given by our model and GPT-3.5.

tions revealed several issues. The simplifica-
tions were found to be misleading and con-
tained frequent gross errors. For instance, the
reference sentences in the dataset were some-
times not very informative in terms of simpli-
fications and appeared to be alternative ver-
sions of the complex sentence but not simpli-
fied ones, as shown in Table 6.

Simple Complex

Questa sarebbe una cosa
positiva

Questa è una cosa gravis-
sima

This would be a positive
thing

This is a very serious
thing

Ma facciamo un passo più
avanti

Ma facciamo un lungo
passo indietro

But let’s take a step for-
ward

But let’s take a long step
backward

Table 6: The original complex sentences from the test
dataset and simplifications produced by the fine-tuned
model; highlighting mistakes in italics.

6.2 Human Evaluation

6.2.1 Qualitative Analysis

In a later stage, we inspected the generated
simplified sentences given by our models. We
found that while the simplification efforts un-
dertaken by ChatGPT-3.5 are generally sat-
isfactory upon close qualitative examination,
there are instances where the simplifications
verge on being abstract. The generated sim-
plifications at times involve conceptual ab-
stractions that could potentially introduce an
unintended layer of complexity as it can be
seen in Table 5. This paradoxical outcome
could arise because the model simplify, yet
occasionally employs abstract concepts that
might prove too complex for the intended au-

dience, especially young children or individ-
uals with specific clinical diagnoses. In fact,
ChatGPT sometimes seems to capture greater
nuances of cause-and-effect or context than an
8- to 11-year-old child who has limited expe-
rience of the world and thus may struggle to
make such detailed connections, and as a re-
sult, the simplification proposed by ChatGPT
can sometimes be difficult for children to in-
terpret. For instance, ChatGPT-3.5 might at-
tempt to convey a complex idea by substituting
certain words or phrases with simpler alterna-
tives. However, in doing so, it might inadver-
tently introduce terms that are not within the
immediate vocabulary of the target audience
or that require a certain level of background
knowledge to be fully understood. This kind of
simplification could lead to confusion or mis-
interpretation among individuals who require
the content to be presented always in an easily
accessible manner.

6.2.2 Experts Evaluation

To complete our qualitative analysis, we asked
experts to evaluate the results given by the
models. This evaluation yielded mixed re-
sults as it can be seen in Figure 3. When
we compared the scores of the two models
based on the chosen criteria (grammaticality,
meaning preservation, and level of simplifica-
tion), there was not a significant difference be-
tween them. This is in contrast to the results
of the automatic evaluation, where our fine-
tuned transformer model appeared to outper-
form ChatGPT-3.5 on our test set. This high-
lighted the fact that we are still lacking an eval-
uation mechanism that is both objective and
aligns closely with human judgment. With-
out an accurate way to assess the quality of
text generated by a simplification model, it be-
comes challenging to implement effective con-
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Figure 3: The plots with the form’s results. The sentences were re-arranged and their order do not reflects their
cosine distances.

trols. This underscores that research in this
area is still very much in an experimental stage
and is in its early phases.

7 Conclusions and future work

In this paper, we curated a comprehensive cor-
pus by cleaning and combining existing re-
sources, we fine-tuned an adaptive transformer
model for the sentence simplification task in
Italian, we integrated an adaptable compo-
nent to tailor simplifications for specific tar-
get groups, we evaluated the model by com-
paring it to ChatGPT-3.5, through both quan-
titative and qualitative assessments, including
expert and automatic evaluations of the simpli-
fied text. The automatic evaluation highlighted
that the fine-tuned version of BERT model
seem the better suited for the task. Moreover
the adaptive component increase the State-Of-
The-Art (SOTA) results by 11 points. Lastly,
LLMs, particularly GPT-3.5, have shown sig-
nificant advancements in the generation of co-
herent and fluently articulated text, but a sub-
stantial scope for improvement persists con-

cerning the crafting of textual content that
aligns effectively with the requisites of indi-
viduals possessing particular diagnostic pro-
files or clinical conditions. This progress can
hold promising implications for Computer-
Assisted Language Learning, as it can facil-
itate the creation of tailored educational ma-
terials that accommodate the unique learning
needs and abilities of diverse student popula-
tions. Finally, we believe that there is still
much to do to improve the current evaluation
metrics for automatic text simplification to un-
derstand the nuances and potential biases they
may introduce and to make sure they align
with human evaluation. Developing and re-
fining new evaluation metrics tailored specif-
ically for populations with diverse linguistic
needs and clinical conditions could be a cru-
cial step forward the use of NLP in clinical and
educational contexts. Finally, more extensive
and robust user studies are required to evaluate
the effectiveness of GPT-3.5 in generating text
for specific user groups.
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Abstract
This paper presents work-in-progress on de-
veloping a conversational tutoring system de-
signed to enhance non-native English speak-
ers’ language skills through post-meeting
analysis of the transcriptions of video confer-
ences in which they have participated. Fol-
lowing recent advances in chatbots and agents
based on large language models (LLMs), our
system leverages pre-trained LLMs within an
ecosystem that integrates different techniques,
including in-context learning, external non-
parametric memory retrieval, efficient param-
eter fine-tuning, grammatical error correction
models, and error-preserving speech synthesis
and recognition. While the system is still in
development, a preliminary pilot evaluation of
a prototype has been conducted with L2 En-
glish students.

1 Introduction

In an increasingly interconnected world, the abil-
ity to communicate effectively in English has be-
come a vital skill, especially in professional set-
tings where English has firmly established itself as
the lingua franca (Nickerson, 2005; Shegebayev,
2023). However, this requirement often leads to
challenging situations for many non-native speak-
ers who, when participating in meetings, presen-
tations, and discussions conducted in English, fre-
quently find themselves navigating the complexi-
ties of the language under the potential scrutiny of
more fluent colleagues. This dynamic can create
a stressful environment, hindering effective com-
munication and the free flow of ideas, leading to
misunderstandings, and impacting the confidence
and performance of less-proficient speakers (Aich-
horn and Puck, 2017). These linguistic shortcom-
ings are often silently noted by other participants,
but rarely addressed in a constructive manner, and

This work is licensed under a Creative Commons
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the very settings where these individuals most fre-
quently use English are not leveraged as opportu-
nities for improvement.
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Figure 1: Main components of the DeMINT system.
Section 3 describes each component thoroughly.

Although a human tutor could provide valuable
feedback and guidance to help non-native speak-
ers improve their language skills, this solution is
often impractical due to logistical constraints, fi-
nancial considerations, or the reluctance to intro-
duce additional complexity into an already de-
manding professional life. To address this gap, we
propose an automated language debriefing system
that leverages the transcripts of online meetings to
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provide feedback and guidance to non-native En-
glish speakers (L2-English), thus mimicking the
role of a language instructor. Our system, called
DeMINT after the project in which it was de-
veloped, is implemented as an educational chat-
bot (Du and Daniel, 2024) that interacts with users
in a conversational manner, thereby transforming
everyday professional interactions into valuable
opportunities for language improvement.

Conversational intelligent tutoring systems
(ITS) are set to revolutionize the field of edu-
cation, offering one-to-one, personalized, inter-
active, engaging, and inclusive learning experi-
ences to students. Their application in computer-
aided language learning (CALL) is particularly
promising, as contemporary large language mod-
els (LLMs) show remarkable capabilities in lan-
guage understanding and generation. While such
systems were explored in the past (Jia, 2009;
Bibauw et al., 2019), only with the advent of con-
temporary LLMs have functional implementations
become feasible.

Our ITS aims to leverage LLMs in a CALL
application to improve speakers’ language skills
through interactive, personalized, and error-driven
conversations. A functional prototype has been
evaluated in a pilot study with L1 Spanish/L2 En-
glish learners. The source code, along with links
to models and datasets, is available online.1

The rest of the paper is organized as follows.
Section 2 reviews related work on chatbots in edu-
cation. After that, Section 3 describes DeMINT’s
design and its main components. Then, Section 4
outlines the human evaluation. After the conclu-
sions and potential future work described in Sec-
tion 5, the ethical considerations of the project and
the main limitations are highlighed.

2 Related Work

The year 2022 marks a turning point where the
capabilities of LLMs for conversational and edu-
cational tasks, in general, and ITS, in particular,
became evident. Despite this, prior research had
already demonstrated the potential benefits of us-
ing traditional chatbots within dialog-based CALL
scenarios for L2 learners (Jia, 2009; Bibauw et al.,
2019; Huang et al., 2022; Yang et al., 2022), iden-
tifying pedagogical, technological, and social af-
fordances (Jeon, 2024).

1https://github.com/transducens/demint

Shortly after the release of ChatGPT in Novem-
ber 2022, several studies explored its potential for
L2 teaching. A survey among English-as-foreign-
language faculty instructors by Mohamed (2024)
highlighted ChatGPT’s ability to enhance profi-
ciency and motivation, while also emphasizing the
need to address limitations and ethical concerns.
A meta-analysis by Zhang et al. (2023) of 18 ar-
ticles on chatbot-assisted language learning con-
cluded that “using chatbots for language learning
has a positive impact, and the learning outcomes
are better than those in non-CALL situations.” A
more recent meta-study by Cislowska and Acuña
(2024) observed that “the use of chatbots can pos-
itively affect students’ attitudes toward learning a
foreign language, enhancing motivation, interest,
fun, proactivity, and learning commitment”; how-
ever, they also noted that “the novelty effect may
decrease motivation over time, and lacking a hu-
man factor may fail to meet emotional needs and
decrease motivation.” Several other recent reviews
have reached similar conclusions (Labadze et al.,
2024; Du and Daniel, 2024).

Additionally, the emergence of commercial AI-
driven language learning assistants developed by
companies like Duolingo,2 Google,3 or TalkPal4

underscores the growing importance and effective-
ness of LLM-based CALL systems. In spite of
the potential of these systems, we are not aware of
many open-source projects that implement a com-
prehensive conversational ITS for L2 learning as
ours, especially one that leverages the transcripts
of online meetings to provide feedback and guid-
ance to L2-English speakers.

3 System Description

Our system design draws from recent chatbots like
BlenderBot3 (Shuster et al., 2022) which are built
as a pipeline of different modules that mainly con-
sist of LLMs fine-tuned for specific tasks.5

A diagram of the main components of DeMINT
is shown in Figure 1 on the first page. As can be
seen, the system is composed of several modules
that interact with each other to provide a compre-

2https://blog.duolingo.com/duolingo-max
3https://research.google/blog/english-learn

ers-can-now-practice-speaking-on-search
4https://talkpal.ai
5This also resonates, albeit on a smaller scale, with the

revitalization of Minsky’s societies of mind theory (Min-
sky, 1986) in the form of natural language-based societies
of LLMs and other machine learning models mindstorming
together to solve a problem (Zhuge et al., 2023).
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hensive tutoring experience. Some of them are
based on pre-trained LLMs, pre-trained sequence-
to-sequence models or ad-hoc models, while oth-
ers rely on external resources such as textbooks on
English grammar. Next sections describe each of
these modules in detail. The pipeline of modules
outside of the chatbot box in Figure 1 is run offline
before the chatbot starts interacting with the user.

3.1 Diarization

The pipeline starts by processing the audio
recordings of the target online meeting and
identifying the segments corresponding to each
speaker. This is done by using the library
pyannote.audio (Bredin, 2023; Plaquet and
Bredin, 2023), which relies on a neural speaker
diarization model (Takashima et al., 2021). The
diarization process returns the start and end times
of each speaker turn, as well as the speaker ID.

The audio fragments corresponding to each
speaker are then individually processed by the
speech recognition system described in the next
section. Remarkably, an alternative approach has
been recently proposed where diarization and tran-
scription are performed in parallel, and the outputs
are subsequently combined.6

3.2 Speech Recognition

As our error analysis pipeline is performed on the
written transcriptions of the online meetings, a
speech-to-text (STT) model is needed to transcribe
the utterances for each speaker. Our initial ap-
proach was to directly use open-weight pre-trained
models such as Whisper (Radford et al., 2023),
but preliminary tests showed that they were not
entirely suitable for our purposes, due to the fact
that their strong internal language model tends to
correct some of the grammatical errors in the ut-
terances. For example, the Whisper model would
often transcribe “I ∗doesn’t know” as “I don’t
know”, which is unacceptable for our purposes as
the original grammar errors need to be faithfully
preserved. Consequently, our system includes a
custom error-preserving STT model that retains
more grammatical errors. This model is obtained
by fine-tuning Whisper on a custom dataset of
spoken sentences with grammatical errors that we
specifically created for our system.7

6https://huggingface.co/blog/asr-diarizati
on

7Michot et al. (2024) recently demonstrated that certain
CTC-based encoder models corrected slightly fewer errors

The ad-hoc dataset comprises both synthetic
and natural texts containing grammatical errors.
The natural texts are sourced from the COREFL
dataset (Lozano et al., 2020), which contains es-
says by non-native students with varying levels of
English proficiency.8 COREFL includes some au-
dio recordings of students reading their texts, as
well as written compositions. However, since only
a small percentage of the texts have correspond-
ing audio recordings, we have also converted writ-
ten texts into audio using the StyleTTS2 text-to-
speech (TTS) model (Li et al., 2023), which allows
us to synthesize each text with multiple voices,
thereby increasing the diversity of the training
data. On the other hand, the synthetic texts come
from the C4200M dataset (Stahlberg and Kumar,
2021), which contains heterogeneous grammati-
cally incorrect sentences synthetically generated
via a corruption model.9 We have converted these
sentences into audio using the same StyleTTS2
model. The resulting dataset contains 32,000
speech training samples, 1,000 validation samples,
and 1,000 test samples. The training set is com-
posed of 28,592 utterances from C4200M, 814 au-
dios directly obtained from COREFL, and 2,594
synthetic utterances generated from the COREFL
written texts. The test and validation sets are
similarly divided between the two sources. This
dataset is then used to fine-tune Whisper, which
is subsequently employed to transcribe the au-
dio from the online meetings. Further details on
the hyperparameters used for model fine-tuning
can be found in the appendix. The two resulting
models—one based on the original Whisper model
and the other on its distilled version, which is the
one we ultimately used—are available on the Hug-
gingFace hub.1011

than the encoder-decoder-based Whisper model, which they
attributed to the reduced influence of the language model, but
this came at the expense of degraded overall performance. As
a result, we continue to use Whisper in our system. It is worth
noting that their study addresses a similar challenge, aiming
to develop error-preserving STT models. While our approach
is primarily automatic, their work involves the collection and
annotation of a corpus containing English grammatical errors
from young learners.

8Given that our evaluation will primarily involve students
whose mother tongue is Spanish, we use only the subset of
COREFL produced by Spanish students.

9In order to avoid the fine-tuned model relying too much
on ungrammatical utterances, we add clean utterances from
the correct side of C4200M to the training dataset as well.

10https://huggingface.co/Transducens/error-p
reserving-whisper

11https://huggingface.co/Transducens/error-p
reserving-whisper-distilled
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Both datasets complement as C4200M provides
a wide range of sentences and errors, although
with a limited repertoire of voices, while COREFL
offers a more diverse set of voices, accents, and
natural errors. The COREFL dataset has the addi-
tional advantage of allowing our system to adapt
to the accents and errors typically made by L1-
Spanish speakers, who are the users in our pi-
lot study. Due to the licensing restrictions of
COREFL, only the dataset portion based on the
C4200M dataset has been released on the Hugging-
Face hub as the Synthesized English Speech with
Grammatical Errors Dataset (SESGE).12

Each transcribed utterance is split into sen-
tences13 before proceeding to the next step, and
each sentence is associated with the speaker ID.

3.3 Grammatical Error Correction

Core to our work, grammatical error correction
(GEC) is a well-known NLP task that aims to cor-
rect grammatical errors in a given text (Bryant
et al., 2023; Omelianchuk et al., 2024). There
are established shared tasks (Bryant et al., 2019)
and datasets such as FCE (Yannakoudakis et al.,
2011), NUCLE (Dahlmeier et al., 2013), Lang-
8 (Mizumoto et al., 2011; Tajiri et al., 2012),
W&I+LOCNESS (Bryant et al., 2019), and JF-
LEG (Napoles et al., 2017). A GEC model trans-
forms a sentence with grammatical errors into a
grammatically correct one.

Our system currently employs a relatively sim-
ple model obtained by fine-tuning the T5 encoder-
decoder model (Raffel et al., 2020) on the JF-
LEG dataset,14 but we are considering using
more advanced state-of-the-art models such as
GRECO (Qorib and Ng, 2023) or the ensembles
provided by Omelianchuk et al. (2024).15

3.4 Error Annotation

Given the original and the corrected version of
each sentence, we use the ERRANT toolkit16 (Fe-
lice et al., 2016; Bryant et al., 2017) to ex-
tract and annotate the edits necessary to trans-
form one sentence version into the other. ER-

12https://huggingface.co/datasets/Transducen
s/sesge

13Sentence splitting is achieved using the Python’s pack-
age sentence-splitter.

14https://huggingface.co/vennify/t5-base-gra
mmar-correction

15https://github.com/grammarly/pillars-of-g
ec

16https://github.com/chrisjbryant/errant

RANT accomplishes this by applying an extended,
linguistically-motivated version of the classical
Levenshtein distance (Levenshtein, 1966), fol-
lowed by a rule-based labeling of the edits. The
resulting annotations are stored in the M2 format
and then integrated into the JSON schema used
as the intermediate format between the different
components of our system.

3.5 Error Explanation

As ERRANT provides high-level annotations such
as R:VERB:SVA (error in subject-verb agree-
ment) without additional details, an LLM is used
to generate finer-grained natural-language expla-
nations of these errors via few-shot in-context
learning. This aligns with recent works on using
LLMs to further explain corrections made by GEC
models (Fei et al., 2023; Kaneko and Okazaki,
2024; Song et al., 2024). These explanations will
later inspire the chatbot’s responses to the user.

Among all the open-weight, locally-installable
LLMs available, we have found Llama-3.1-8B17

to offer a good balance between speed and qual-
ity. Regarding the prompts used to query the
model, we are considering using the DSPy frame-
work (Khattab et al., 2023) to automatically gen-
erate them via DSPy’s principled search mecha-
nism (Khattab et al., 2022).18

3.6 Retrieval from Textbooks

Another component of the pre-processing pipeline
is a module that retrieves information from En-
glish learning textbooks based on the errors be-
ing analyzed. This information will be one of
the inputs provided to the chatbot’s next-dialog-
line generator at the end of the pipeline. We col-
lected six PDF textbooks to be consulted under
the retrieval-augmented generation (RAG, see be-
low) approach, either open-licensed or available
from archive.org. These English textbooks
are valuable not only for their explanations of
grammatical rules but also for the real examples
of language usage they provide.19

17https://huggingface.co/meta-llama/Meta-Lla
ma-3.1-8B-Instruct

18We have found that DSPy’s compile function is useful
even for simple chains involving a single model, as it allows
us to easily replace the model without manually rewriting the
prompt, and also enforces a certain structure in the JSON out-
put.

19We also plan to use an LLM as a source of this kind of
grammatical information and examples, and to compare the
results of both approaches.
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Retrieval-augmented generation (RAG) encom-
passes a variety of techniques that integrate in-
formation from external documents into the gen-
eration process (Lewis et al., 2020). Naïve ap-
proaches to RAG involve segmenting documents
into passages, computing an embedding for each
passage, and storing both texts and embeddings in
a vector database. Based on the current topic (each
particular error in the use of English in our case),
the most relevant passages are retrieved from the
database by efficiently computing the similarity
between an embedding of the topic and the em-
beddings of the passages. These selected passages
are then provided to an LLM as a source of infor-
mation for generating the output.

Our system employs the state-of-the-art Col-
BERTv2 model (Santhanam et al., 2022b), as im-
plemented by the RAGatouille20 library. Col-
BERTv2 computes token-level embeddings for
passages and queries, making it more suited to
our task than alternatives that compute a sin-
gle dense embedding for each paragraph, as
books’ passages are likely to contain heteroge-
neous information such as grammar rules, open-
domain examples, and exercises. ColBERTv2 is
combined with a technique called performance-
optimized late interaction driver (PLAID) (San-
thanam et al., 2022a), which replaces conventional
vector databases such as FAISS (Douze et al.,
2024) with a more efficient and scalable approach
based on using centroids of clusters of embed-
dings instead of the embeddings themselves. Ad-
ditionally, the RAGatouille documentation states
that its implementation of ColBERTv2 is robust in
new domains and includes strong default settings,
thereby eliminating the need for fine-tuning.

The above modules run offline prior to the de-
briefing session. Next, we describe those actively
engaging in the chatbot’s interaction with the user.

3.7 Empathetic Teacher
Another ingredient fed to the next-dialog-line gen-
erator comes from an LLM fine-tuned with real-
life, ideally-empathetic teacher-student conversa-
tions. This model processes the recent con-
versation history and provides guidance on how
a teacher might respond to the student’s utter-
ance. In order to obtain this model, we fine-tuned
the Llama-3.1-8B model21 with the following

20https://github.com/bclavie/RAGatouille
21https://huggingface.co/meta-llama/Met

a-Llama-3.1-8B

datasets: the Teacher-Student Chatroom Corpus,
TSCCv2 (Caines et al., 2022), CIMA (Stasaski
et al., 2020), the Multicultural Classroom Dis-
course Dataset (Rapanta et al., 2021), Math-
Dial (Macina et al., 2023), and Conversational Up-
take (Demszky et al., 2021). Some of the datasets
were preprocessed in order to split very long con-
versations resulting in the figures shown in Ta-
ble 1. The resulting collection of 6 503 conversa-
tion turns was split into 5 859 for training, 322 for
validation, and 322 for testing, with each dataset
contributing proportionally the same across these
splits. Further details on the training hyperpa-
rameters are provided in the appendix. The fine-
tuned teacher model is available on the Hugging-
Face hub.22

Dataset Original Split turns
Turns Words Turns Words

TSCC v2 570 788k 1 074 786k
CIMA 1 135 44k 1 135 38k
MathDial 2 861 923k 2 876 879k
Multicultural 5 614k 643 614k
Uptake 774 35k 775 34k
Total 5 345 2 404k 6 503 2 351k

Table 1: Datasets used to train the empathetic teacher.
Number of conversation turns and words in the original
datasets and after splitting long conversations.

3.8 Orchestrator
The orchestrator is a simple Python program that
iterates through the different errors and sentences
to discuss them with the user during the debrief-
ing session. For the current target error and sen-
tence, the orchestrator prepares a complex prompt
that includes the original sentence, the corrected
sentence, the current error to review, the error an-
notation, the explanation of the error, the related
information extracted from textbooks, the hints of
the empathetic teacher’s response, the short-term
conversation history and a summary of the mid-
to-long-term most relevant topics discussed with
the user. Note that many of these items are by-
products of the components described above. The
orchestrator takes also into consideration the di-
rectives of the knowledge tracing module (see be-
low) as regards the current state of the conversa-
tion flow and the user’s understanding level. This
long prompt will then be fed to the next-dialog-
line generator.

22https://huggingface.co/Transducens/empathe
tic-teacher
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The prompt consists of several key parts. First,
the chatbot receives instructions on guiding the
user through explanations, examples, and exer-
cises to address the errors. It also outlines a set
of user intentions for different interaction stages,
with specific actions the chatbot must take for
each. The prompt also includes the items gener-
ated in the pre-processing pipeline. Finally, con-
cise instructions guide the chatbot to identify the
user’s intention, generate a suitable response, and
output both following a JSON template. Addi-
tional guidelines ensure that responses are brief,
engaging, and flexible beyond the provided data.

3.9 Knowledge Tracing
In order to guide the conversational flow, we
first considered a traditional strategy based on a
state transition model, with states representing the
user’s position in the learning path. However, we
later found that the language model could manage
the conversation flow autonomously via in-context
learning and intention detection, without the need
for extensive external intervention to track the di-
alog state. Transitions are therefore naturally han-
dled by the LLM, based on the user’s responses.
Errors are prioritized based on frequency, accord-
ing to the ERRANT’s classes.

3.10 Next-Dialog-Line Generator
Although all LLMs used in the previously dis-
cussed components of DeMINT are implemented
as local open-weight models, our preliminary ex-
periments show that the best results are achieved
when the next-dialog-line generator in particular is
a more powerful LLM. Currently, GPT-4 accessed
via the OpenAI API23 is our preferred choice for
this task.24 This component faces the challenging
task of generating the next line of the conversation
based on the informative prompt prepared by the
orchestrator. The output of this generator is then
presented to the user as the chatbot’s response.

3.11 Chatbot Interface
The interface is a simple web app built with
gradio.25 It shows the chatbot conversation in
one column and the transcription, centered on the

23https://openai.com/api
24In particular, we use the gpt-4o-2024-08-06

model, which, in addition to being one of the most powerful
LLMs available today, includes the built-in feature structured
outputs that enforces the generation of outputs in a specific
JSON schema, thereby simplifying the ensuing parsing.

25https://github.com/gradio-app/gradio

current sentence, in another. The user types their
input, and the machine responds accordingly on
the screen.

4 Human Evaluation

A preliminary evaluation26 has been conducted
through interactions between the chatbot and L1-
Spanish/L2-English students. These students have
been recruited through the Languages Service of
our university, which maintains a pool of stu-
dents registered for activities related to multilin-
gualism promotion. This service retains informa-
tion regarding the students’ backgrounds, native
languages, proficiency levels in languages, etc.
Among the students willing to participate in this
evaluation, 7 participants were selected, each dedi-
cating approximately 10 hours to evaluation activi-
ties. We targeted students with B2/C1 levels of En-
glish according to the Common European Frame-
work of Reference for Languages, and aimed to
create a balanced group in terms of gender and di-
versity of backgrounds.

Fifteen video calls of approximately 10 min-
utes were organized among the selected students,
with two or three participants per call. We em-
ployed role-playing games, specifically designed
to engage students in English conversations. Role-
playing games help avoid the difficulties associ-
ated with anonymizing real online meetings and
allow us to control the topics and complexity of
the conversations. Specifically, we have used the
materials designed by Pitts (2015), which provide
the context for the role-playing games, as well as
preparatory questions to help students familiarize
themselves with the topic. Students were given
time to prepare for the online meeting. These
video calls were recorded, and students then par-
ticipated in a debriefing session with our chatbot
to analyze errors in their use of English during the
online meeting. Finally, students completed a sur-
vey to evaluate their interaction with the chatbot.

Feedback from the human evaluation addressed
two main areas: overall user experience and the
chatbot’s effectiveness as an English tutor, with
responses rated on a Likert scale from 1 to 5. Re-
garding the first aspect, participants were gener-
ally satisfied with the tool’s performance and re-
sponse time. In response to the question, “Did
you enjoy interacting with the chatbot?”, all par-
ticipants gave positive feedback, with a score of 4

26The empathetic teacher was disabled during evaluation.
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or 5. However, fluency emerged as the system’s
main area requiring improvement, with an aver-
age score of 3. In terms of the chatbot’s perfor-
mance as an intelligent English tutor, the overall
evaluation was positive, though some areas still
require enhancement. The main concern of the
participants in this evaluation was the accuracy of
the chatbot in identifying speech errors, which re-
ceived an average of 3. Other aspects, such as
the chatbot’s ability to understand their queries,
or the usefulness of examples and resources pro-
vided by the chatbot, were rated with an average
score of 3.3. The clarity of the chatbot’s error ex-
planations received a slightly higher average score
of 3.4. Notably, most participants agreed that the
chatbot helped improve certain aspects of their En-
glish, with five out of seven giving a score of 4 for
this question. Additionally, when asked whether
they would be interested in using a similar chat-
bot in future video conferences, all participants but
one gave scores of 4 or 5, demonstrating a general
interest in this kind of tools.

The audio recordings from the online meetings,
descriptions of the role-playing activities, and the
corresponding transcriptions are available as part
of the English Learners Role-Playing Dialogue
Dataset (ELRD), released under a CC license.27

Although we do not plan to involve human En-
glish teachers in the near future to evaluate the sys-
tem’s error detection capabilities or the interaction
between chatbot and students from a teacher’s per-
spective, we are considering this for later stages.

5 Conclusions

In this paper, DeMINT, an innovative conversa-
tional intelligent tutoring system designed to en-
hance English proficiency of non-native speak-
ers through the analysis of online meeting tran-
scriptions, has been presented. Our system lever-
ages the latest advancements in LLMs and inte-
grates various techniques such as in-context learn-
ing, retrieval augmented generation, grammatical
error correction, and error-preserving speech syn-
thesis and generation. We have provided a com-
prehensive overview of the system’s architecture,
including modules for diarization, speech recog-
nition, error correction and annotation, error ex-
planation, knowledge tracing and chatbot orches-
tration. A pilot evaluation of the system’s ef-
fectiveness through controlled interactions with

27https://github.com/transducens/elrd

L2-English students has been carried out utiliz-
ing role-playing games to simulate real-life con-
versations. Our ultimate goal is to create a scal-
able, accessible tool that mimics the guidance of a
human tutor, providing personalized and context-
aware feedback to help non-native speakers im-
prove their language skills by conveniently lever-
aging their everyday interactions in English. The
code, data, and models developed for this project
have been openly released across various reposi-
tories to promote further research in the field. The
central code repository28 contains links to the ad-
ditional datasets and models.

Despite being a work-in-progress, we already
foresee some future developments. Potential en-
hancements include supporting voice cloning with
tools such as XTTS-v2 (Casanova et al., 2024) so
that the error-preserving STT model can be fine-
tuned with each user’s voice before the debriefing
session. Another line of future research involves
integrating conversational interaction with users
through speech, thus helping students to improve
not only their grammatical skills but also their
pronunciation. Most components of the system
will likely benefit from new emerging models and
techniques; for example, for the error explanation
module, very recent end-to-end systems that pro-
vide error explanations such as xTower (Treviso
et al., 2024) are worth exploring. Additionally,
multimodal models could be investigated to inte-
grate the non-verbal aspects of online meetings,
such as facial expressions and body language. Fi-
nally, another area of future work is to conduct an
ablation study to determine the relevance of each
component within the overall system and explore
their potential replacement by a more advanced
prompting strategy on the final LLM model.

Acknowledgments. DeMINT (Automated Lan-
guage Debriefing for English Learners via AI
Chatbot Analysis of Meeting Transcripts) is a
project funded via FSTP (financial support to third
parties), a mechanism by the European Union to
support smaller projects through grants provided
by larger, EU-funded initiatives. DEMINT is
funded under the UTTER29 (Unified Transcription
and Translation for Extended Reality) project, a
collaborative Research and Innovation project un-
der Horizon Europe, grant agreement 101070631.

28https://github.com/transducens/demint
29https://he-utter.eu/
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Ethics

Since the human evaluation involves collecting
and distributing data from participants, special
care has been taken to adhere to relevant ethical
guidelines30 and applicable data protection laws.
Specifically, the research ethics committee of our
university has overseen the experimental process.
Each participant was informed about how their in-
teraction with the model would be used and dis-
seminated, and they signed a consent form. Ad-
ditionally, participants’ personal information has
been pseudonymized in the released data.

Limitations

Our current system has several limitations that we
are aware of. First, the system is currently de-
signed to work with L1-Spanish/L2-English stu-
dents. Although the system could be adapted
for other languages, this would require additional
fine-tuning of the models and the incorporation of
language-specific resources. Additionally, the sys-
tem is currently designed to provide feedback on
grammar errors and language usage, but it does not
address other aspects of language learning such as
vocabulary acquisition or pronunciation. Achiev-
ing fluency in the communication with the chatbot
poses a significant challenge, and the system may
fall short of reaching the spontaneity of a human
tutor. Finally, some users may prefer reviewing
a report over interacting with a chatbot, as non-
native speakers are often aware of many errors
caused by the improvisation required during con-
versation, which they would not make in writing.

A Fine-tuning hyperparameters

Empathetic teacher. To fine-tune Llama-3.1-
8B to function as the generic teacher described in
Section 3.7, we employed the parameter-efficient
8-bit QLoRA method (Dettmers et al., 2023) us-
ing a single A100 GPU with 80 GB of VRAM and
the LLaMA-Factory toolkit.31 The LoRA con-
figuration was set to r = 8, α = 16, with no
dropout applied, and targeting all linear modules.
Flash Attention version 2 was used (Dao, 2023),
and the sequence length was limited to 4 096 to-
kens. The learning rate was set to 10−4 and then
adjusted with a linear learning rate scheduler with
10 warmup steps. The training batch size was 12,

30https://www.acm.org/code-of-ethics
31https://github.com/hiyouga/LLaMA-Factory

and weigths were updated after each minibatch.
We used the AdamW optimizer with hyperparam-
eters β1 = 0.9, β2 = 0.999, and ϵ = 10−8, while
capping the maximum gradient norm at 1.0. The
best model was obtained after 2 900 training steps,
achieving a cross-entropy loss of 1.83.

FT D-FT W D-W
Our test set 31.47 38.81 41.82 39.48
Peoples Speech 47.05 30.77 39.45 40.02
Parler-tts 13.70 15.93 26.26 8.63
mls-eng-10k 13.89 15.37 7.34 8.11
Fleurs 13.12 14.98 16.83 17.43

Table 2: WER results on test sets for the best fine-tuned
models and original Whisper models. FT: fine-tuned
Whisper, D-FT: fine-tuned distilled Whisper, W: origi-
nal Whisper, D-W: distilled Whisper.

Error-preserving speech-to-text model. As re-
gards the error-preserving speech-to-text model
discussed in Section 3.2, we employed a fine-
tuning approach using LoRA (Hu et al., 2022) and
some specific training arguments to fine-tune the
original Whisper model32 and one distilled ver-
sion.33 The configuration for LoRA was set with
r = 16, α = 32, targeting the modules q_proj
and v_proj. Additionally, no dropout was ap-
plied, and no bias was included. We fine-tuned the
models on one GPU RTX A6000 with 48 GB of
VRAM. For the training arguments, the training
batch size was set to 8 for the original model and
28 for the distilled one (its smaller size allowed for
a larger batch size). Parameters were updated af-
ter each minibatch. We used the Adam optimizer
with hyperparameters β1 = 0.9, β2 = 0.999 and
ϵ = 1e − 8, and a linear learning rate scheduler
with 50 warmup steps. The learning rate was set
to 10−5. The fine-tuning was run for 7 500 steps
in the case the original Whisper model, and 7 000
steps in the case of the distilled one. The model
parameters were saved every 500 steps, and eval-
uations were also conducted every 500 steps. At
the end of the training, the best model was chosen
based on the lowest word error rate (WER) upon
the validation set.34 Table 2 shows the scores of
the best models on different test sets.

32https://huggingface.co/openai/whisper-lar
ge-v3

33https://huggingface.co/distil-whisper/dis
til-large-v3

34The selected models had a WER of 12.14 for the original
Whisper model and 18.10 for the distilled one.
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Abstract

This paper focused on the creation of LLM-
based artificial learners. Motivated by the ca-
pability of language models to encode lan-
guage representation, we evaluated such mod-
els for predicting masked tokens in learner cor-
pora.

We domain-adapted the BERT model, pre-
trained on native English, by further pre-
training two learner models on learner cor-
pora: a natural learner model on the EFCAM-
DAT dataset and a synthetic learner model on
the C4200m dataset. We evaluated the two ar-
tificial learner models alongside the baseline
native model using an external English-for-
specific-purposes corpus from French under-
graduates.

We evaluated metrics related to accuracy, con-
sistency, and divergence. While the native
model performed reasonably well, the natu-
ral learner pre-trained model showed improve-
ments in recall-at-k. We analysed error pat-
terns, showing that the native model made
“overconfident” errors by assigning high prob-
abilities to incorrect predictions, while the ar-
tificial learners distributed probabilities more
evenly when wrong. Finally, we showed
that the general token choices from the native
model diverged from the natural learner model
and this divergence was higher at lower profi-
ciency levels.

1 Introduction

Over the last 20 years, learner corpora have sig-
nificantly benefited research in applied linguis-
tics and NLP by providing insights into how sec-

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

ond language (L2) learners improve their profi-
ciency. This understanding has led to enhanced
course material design, improved teacher train-
ing, and greater awareness of students’ linguis-
tic abilities. Additionally, when combined with
NLP technologies, learner corpora have proven
valuable for CALL applications like grammar er-
ror detection and proficiency classification (Bryant
and Briscoe, 2018; Tetreault et al., 2018). This
paper explores the potential of leveraging Large
Language Models (LLMs) with learner corpora,
which have traditionally been used to test specific
research hypotheses. Instead of relying on diverse
corpora with relevant metadata for testing various
hypotheses, we explore the possibility of a single
model that simulates learner behavior across dif-
ferent contexts. Such artificial learners could re-
spond to new stimuli, providing a testbed for lin-
guistic hypotheses, with outputs from a generic
English learner model compared to those from a
native model. By training an LLM on learner data,
it may be possible to create an artificial English
learner that captures the idiosyncrasies of actual
learners.

This research explored the creation of an Ar-
tificial L2 Learner (ALL) model by pre-training
it on second language learner corpora, leveraging
domain-adaptive pre-training. We also believe that
modelling learners’ knowledge and their use of
words and linguistic skills is crucial for Intelligent
Tutoring Systems (ITS) and digital learning plat-
forms in second language teaching and learning.
For an ITS focused on language learning, mod-
elling word usage and language skills of learners
is essential. This is why any simulation of learner
behavior, as a key goal for an ITS, should be ac-
curate and reliable. Motivated by the capability of
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language models to represent linguistic concepts,
this research explored the domain-adaptive pre-
training of large language models (LLMs) to sim-
ulate the behavior of English learners, which we
call Artificial Learner models. Creating an artifi-
cial learner raises at least three questions:

1. How accurate is the artificial learner in pre-
dicting what learners would actually say?

2. How confident is the learner in its predic-
tions?

3. How divergent is the AL compared with a
generic native model?

The rest of the paper is structured as follows: Sec-
tion 2 presents related research. Section 3 explains
the training data and the procedures used to create
our artificial learners. Section 4 delves into our re-
sults, and Section 5 provides a discussion of these
results.

2 Background Research

Research in second language acquisition has been
explored from many different perspectives, result-
ing in different models for each aspect of the learn-
ing process. For example, Whitehill and Movellan
(2017) models learners taking into account how a
learner infers and updates vocabulary knowledge
after doing exercises in a specific ITS for foreign
language learning. The SLAM shared task (Settles
et al., 2018) models the history of a learner’s mis-
takes in Duolingo, predicting if a learner is likely
to make a mistake given their past history of mis-
takes. There are also models that are complemen-
tary to modelling the second language acquisition
process, such as spaced repetition practice models
(Settles and Meeder, 2016) and efficient grammat-
ical error correction (Omelianchuk et al., 2020).
Despite the success of such diverse tasks in their
specific modelling objectives, the usage of their
models is tied to the specific case of their system
or language learning task. This restricts the capa-
bility of such models to simulate the general be-
havior of language learners.

There is another set of language-learning tasks
that explicitly model learners’ behavior and
knowledge however, they are still tied to a sin-
gle task depending on handcrafted features. Ex-
amples include Whitehill and Movellan (2017),
which models vocabulary learning from concepts;

Knowles et al. (2016), which models noun under-
standing from the context of the native language;
and Zylich and Lan (2021), which models retrieval
practice performance for SLA based on linguistic
and memory-based features. Other similar mod-
eling tasks include Avdiu et al. (2019); Renduch-
intala et al. (2016). In a similar fashion, corpus
linguists have also developed single tasks aimed
at predicting specific outcomes in the form of lin-
guistic constructions. Bresnan and Nikitina (2009)
modelled the dative alternation, where learners
hesitate between the prepositional dative struc-
ture or the double object structure. Gries et al.
(2020) approaches in corpus linguistics also re-
flect this method by modeling the genitive vs.
noun of noun construction. Modelling construc-
tion outcomes in learner texts helps understand
the contexts, triggering constructions. Neverthe-
less, these models cannot handle different sets of
constructions, which appears to be a limitation
if one wants to analyze many different linguistic
systems at the same time. In contrast, large lan-
guage models (LLMs) are capable of accommo-
dating diverse constructions and analyzing multi-
ple linguistic systems simultaneously, offering a
more flexible approach to understanding language
patterns.

In the broader field of Natural Language Pro-
cessing, language models have been effectively
adapted to multiple domains and tasks using a sin-
gle generic model, in a similar scenario we see in
the Second Language Acquisition domain. Guru-
rangan et al. (2020a) examines the effectiveness
of adapting pre-trained language models to multi-
ple domains and tasks with a single model. They
test how well a task-specific fine-tuned model
transfers to different types of other tasks, show-
ing a large gain in task performance using an
overall multi-phase domain and a task-adaptive
pre-trained model. Though we see an underuti-
lization of language models in learner modelling
tasks, many other diverse areas have successfully
adapted language models to their tasks.

To the best of our knowledge, two tasks anal-
ysed the potential of language models in SLA.
Palenzuela et al. (2022) explored native pre-
trained language models to predict language mis-
takes in the SLAM shared task. Kim (2024) in-
vestigated the use of language models as ”artifi-
cial English learners” with a model called Bidirec-
tional Encoder Representations from Transform-
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ers (BERT). They specifically tested BERT’s abil-
ity to simulate English learners’ usage of preposi-
tions. Notably, BERT was domain-adaptively pre-
trained on the International Corpus Network of
Asian Learners of English (ICNALE) (Ishikawa,
2013). The study focused on how this artificial
learner utilized four English prepositions: at, for,
in, and on.

Our work proposes a generalized analysis of ar-
tificial English learners, which expands the scope
of previous analysis by introducing a broader
range of metrics, including accuracy, consistency,
and behavior validation. The goal is to establish
trust in the trained models before exploring their
capabilities in specific tasks.

3 Material and Methods

3.1 Data
3.1.1 Training data
EFCAMDAT corpus - We trained two artificial
learner models. The first model was trained on
the EFCAMDAT. We used the refined version of
the EFCAMDAT corpus texts (Shatz, 2020). It
includes 723,282 writings from Englishtown lan-
guage schools (Shatz, 2020).

The learners wrote texts following prompts such
as “introducing yourself by email”. Students grad-
ually moved from one level to the next based
on language teachers’ grades. The writings span
across 16 proficiency levels, which were mapped
to the first five CEFR levels. The CEFR levels of
the texts correspond to the successful completion
of the coursework levels at Englishtown.

C4200M corpus - The second model was
trained on the C4200M corpus (Stahlberg and Ku-
mar, 2021). It is a corpus of synthetically gen-
erated ungrammatical sentences used in neural
grammatical error correction. This model pro-
duces an ungrammatical sentence given a clean
sentence and an error type tag following the tags
defined in the ERRANT automatic annotation tool
(Bryant et al., 2017). The generated ungrammati-
cal sentences follow the distribution of error tags
in the BEA-dev dataset (Bryant et al., 2019). They
argue for the utility of the generated ungrammat-
ical data by pre-training grammar error correc-
tion models with it, outperforming genuine paral-
lel data on the CONLL-2014 and JFLEG-test.

We chose the C4200m with the goal of
analysing a common trade-off in the training pro-
cess of large language models: balancing the qual-

ity of authentic texts versus the quantity of aug-
mented texts, similar to works surveyed in Feng
et al. (2021). We aimed to understand how this
trade-off affects the performance of artificial En-
glish learners. By using the C4200m dataset,
we wanted to see how different amounts of high-
quality and lower-quality texts impact the learn-
ing results of our models. This would help us un-
derstand the best balance between text quality and
quantity for training large language models. Our
approach aligns with other NLP research, provid-
ing a comparative view that adds to the relevance
and usefulness of our findings.

3.1.2 Testing data
The external test set (see Table 1) is made up
of learner writings from the CELVA-SP (Mallart
et al., 2023) a corpus of French undergraduates us-
ing English for specific purposes (ESP). Learners
answered one of three question prompts as part of
a 45-minute in-class writing task. For instance,
they had to describe and share their opinion on
the most important invention in their field. All
their writings were subsequently annotated with
the writing competence scale of the CEFR (Coun-
cil of Europe, 2018, Appendix 4, p .187-189) by
four expert raters. Pairwise inter-rater agreement
was computed on the basis of 60 writings, yield-
ing Cohen’s kappa values ranging from .52 to .72.
The rest of the writings were then annotated inde-
pendently. Table 1 presents the distribution of the
levels in CELVA-SP data.

3.2 Data processing

Processing the learner texts for our analysis in-
volved two types of data processing. First, for
the model training, we simply passed the raw texts
as input to a masked language modelling colla-
tor, following the standard masking strategy used
in the training process of BERT (Devlin et al.,
2019). The collator dynamically generates batches
of masked sentences, which the BERT tokenizer
processes into WordPiece tokens for use in the
training loop.

Second, for prediction analysis, we used a Uni-
veral Dependency (UD) tokenizer (Nivre et al.,
2016) to represent “human” learner tokens. We
masked each token in the text one at a time, creat-
ing a unique masked sentence for every UD token.
These sentences with a single masked token were
then fed to our artificial learners and the baseline
native model to predict token usage. We annotated
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Table 1: Distribution of levels and essays in the CELVA-SP data (Mallart et al., 2023)

Writings # of writings % of writings av # of words SD

A1 85 8.70 126.78 76.67
A2 311 31.83 182.02 87.21
B1 335 34.28 231.34 111.70
B2 198 20.26 285.84 126.75
C1 48 4.91 347.93 144.69
Total 977 100 224.11 120.64

the part of speech for each UD token using UD-
Pipe (Straka, 2018) implementation in spaCy1. It
allowed us to visualize the distribution of proba-
bility scores across different parts of speech for
the natural learner model. Since our experiment
focused on the BERT base model and its limita-
tion of 512 WordPiece tokens, we filtered out texts
with more than 512 such tokens.

3.2.1 Domain-Adaptive Pre-training

The main step in developing the two proposed arti-
ficial learner models was the domain-adaptive pre-
training of an already pre-trained baseline BERT
model. We used the EFCAMDAT as a training
set for the natural learner model, and the C4200m
as a training set for the synthetic learner model.
We trained both artificial learners on a masked lan-
guage modelling task. In Devlin et al. (2019) they
refer to pre-training as training a model on unla-
beled data across various tasks, such as masked
language modelling, where fine-tuning involves
initializing a pre-trained model’s weights and up-
dating them using labeled data. We initialized
a baseline BERT model weights and further pre-
trained them in learner corpus in an unsupervised
masked language modelling task. This is referred
in (Gururangan et al., 2020b) as domain-adaptive
pre-training.

We used the same masked language modelling
pre-training task described in Devlin et al. (2019).
Specifically, we masked 15% of WordPiece tokens
in each sentence of the training set, allowing the
model to learn contextual representations by pre-
dicting the masked tokens.

3.3 Evaluation

To evaluate the predictions of the two artificial
learner models and the native baseline model, we

1You can find the repository at https://github.c
om/TakeLab/spacy-udpipe.

used three types of metrics: recall-at-k, KL diver-
gence, and calibration. We calculated the metrics
on the CELVA-SP dataset.

3.3.1 Accuracy with recall-at-k

We used the recall-at-k metric as our accuracy
measure. It naturally extends the concept of ac-
curacy by taking into account the model’s top-k
potential responses and explicitly consider a cri-
teria for relevant responses that could be easily
extended. In essence, we measured on average
how many of the top-k token predictions recom-
mended by a given model were relevant for the
target masked token used by the learner.

The recall-at-k metric evaluates the top-k re-
sponses of a model that generates a list of poten-
tial responses ŷ to a given query q, ranked by their
likelihood of being correct according to the model.
In our experiment, for a given masked token sen-
tence the query q is the actual masked token used
by the learner, and the list of potential responses ŷ
is the list of tokens predicted by a model ranked by
probability in the softmax layer of BERT vocabu-
lary.

For a target masked token qi and a top-k token
tj predicted by the model, tj is considered relevant
to qi simply if tj is in the set of relevant items for
qi. In our experiment, the only relevant item was
the target masked token itself, so this is equivalent
to verifying if qi is in the top-k predictions but this
would not be the case in more complex scenarios.

We report the average recall@k over all masked
tokens in the CELVA-SP for each of the three eval-
uated models.

AVG Recall@k =

∑
qi∈masked tokens

1[qi ∈ top-k(ŷ)]

# of masked tokens

We report recall for k = [1, 5, 10].
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3.3.2 Kullback–Leibler metric
The Kullback-Leibler divergence is rooted in in-
formation theory and provides a general approach
for quantifying how two probability distributions
differ. We framed each of our models’ output
probabilities for a given masked token as a dis-
crete probability distribution over BERT’s vocab-
ulary tokens. Within that frame, we interpreted
the KL metric for two given models as if their to-
ken choices generally diverged. We implemented
the element-wise KL metric with a small epsilon
value perturbation, ϵ = 10−6, to avoid the scenario
where probabilities are zero. We calculated the KL
element-wise metric for each masked token, and
we grouped them by their text CEFR level with the
intuition to find differences between CEFR levels.

KL(pt, qt) = ptlog

(
pt + ϵ

qt + ϵ

)

3.3.3 Calibration Curves
To foster trustworthiness in our models, high accu-
racy is the immediate desired property of our mod-
els, assigning high probabilities to correct tokens.
A second desirable property is that our models do
not overconfidently make mistakes, assigning high
probabilities to incorrect predictions.

One approach for such analysis is through the
“calibration curve” method. Initially employed in
analysing weather forecasts (Brier, 1950; DeGroot
and Fienberg, 1983), this technique has since been
applied to neural networks (Guo et al., 2017; Min-
derer et al., 2021) and recently to evaluate Large
Language Models (LLMs) from a semantic per-
spective Levinstein and Herrmann (2024). For ex-
ample, (Levinstein and Herrmann, 2024) utilizes
calibration curves to assess the veracity of LLM
statements on specific datasets and asserts that
“calibration offers another metric for evaluating
the quality of probes’ forecasts.” Calibration anal-
yses have been utilized in neural networks and lan-
guage models (Minderer et al., 2021; Chen et al.,
2024), allowing researchers to assess the relation-
ship between a model’s prediction confidence and
success rate.

Calibration curves help us analyze how well a
model performs when it is confident or unconfi-
dent about it’s prediction. In our experiment, our
calibration curves correspond to how many suc-
cessful predictions (event rate) we observe across
different probability scores of the top-1 prediction
of each model.

Figure 1: Interquatile range plot of KL metric between
natural learner and native model per masked token sen-
tence grouped by CEFR level in the CELVA-SP dataset
as described in 3.3.2

Event Rate =
Number of Successful Predictions

Total Number of Predictions
4 Results

4.1 Recall-at-k
We evaluated the accuracy of our models with
recall-at-k metrics. We found a slight difference
in accuracy between the Learner Models and the
native model in the external CELVA-SP test set.
We noticed a slow increase in recall as k increases.
A slow increase in the values of top-k recall may
indicate that the token vocabulary of the language
model is not adequate for the task. We believe it
is unlikely that the model is confused when choos-
ing among 10 or more tokens; instead, the correct
token is likely represented by multiple word-piece
tokens in the model’s vocabulary.

model recall@1 recall@5 recall@10
bert-native (baseline) 0.600 0.622 0.635

bert-efcamdat 0.648 0.670 0.684
bert-c4200m 0.586 0.610 0.623

Table 2: Average recall-at-k in the CELVA-SP for each
evaluated model as described in section 3.3.1

4.2 KL Distance
The KL metric interquantile plot in Figure 1
presents the KL metric between native BERT and
the natural learner model. It allowed us to anal-
yse the intuition that a learner model will generally
differ from a native model in terms of token usage
and that this difference is higher in beginner texts.
The figure indicates that the learner model exhibits
greater disagreement in token choice for masked
sentences at lower proficiency levels, with a mono-
tonic decrease in disagreement as proficiency in-
creases.
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4.3 Calibration Curves
The calibration curve in Figure 2 illustrates the re-
lationship between the predicted probabilities of
the top candidate token and the success rate at
which these tokens correctly predict the true token.
The three models follow a linear trend, showing
that all of them classify more accurately as their
top-1 token probability increases, suggesting that
they are well-calibrated overall. However, the EF-
CAMDAT curve shows a discrepancy for proba-
bilities around 0.6. Specifically, the natural artifi-
cial learner demonstrates underperformance in this
range, as candidates predicted with a 60% proba-
bility only successfully predict the true token 40%
of the time but increase and become slightly higher
for probabilities close to 1. In general, the natural
learner model outperforms the native model in the
range of higher top-1 probabilities. This analysis
can be further supported by Figure 3 where we no-
ticed that the native model (on the right side of the
figure) very frequently assign high probabilities to
its top-1 prediction where the two artificial learn-
ers assign lower probabilities. Even though the na-
tive model assigns higher top-1 probabilities more
frequently, it has a lower success rate than the nat-
ural learner model. One possible explanation for
the learner model’s underperformance in the 60%
probability range is that the masked tokens in this
range likely come from advanced learners’ texts,
whereas the EFCAMDAT dataset primarily con-
sists of beginner learners. This motivates a de-
tailed analysis of the performance of such models
across CEFR levels as future work.

5 Discussion

5.1 Role of Part of Speech
Parts of speech (POS) provide a way to filter out
the prediction distribution. It is possible to anal-
yse the behaviour and success rate of the artifi-
cial learners according to linguistic properties re-
lated to not only the lexicon but also grammar.
For instance, filtering out probabilities per aux-
iliary gives an insight into a closed class. This
helps characterize the impact of universal part-of-
speech (UPOS) on the probability distributions of
the probability scores for the first three predictions
(rank) across the three models. For example, Ta-
ble 3 shows the average probability score assigned
by a given model to its top-3 predictions, as well
as the respective success rate for masked preposi-
tions. We observe a similar pattern, where the na-

model
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Figure 2: Sucess event rate across top-1 token model
probabilities for all 3 models across all masked tokens
in the CELVA-SP data
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tive model, on average, assigns higher probability
scores to its top-1 prediction, yet, has a lower suc-
cess rate compared to the natural learner model.

Figure 4 displays the probability density distri-
bution of words across different Universal Part-of-
Speech (UPOS) for the first prediction (rank = 1).
The x-axis represents the probability assigned by
the natural learner model for each UPOS, while
the y-axis shows the probability density. This vi-
sualization allows for a quick comparison of the
relative frequencies of different UPOS across the
dataset. It indicates how the model makes use of
tokens of a certain type across levels.

Open-class categories such as adjectives (ADJ),
nouns (NOUN), and verbs (VERB) have bimodal
distributions, but the prominent mode reflects the
uncertainty of the prediction (probability around
0.2 for ADJ). However, a closed class like prepo-
sitions (ADP) also has a bimodal distribution, but
the prominent mode is around 0.9. This suggests
that the model is more confident with some closed
classes than open classes.

5.2 Domain Effects for ESP
We conducted a chi-squared test, which demon-
strated that the difference between the domains
was significant (X2 = 45.04, df = 6, p < 0.001).
Our data indicated that masked tokens were eas-
ier to predict in essays written for Communication
Studies compared to those for Pharmacy, as illus-
trated in Table 4. This is some indication to further
take into consideration domain and tasks effects.

5.3 Training Limitations
A significant limitation in our training process is
the imbalance in the distribution of proficiency
levels within the EFCAMDAT dataset. Specif-
ically, there is a disproportionately higher num-
ber of beginner-level texts (A1, A2) compared
to advanced-level texts (C1, C2). This imbal-
ance may affect our KL plot 1. While the result
aligns with expectations for lower proficiency lev-
els, it may exhibit a training artifact effect where
the model’s contextual representation seems to be
coherent towards the characteristics of beginner-
level texts since it was exposed to a large amount
of such texts, whereas for higher proficiency lev-
els, the model’s token choices simply follow the
native BERT distribution .

This artifact impacts the model’s ability to gen-
eralize across proficiency levels. For higher pro-
ficiency levels, the model’s token choices tend to
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Figure 4: Probability Density Distribution of top-1 pre-
diction of natural learner model per UPOS

align more closely with the original pre-training
distribution, primarily because the advanced-level
data is underrepresented. This limitation sug-
gests that the model might not be equally effective
across all proficiency levels, potentially underper-
forming for more advanced learners.

5.4 Perspectives for Future ITS
Implementations

If our artificial learners manage to be sufficiently
trustworthy for the emulation of what a learner
would say, one can compare the prediction or the
use of a given learner with each model pre-trained
with a given CEFR level. Our experiment is only
a prototype of our global undertaking. We will ex-
tend the pre-training to other areas, such as pre-
training on different sub-levels of the CEFR scale.
We have seen the reliability of the results, and we
have also suggested that the models created were
not too data-dependent in the sense that they could
be generalized to other types of data.

6 Conclusion

In this paper, we have compared two artificial
learners against a native language model in pre-
dicting tokens produced by learners. Our pri-
mary goal was to propose a masked language mod-
elling task in learner corpora and analyse the ac-
curacy, consistency, and divergence of such ar-
tificial learners. We explicitly chose a large
synthetic ungrammatical dataset and an authen-
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model success rate score mean rank
bert-c4200m 0.53 0.60 1
bert-c4200m 0.08 0.10 2
bert-c4200m 0.04 0.04 3
bert-fullefcamdat 0.58 0.64 1
bert-fullefcamdat 0.09 0.09 2
bert-fullefcamdat 0.02 0.04 3
bert-base-uncased 0.55 0.71 1
bert-base-uncased 0.08 0.09 2
bert-base-uncased 0.03 0.04 3

Table 3: Model success rate and average probability score per rank (top-k position) for prepositions

Communication Electronics Medicine Pharmacy Education Environment Physics
Success 1278 219 249 85 265 1139 749

Total 4284 933 1002 401 1157 4873 3301

Table 4: Contingency table of correct predictions per ESP domain (all models)

tic learner corpus to analyse the trade-off between
the quality of authentic texts and the quantity of
augmented texts. Even compared to the native
BERT model, pre-training BERT in the synthetic
C4200m dataset decreased accuracy, while train-
ing BERT on authentic texts increased accuracy.
Accuracy is greater for closed classes, and the pre-
vious study on artificial learners rightly focused on
a subset of a closed class, prepositions. Through
analysing predicted probabilities against success
rates, we investigated indications of calibrations
and overconfident mistakes of our models, where
native BERT showed a wider gap between its suc-
cess rate and predicted probability. We finally
compared native BERT with our natural artificial
learner in relation to their choice of tokens, where
the KL metric exhibit to be a coherent metric to
generally measure the choice of tokens between
language models. Since we pre-trained our arti-
ficial learner on a dataset containing more texts
from beginner learners than those from advanced
learners, we expect that it will simulate better be-
ginner learners. Future work could address multi-
ple aspects of the training process to enhance per-
formance. We believe that merely increasing com-
putational power and training time could still im-
prove our artificial learners. Additionally, we be-
lieve that more specific masking strategies, such
as masking incorrect tokens, and architectures that
can personalize the artificial learner to a specific
individual, could further enhance performance. In
the direction of personalization, there are opportu-
nities for training more specific artificial learners,

such as nationality or proficiency based artificial
learners.

Limitations

There are several limitations to our work that need
to be acknowledged. One significant limitation is
the high training cost associated with using deep
learning models for natural language processing
tasks. Training these models requires substantial
computational resources, which can be expensive
and time-consuming. In our study, although we
aimed to mitigate these costs by using ”small”
encoder models such as BERT, the training costs
were still considerably higher compared to tradi-
tional language modelling methods.

Furthermore, we expect to make our model
available in accordance with the EFCAMDAT cor-
pus curators, which provides a significant advan-
tage in terms of cost-effectiveness and collabo-
rative potential. Researchers and practitioners
can leverage our pre-trained models and fine-tune
them for their specific applications without in-
curring the high costs associated with training a
model from scratch. This open-source approach
promotes transparency and encourages further in-
novation and experimentation within the commu-
nity.

Ethics Statement

In accordance with the curators of the EFCAM-
DAT corpus, we have planned to make our models
pre-trained on the EFCAMDAT accessible on the
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Abstract

Estimating word complexity is a well-
established task in computer-assisted language
learning. So far, however, complexity estima-
tion has been largely limited to comprehension.
This neglects words that are easy to compre-
hend, but hard to produce. We introduce se-
mantic error prediction (SEP) as a novel task
that assesses the production complexity of con-
tent words. Given the corrected version of a
learner-produced text, a system has to predict
which content words are replacements for word
choice errors in the original text. We present
and analyse one example of such a semantic er-
ror prediction dataset, which we generate from
an error correction dataset. As neural baselines,
we use BERT, RoBERTa, and LLAMA2 em-
beddings for SEP. We show that our models
can already improve downstream applications,
such as predicting essay vocabulary scores.

1 Introduction

Automatically estimating complexity of a word is a
core task for computer-assisted language learning
(CALL). This literature uses “complexity” to refer
to the difficulty of processing a word (cf. North
et al., 2023). But words can be difficult to process
in multiple ways, leading to varieties of complexity.
So far, the focus in NLP has been largely on com-
plexity in comprehension. We fill a gap left by this
focus and investigate the overlap of two varieties
of complexity:

1. Lexical Semantic Complexity: The difficulty
of a word due to its meaning.

2. Production Complexity: The difficulty of pro-
ducing a word.

∗This paper reports on research supported by Cambridge
University Press & Assessment. We thank Chris Bryant for
comments, advice, and provision of code, and all anonymous
reviewers for their comments.

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

In the next section, we will discuss these types
of complexity and their overlap in more detail, es-
tablishing their nature and relevance for CALL. To
investigate the overlap, i.e. lexical semantic produc-
tion complexity, we propose the task of semantic
error prediction (SEP) and create an SEP dataset
from an error correction dataset. Our method can
be applied to other error correction datasets.

After describing the creation method for our
dataset, we perform a Bayesian logistic regres-
sion analysis of candidate features for predicting
semantic errors. We then provide SEP baseline
results using BERT, RoBERTa, and LLAMA2 em-
beddings and compare them with the performance
of the feature-based regressions. Finally, we use
scores from the LLAMA2-based model for predict-
ing the vocabulary scores of L2 learner essays with
a Bayesian linear regression.

Our contributions are as follows:
1. We propose a new CALL task, semantic er-

ror prediction, which offers access to lexical
semantic production complexity.

2. We present a method for creating SEP datasets
from error correction datasets as well as a
dataset created that way.

3. We provide results from transformer-based
models for the SEP task.

4. We showcase the use of SEP models for the
downstream application of predicting essay
vocabulary scores.

The scripts required for creating the dataset are
available online at https://github.com/dstro
hmaier/semantic_error_prediction.

2 Types of Complexity

Word complexity, understood here as the difficulty
of a word in processing, has many varieties. We
develop the two overlapping types of complexity in-
vestigated in this paper and why they are important
for CALL.
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2.1 Lexical Semantic Complexity

Lexical semantic complexity is the complexity of
a word due to its meaning. It can be distinguished
from e.g. the syntactic complexity of a sentence
or the orthographic complexity of a word form.
Lexical semantic complexity has long been recog-
nised as one of the main forms of lexical com-
plexity, although its exact nature has been heavily
debated (Cutler, 1983).

The notion of lexical semantic complexity can be
compared with that of lexical sophistication, which
is often understood as the use of low frequency vo-
cabulary items (Laufer and Nation, 1995), although
more detailed analyses have been put forward (Kim
et al., 2018). We will find that, in some contexts,
frequent words are difficult to produce, suggest-
ing a difference between lexical sophistication and
contextual lexical semantic complexity.

Similarly, lexical semantic complexity can be
distinguished from other aspects of lexical com-
plexity, such as morphological complexity. “abjure”
is morphologically simpler but arguably semanti-
cally more complex than “theatergoer”. In fact, we
find in section 5 that character length appears nega-
tively related to contextual semantic complexity.

Lexical semantic complexity poses deep chal-
lenges for CALL applications, as semantic nuances
can be subtle and, thus, identifying semantically
challenging words can be difficult. At the same
time, semantic correctness is especially important
for communication, more so than e.g. word order
and subject-verb-agreement. We can understand
other speakers even when their sentences violate
multiple grammatical rules, but when they produce
multiple semantically incorrect words, communi-
cation tends to break down.1

One reason that lexical semantic complexity has
been difficult for CALL applications is that few
ways exist to estimate it on the word-level. Com-
pared to morphological and syntactic complexity,
for which syllable count and depth of the syntactic
graph serve as easily accessible features, features to
predict the semantic complexity of a word token are
harder to engineer. Many measures for assessing
lexical complexity, such as the type-token ratio, op-

1See Olsson (1972) and Khalil (1985) for support of the
thesis that semantic errors impede communication more than
grammatical errors. The research by Nushi et al. (2022) sug-
gests that formal errors can reduce intelligibility more than
lexical semantic errors, but, in their discussion, formal er-
rors include e.g. the choice of the wrong suffix, which could
arguably be treated as a semantic issue.

erate on the document rather than the word-token-
level (consider the features in table 1 of Bulté and
Housen, 2012, p. 31).

There exist word-type-level features commonly
associated with lexical complexity, such as:

• word frequency,
• age-of-acquisition (for first language speak-

ers), and
• concreteness of the word.
As word-type-level features, they suffer from

three shortcomings:
1. They ignore the contextual aspect of lexical

complexity.
2. They typically fail to account for homonymy

and polysemy, i.e. most data for them are only
available on the word form level.

3. They cannot cover the entire vocabulary, as it
rapidly evolves, e.g. how does the complexity
of “rizz” compare to that of “mid”?

Hence, there is a need for another way to mea-
sure lexical semantic complexity in context, which
we will meet.

2.2 Production Complexity

Production complexity, which we distinguish from
comprehension complexity, is the difficulty of pro-
ducing a linguistic unit either in speech or writing.
For the purposes of the present investigation, pro-
duction will be limited to writing.2

The distinction between comprehension and pro-
duction complexity is related to the distinction
between passive and active vocabulary, i.e. the
recognition-recall difference, because production
typically requires recall. Research into second lan-
guage learning has investigated the difference, find-
ing that even advanced learners show a large gap be-
tween passive and active vocabulary (Laufer, 1998;
Fan, 2000).

Production complexity can diverge from compre-
hension complexity, because a semantic difference
might be important for word choice without being
important for word recognition. One example for
this is the mass-count distinction. A language user
might very well understand a sentence such as “He
drank much milk.” and yet erroneously produce
sentences such as “He drank many milk.”. That is,
the mass-count distinction might play a bigger role
in production than comprehension complexity.

2For a survey of psycholinguistic research into task com-
plexity and its interactions with other forms of complexity for
L2 writing, see Johnson (2017).
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For an example closely linked to word form, con-
sider the case of “price”/“prize”. In English, these
two words differ in form and meaning. In German,
however, the neargraph “Preis” is ambiguous be-
tween the two meanings. This might lead an L2
learner of English with German L1 to be able to
comprehend the English words, while erroneously
producing “prize” instead of “price”.

Multiple data sources exist for assessing word
complexity in general, with a tendency towards
comprehension (Shardlow, 2013; Shardlow et al.,
2020), while production is under-resourced.3 One
reason for this neglect is that much work on word
complexity was intended to improve readability
(see North et al. 2023, and, for an example, see
the introduction of Gooding et al. 2021). Complex
word identification was, thus, conceived of as a step
in a pipeline for adapting text to a specific set of
learners for comprehension (cf. North et al., 2023).

However, systems able to predict which words
learners struggle to produce are also of use for
adaptive teaching systems. Three such use cases
are:

1. Content calibration: When learners are
prompted to produce a particular word, the
complexity of the word should be at the in-
tended level for the task. For example, cloze
tasks require learners to produce words that
can fill a gap in a text. Knowing the produc-
tion complexity of the target word would be
of value for calibrating the item.

2. Assessment: Production complexity scores
can serve to assess learner produced text, even
though the relationship is not simple, as we
will see in section 7.

3. Highlighting during learning: Words in a text
read by a learner might be flagged to make the
learner aware that they are harder to produce.

A further reason for the lack of resources on pro-
duction complexity is that such datasets are harder
to create. Eliciting complexity judgements from
annotators reading a text is relatively simple. There
does not appear to exist a simple equivalent for
production, as it is challenging to ask annotators to
rate the complexity of words while producing them
at the same time.

To address this problem, we are using an error
correction dataset based on learner-written texts
for creating our SEP dataset.4 Our method can be

3One resource specifically for production is the SweLLex
word list (Volodina et al., 2016) for Swedish as an L2.

4Other options for estimating production complexity

applied to any error correction dataset providing
appropriate error annotations and corrections.

2.3 The Overlap: Lexical Semantic
Production Complexity

We are interested in cases where a word is diffi-
cult to produce due to its semantics in a specific
sentential context. This overlap gives rise to its
own dynamics, because, in production, the concep-
tual information is typically activated prior to the
word form information, rather than the reverse, as
in the case of comprehension (see Jiang 2000 for
an example of this). As a result of this reversal, we
expect different complexity patterns in production
than in comprehension.

Specifically, the patterns might show a different
type of contextual effect: Language learners might
inadvertently create contexts that require a certain
word choice and as a result the learners might se-
lect the wrong word. Thus, a word that might be
easy to comprehend and frequently selected in one
context might be difficult to produce in another
context, even though both contexts are created by
the language user.

That lexical semantic production complexity is
impacted by contextual effects is backed up by the
empirical literature on English second language ac-
quisition, which documents a sizeable number of
semantic errors resulting from collocational phe-
nomena (Al-Shormani and Al-Sohbani, 2012; Jep-
tarus and Ngene, 2016). Our approach and dataset
provide a way for CALL applications to account
for such phenomena specific to lexical semantic
production complexity.

3 Related Work in NLP

Our work builds upon the NLP literature for both
word complexity and error detection.

3.1 Word Complexity

The complex word identification (CWI) task, which
has been investigated in multiple shared tasks (Paet-
zold and Specia, 2016; Yimam et al., 2017; Shard-
low et al., 2021), aims to identify complex words
in context. Recently, it has been extended under
the name “lexical complexity prediction” (LCP) to
a continuous task of predicting the complexity of a

would include key-stroke or eye-tracking data. We thank an
anonymous reviewer for these suggestions. These behavioural
trace data, however, render it difficult to differentiate the se-
mantic component of production complexity from other as-
pects.
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word (Shardlow et al., 2021, 2020). For an in-depth
review of the CWI/LCP literature, see North et al.
(2023).

While feature-based machine learning system
were state-of-the-art for many years (Gooding and
Kochmar, 2018), by now end-to-end neural sys-
tems dominate the area (Shardlow et al., 2021).
These models often use BERT-style transformers
as their basis (Devlin et al., 2019; Liu et al., 2019).
In the CWI literature, it has also been shown that
backgrounds of language learners, e.g. their over-
all proficiency level, matter for whether a word is
complex or not (Gooding et al., 2021).

As mentioned above, datasets in the CWI/LCP
literature are generally more appropriate for captur-
ing comprehension rather than production complex-
ity. This tendency is due to the annotation process:
annotators are presented with text for which they
assign complexity labels. Effectively, the annota-
tors engage in comprehension when deciding on a
label.

Furthermore, complexity annotation is an arti-
ficial way of engaging with text, which raises the
question of external validity. Even when the anno-
tations are provided by L2 learners, theses learners
are not trying to communicate with another human
language user in a natural manner. By predicting
errors in text production, our approach is closer to
natural engagement with text and, therefore, ad-
dresses this issue.

There also exists a literature on predicting the
CEFR levels of words (Alfter and Volodina, 2018;
Pintard and François, 2020), which is less compre-
hension focused. This literature tends to consider
words or word senses in isolation, rather than in the
context of use (but see Aleksandrova and Pouliot,
2023).

3.2 Error Detection

Semantic errors are covered by the error detection
literature, but much of this literature is focused on
morpho-syntactic errors. Similar to complexity,
error detection and closely related problems have
been the subject of multiple shared tasks (Ng et al.,
2014; Bryant et al., 2019; Volodina et al., 2023).
Similar to CWI/LCP, this field is dominated by
transformer-based models, often combined to in-
crease performance (Qorib et al., 2022; Qorib and
Ng, 2023). For a recent survey of error correction,
see Bryant et al. (2023).

While closely related to SEP, error detection and

correction systems are not designed for the pur-
pose of assessing the lexical complexity of content
words, but rather their correctness. Correctness,
however, can be due to the learner avoiding more
difficult terms and resorting to simpler expressions.
By contrast, our approach is able to distinguish two
correct words with regard to which one was more
complex to produce.

4 Dataset

We present a SEP dataset that can be constructed
from existing resources.5 Our dataset uses error
correction as the starting point for determining
production complexity. Using learner texts as the
source of the dataset ensures high external valid-
ity: The learners are engaged in a naturalistic task
and patterns of their output are used to assess the
lexical semantic complexity.

In constructing our dataset, we only predict the
corrections of word choice errors. That is, we focus
on the word tokens learners should have produced,
but failed to do so. This production failure is taken
as a direct indicator of production complexity.

Our approach only considers the corrected token,
not the erroneously produced words. That is, when
an annotator tags replaces “work” by “job” in a sen-
tence, this is taken as evidence that the “job”-token
in this sentence is complex, without any further
inference regarding “work”.

The reason for this choice is that we are inter-
ested in the complexity of word tokens in a spe-
cific context. It is unclear what we learn from an
erroneously produced token. When a token is pro-
duce, it was evidently feasible to wrongly produce
“work”, even it it was semantically impossible to
produce this word token correctly. Due to these
conceptual problems, our dataset construction will
focus on the context-appropriate words that learn-
ers fail to produce.

Our dataset concerns both the breadth and depth
of lexical knowledge (Bulté and Housen, 2012):
Errors occur both when learners lack items in the
vocabulary, an issue of breadth, and when learners
lack the lexical knowledge to correctly integrate
words into sentences, an issue of depth. Thus, our
research cuts across the theoretical constructs of
lexical complexity presented by Bulté and Housen
(2012, figure 3).

5The scripts required for doing so are made available at:
https://github.com/dstrohmaier/semantic_error_pr
ediction.
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4.1 Dataset Construction
Our starting point is the dataset published as part of
the 2019 BEA shared task on grammatical error cor-
rection (Bryant et al., 2019). This dataset provides
error annotations for sequences, taken primarily
from texts written by second language learners of
English, although the evaluation data also includes
some native speakers. The annotations follow the
scheme of the ERRANT tool (Bryant et al., 2017).
In addition, the dataset provides CEFR levels for
the texts (CoE, 2020).

Since we are interested in semantic word choice
and such word choice can be evaluated only in
a semantic context, we use whole paragraphs ex-
tracted from the dataset as input.6 We then invert
the dataset so as to move from error detection to
error prediction.7

Error Code Meaning Example

R:VERB Verb replacement order → book
R:NOUN Noun r. base → foundation
R:ADJ Adjective r. low → poor
R:ADV Adverb r. graciously → gracefully

Table 1: Selected error types (cf. Bryant et al., 2017).

In the next step, we select the relevant error
types: word replacement errors in which content
words, i.e. nouns, verbs, adjectives, and adverbs
have been replaced by the annotators.8 Ortho-
graphic, morphological, tense, subject-verb agree-
ment and similar are thus excluded from the pre-
diction task to focus on semantic complexity. They
are also corrected, however.

In addition, we render the labels binary: Each
token in the dataset is annotated for whether it has
been corrected using one of the selected error tags.9

6Extremely short paragraphs, for example best wishes at
the end of a letter, are merged into larger paragraphs when
possible. In a small number of cases, the sub-tokenized para-
graphs are longer than the maximal sequence length (512). 7
texts are affected, only one of which belongs to the split used
for evaluation.

7We thank Chris Bryant, one of the original organizers of
the 2019 BEA shared task, for providing code.

8When the replacement crosses part of speech, e.g. a verb
is replaced by a noun or an adverb by an adjective, Errant
typically treats this as an R:OTHER error, which is not used
by us. We assume that when such errors occur, usually more
has gone wrong than just the choice of a wrong word due to
its semantics.

9We only label word tokens with the spaCy POS-tags:
VERB, NOUN, ADJ, ADV. As a result, we exclude a small
number of positive labels for other POS. The largest block of
these positive labels are auxiliary verbs. 344 out of 49118 are
labelled positively, most of which are in their turn forms of
“be”, “have”, and “do”. We use the spaCy en-core-web-sm

For evaluation of these binary tags, we use the F1-
score and the area under the curve (AUC) of the
Receiver Operating Characteristic Curve (ROC).

The original dataset provides a public train- and
a dev-split.10 We use the dev-split as an eval-split
and split the train-split into a new train- and new
dev-split. We apply our method to these public
splits, with the new dev-split being primarily used
for development purposes prior to evaluation (e.g.
checking code correctness).

# sequences # tokens # content t. % errors

train 10523 577892 239156 2.45
dev 1170 63420 26409 2.43
eval 1419 88580 36923 2.04

Table 2: Descriptive dataset metrics. “content t.” stands
for tokens with content word POS tags. Percentages
indicate the percentage of content word tokens corre-
sponding to replacement errors.

4.2 Descriptive Metrics
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Figure 1: Replacement error percentages for content
word tokens across CEFR levels (N=native speakers).

The training-split contains more than half a mil-
lion tokens, slightly less than half of which are
content word tokens (see table 2). The dev- and
eval-split are > 10% of that size.

Across splits, around 2.4% of content word to-
kens correspond to semantic errors,11. These over-
all numbers, however, mask considerable differ-
ences in the error percentages across CEFR levels:
The lower the CEFR level, the more content word

model for POS-tagging (Honnibal et al., 2020).
10The test split is not public and therefore not used by us.
11The number for the eval split in table 2 is lower, because

the dev split also includes native speakers.
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Figure 2: Percentages of errors for different POS across splits and CEFR levels (N=Native).

replacement errors are committed by a learner (see
figure 1).

Across POS-tags, verbs are particularly likely
to have been corrected, around 3.5% of the time
(see figure 2). Verbs are a greater source of errors
for second language learners of English, even at
the C2 level, but the effect disappears for native
learners of English, which are included in the eval
split of the dataset. We speculate that this might be
due to the higher context dependence of verbs, at
least when compared to nouns (Gentner and France,
1988; Kersten and Earles, 2004; Earles and Kersten,
2017).12 The context-dependence might take a
language specific form, leading to L1-interference
for L2 learners.

4.3 Qualitative Inspection

In this section, we consider hand-picked examples
of replacement errors from our new train split.

The qualitative inspection suggests that learners
often replace words with neargraphs, e.g. using “as-
pects” instead of “respects” or “affection” instead
of “infections”.13 That being said, mistaken words
and their corrections are also semantically related,
with learners using “blame” instead of “guilt” and
“contaminated” instead of “polluted”.

Some mistaken tokens exhibit a lack of speci-
ficity. For example, in the corrected sentence “And
some buses drive at night to transport [take →
transport] passengers.” “transport” replaces “take”.

12The claim that verbs are more context-dependent is related
to the idea that a verb predicates something of something
else, thus being constrained both by what it predicates and
the subject of its predication. The idea that verbs play this
connecting role might be tracked back at least to Aristotle,
who in De Interpretatione (3.16b6–7) asserts that “it [a verb]
is a sign of things said of something else” (Aristotele, 1994, p.
44).

13Errant provides a separate tag for orthographic error
(R:ORTH), which we do not use.

While the meaning of the sentence can be under-
stood without this correction, transport is more
specific than take. It would be too simplistic, how-
ever, to think that learners always use less specific
words.

Adjectives provide evidence that the words learn-
ers fail to produce are not necessarily highly spe-
cific or generally lacking from their vocabulary:
“good” is one of the adjectives most often inserted
by annotators. It typically replaces more specific
adjectives such as “suitable” and “healthy” that fail
to be contextually appropriate. This observation
underlines the difference between lexical semantic
complexity in production and comprehension: a
learner producing “suitable” instead of “good” is
likely able to comprehend the word “good”.

A lack of idiomaticity can also lead to correc-
tions. For example, annotators changed “big enter-
prises” to “big businesses”. Similarly, annotators
replace “main friend” with “best friend”. In these
cases, a reader will be able to comprehend the sen-
tences with either word choice, but the corrected
formulation is more idiomatic.

Errors due to a lack of idiomaticity are one rea-
son why semantic error prediction is a highly chal-
lenging. Consider the following sentence:

“I began doing this sport three years ago when I
lost my job [work → job].”

In this sentence, the annotators replaced “work”
with “job”, but this is a very nuanced correction,
that arguably involves collocational preference as
well as semantic detail.

5 Bayesian Regression Analysis

To analyse the dataset, we perform a Bayesian logis-
tic regression using Bambi (Capretto et al., 2022),
a package for Bayesian regression models based on
PyMC (Oriol et al., 2023). We fit the regression on
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the combined training and evaluation splits of the
data using only tokens that were tagged as content
words using spaCy (Honnibal et al., 2020). Since
we are also primarily interested in interpreting the
features, we drop rows that lack a feature required
for any of the regression models.

We estimate two models. The first is a base
model which has as input features (see next section
for details):

• length of the word in characters,
• word frequency,
• age of acquisition, and
• whether the token is a verb.
The second models adds an interaction effect

between being a verb and the frequency. The equa-
tions are described in appendix figure 6.

5.1 Observed Variables for Regression

Except for being a verb, all the explanatory vari-
ables were selected based on their general usage
in the complex word identification literature (e.g.
Gooding and Kochmar, 2018). However, in SEP
the features are for the corrected learner text.

Length in characters. Provides the length of the
token as counted in characters.

Frequency. We use the wordfreq package for
Python,14 specifically the Zipf frequency estimate.
The package uses 0 as the default value of words
not found in the word list.15

Age of acquisition (AoA). While the age of ac-
quisition is a metric for L1 acquisition, it can also
be applied to L2 acquisition under the simplifying
assumption that both acquisition processes proceed
from simpler to more complex words. While this
assumption is probably not correct in all cases due
to vocabulary transfer from L1 to L2, it offers a suf-
ficiently close approximation of learning order (as
our results show; see also the correlation of learn-
ing order documented by Flor et al. 2024). The
AoA values are taken from the dataset presented
in Kuperman et al. (2012).16 The coverage by this
dataset is incomplete and tokens for which no AoA
is available are dropped from the dataset. Other
tokens from the same sentence are still used for

14https://github.com/rspeer/wordfreq. The pack-
ages uses the ExquisiteCorpus (https://github.com/Lum
inosoInsight/exquisite-corpus).

150 does not correspond to zero occurrences due to the
zipfian transformation.

16Downloaded from https://osf.io/kz2px/.

training and evaluation. We scale the age of acqui-
sition to a mean of 0 and variance of 1 to make it
comparable to the CEFR-j.

CEFR-j. The CEFR-j project provides the CEFR
level of word types based on the word lists pro-
vided by Open Language Profiles and Octanove.17

We convert and scale the CEFR-j data to make it
comparable with the AoA.

Is verb. The spaCy tags were used for this fea-
ture. It was motivated by our previous analysis,
suggesting that verbs are much more likely to be
semantic errors (see section 4.2).

CEFR. The underlying dataset provides the
CEFR level for the submissions. We treat this as a
categorical variable.18

5.2 Results and Interpretation
A Bayesian logistic regression produces a proba-
bility distribution over the parameters of interest.
For the estimated parameters, we report the highest
density interval (HDI), i.e. the interval of minimum
width containing the parameter with a certain prob-
ability. As is the standard for Bambi, we consider
the 94% HDI credible interval (i.e. the interval
spanning from 3% to 97%). HDIs are often treated
analogously to frequentist confidence intervals, but
have the straightforward interpretation that, given
observed data,19 the effect has a 94% probability
of falling within the interval.

The results for the base model can be seen in
table 3 and figure 3. In line with the expectations
from the CWI literature and the previous analysis,
we find that;

• more frequent content words are less likely to
be semantic errors (HDI: [−0.21,−0.11]),

• content words with a higher CEFR level
are more likely to be semantic errors (HDI:
[0.09, 0.16]),

17The lists were downloaded from https://github.com
/openlanguageprofiles/olp-en-cefrj/. The CEFR-J
Wordlist Version 1.5 was compiled by Yukio Tono, Tokyo
University of Foreign Studies (Negishi et al., 2013). We use
the CEFR-j list over others, because it is on the level of word
form + POS rather than word sense. For example, the online
EVP lists CEFR levels A1 and C2 among others for different
senses of the noun “head”, while CEFR-j only provides A1 for
the noun. Furthermore, CEFR-j provides a permissive license
and easy access.

18In contrast to CEFR-j, we do not convert and scale the
CEFR-level to be able to compare it to the AoA. The reason for
this difference is that we do not intend a comparison with AoA,
because it is a student-level rather than token-level variable.

19More rigorously, given the model specification, the prior,
and the observed data.
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mean sd hdi3% hdi97%

is verb 0.80 0.03 0.75 0.85
cefr[C2] -1.49 0.08 -1.6 -1.35
cefr[C1] -0.91 0.06 -1.02 -0.8
cefr[B2] -0.5 0.05 -0.59 -0.4
cefr[B1] -0.25 0.05 -0.33 -0.15
cefr[A2] -0.07 0.05 -0.15 0.03
scale(cefr-j) 0.12 0.02 0.09 0.16
scale(aoa) 0.09 0.02 0.05 0.13
frequency -0.16 0.03 -0.21 -0.11
character length -0.06 0.01 -0.07 -0.04
intercept -2.39 0.16 -2.69 -2.08

Table 3: Estimated parameters of base model. Mean, standard
deviation, and HDI boundaries of the estimated posterior are
provided.

• content words with a higher AoA are
more likely to be semantic errors (HDI:
[0.02, 0.05]), and

• students with higher CEFR level are generally
less likely to commit errors,

• verbs are more likely to be semantic errors
(HDI: [0.75, 0.85]) compared to other content
words.

Contrary to what one might expect from the
CWI literature, longer words appear less likely
to be replacements for semantic errors (HDI:
[−0.07,−0.04]). That is, a word in the corrected
sentence being longer is not an indicator of it corre-
sponding to a semantic error. This could be a result
of human annotators avoiding complex corrections
for pedagogical reasons, or an effect of learners
rarely intending to write long words. The finding
is in line with “good” being one of the most fre-
quent corrections for adjectives, replacing words
like “suitable” and “healthy”.

The second model, which introduces an interac-
tion between frequency and being a verb, compli-
cates the picture considerably (see table 4 and fig-
ure 4). Being a verb stops being a strongly positive
predictor for semantic errors (HDI: [−0.64, 0.06]),
while the interaction between frequency and be-
ing a verb is positive (HDI: [0.15, 0.18]). This ad-
ditional analysis suggests that the effect of verbs
being more likely to be semantic errors is due to
frequent verbs. This is line with our speculation
that verbs enjoy a special status due to their con-
textual dependence: learners struggle with verbs
because they are heavily constrained by context,
not because they are rare.

One practical implication of this result is that a
focus on the correct use of frequent verbs could be
beneficial to support learners in production.

mean sd hdi3% hdi97%

frequency:is verb 0.22 0.04 0.15 0.28
is verb -0.3 0.19 -0.64 0.06
cefr[C2] -1.49 0.08 -1.63 -1.35
cefr[C1] -0.91 0.06 -1.02 -0.81
cefr[B2] -0.50 0.05 -0.60 -0.40
cefr[B1] -0.25 0.05 -0.33 -0.15
cefr[A2] -0.07 0.05 -0.16 0.02
scale(cefr-j) 0.12 0.02 0.09 0.16
scale(aoa) 0.10 0.02 0.06 0.13
frequency -0.28 0.03 -0.34 -0.22
character length -0.06 0.01 -0.07 -0.04
Intercept -1.80 0.19 -2.17 -1.46

Table 4: HDI (3–97% interval) of model with interaction
between being a verb and frequency (B+I). Table includes
mean, standard deviation, and HDI boundaries of the posterior.

6 Deep Learning Models

We put forward baseline deep learning mod-
els trained for semantic error prediction using
our dataset. The models are probes trained on
embeddings from pre-trained transformer mod-
els (Vaswani et al., 2017).

6.1 Architecture

We use the English BERT and RoBERTa mod-
els as the basis of our architecture (Devlin et al.,
2019; Liu et al., 2019).20 In addition to these well-
researched models, we also explore the more re-
cent and larger LLAMA2-7B model (Touvron et al.,
2023).

We use these models without fine-tuning to cre-
ate embeddings of the word tokens in question.
Due to subtokenisation, the base model might pro-
duce more than one embedding per word token,
which we address with mean pooling of the subto-
ken embeddings. Research has suggested that the
last layers of BERT-like transformer models are
not best suited for lexical semantic tasks (Vulić
et al., 2020). Therefore, we create our embeddings
by mean pooling over layers 1–10 (inclusive), i.e.
excluding the last two layers, for the BERT and
RoBERTa models. For LLAMA2, the role of the
different layers is not as well-established and we
resorted to averaging the output of layers 1–30, i.e.
ignoring the last two layers again.

Probes are fine-tuned on the word embeddings,
which requires less computational resources than
training the whole transformer. The probes consist
of a hidden layer (size 100), an output layer, and a
SoftMax pooling layer, described by the following

20We use the base-size models. All models are loaded using
the huggingface transformers library (Wolf et al., 2020).
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Figure 3: HDI credible intervals (3–97%) for coefficients of the base model (B).
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Figure 4: HDI (3–97% interval) for coefficients of the interaction model (B+I).

equations:

e = embedding

h = ReLU(Whiddene+ bhidden)

scores = LogSoftMax(Woutputh+ boutput)

6.2 Training

The probes are trained by first performing
hyperparameter-search using 5-fold cross-
validation on the combined data from the train- and
dev-split. The hyperparameter search randomly
draws 20 hyperparameter settings from the space
(see table 8 for details). The probe is then trained
on the combined train- and dev-split using the
hyperparameters reaching the highest F1-score
in cross-validation.21 For training, we use the
AdamW algorithm (Loshchilov and Hutter, 2018).
The evaluation occurs on the eval-split.

The extreme label imbalance of the dataset can
lead the probes to exhibit a bias towards assigning
negative labels. To address this, we over-sample
the positive labels during training, so that there is
an equal number of positive and negative labels.

6.3 Results and Interpretation

Due to the imbalance of the labels, accuracy is
not a meaningful metric for our dataset. Instead,

21The hyperparameter search space and the best hyperpa-
rameters for each probe are available in the online materials at
https://github.com/dstrohmaier/semantic_error_pr
ediction/tree/main/probe_kwargs.

we use the F1-score and the area under the curve
of the ROC (AUC). The AUC can be interpreted
as the probability that a randomly chosen positive
instance, i.e. a content word token that is a replace-
ment, will have a higher score than a randomly
sampled negative instance.

Table 5 provides the overall results, as well as
the results for each CEFR level (including the “N”
level for native speakers). We compare the deep
learning models against a baseline that labels all
tokens as corresponding to semantic errors (“all
True”),22 and the regression models discussed in
section 5.23

With a threshold of 0.5, the logistic regression
models fail to achieve an F1-score of above 0%.
The AUC score is more promising, consistently
outperforming the 50%-threshold of the all True
baseline. The transformer-embeddings based mod-
els outperform the regression baselines: with only
one exception, there is at least one transformer
model that outperforms the best regression model
for every CEFR level. The exception is the AUC
for the A1 level (B: 67.6%). In this case the in-
formation of the student CEFR level might be of
sufficient importance to outweigh the performance

22Labelling all tokens negatively would lead to an F1 of 0.
23For the native test data, the CEFR label of the student is

given as C2, since this is the closest available class. Otherwise
the comparison to the regressions models favours the later,
because they are not evaluated on missing data, e.g. when the
age of acquisition of a word is not accessible.
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Overall A1 A2 B1 B2 C1 C2 N

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

all True 4.0 50.0 6.4 50.0 6.8 50.0 6.0 50.0 4.7 50.0 3.6 50.0 2.3 50.0 1.1 50

B 0.0 68.7 0.0 67.6 0.0 60.1 0.0 59.8 0.0 62.6 0.0 55.6 0.0 69.4 0.0 54.7
B+I 0.0 69.0 0.0 66.7 0.0 60.4 0.0 60.3 0.0 62.4 0.0 58.4 0.0 68.7 0.0 54.0

BERT 9.6 67.8 10.4 64.3 13.1 69.1 15.2 66.8 9.4 66.5 7.3 68.2 8.5 73.2 2.7 59
RoBERTa 10.8 69.2 12.4 64.7 13.8 67.2 13.0 70.1 14.1 72.8 10.5 66.3 10.8 78.1 1.8 59
LLAMA2 11.0 69.8 11.9 64.6 14.9 68.1 15.7 70.8 12.4 68.8 6.5 67.4 3.0 72 2.8 58.2

Table 5: Scores in percentages. The baseline scores result from assigning True to all tokens or all content word tokens.

advantage of the transformer embeddings.
Looking across CEFR levels, no simple trend in

performance holds. Both A1 (highest transformer
AUC: 64.7%) and C1 (highest AUC: 68.2%) appear
particularly challenging. One generalisation that
can be made is that the numbers on the native data
are the worst (F1:: 2.8%, AUC: 59%). We assume
that this is due to the absence of native essays in the
training data. In effect, this result strongly suggests
that the error patterns for native and L2 speakers
differ considerably. After all, the C2 level, which
is supposedly the closest to the native skill, has the
highest performance! That being said, the native
data are from a different source, the LOCNESS
corpus (Granger, 1998), which might also explain
the low performance.

That LLAMA2 has the highest overall F1 (11%)
and AUC (69.8%) suggests that the size of the lan-
guage model is a factor. Generally, however, the
differences are small and the highest AUC value is
achieved by RoBERTa for the C2 level (78.1%).

In light of the dataset difficulty, it is not sur-
prising that the F1-scores are low. The higher
AUC are somewhat encouraging, especially for cer-
tain CEFR levels (e.g. C2 for RoBERTa reaching
78.1%). To support educational technologies, it
will be important to better differentiate between
complex and other words, i.e. to increase the AUC.
That being said, the current scores can already be
used as an input feature for downstream tasks, as
we show in the next section.

7 Downstream Application

We show that the scores of one of our models sup-
port essay score prediction as a downstream task.

7.1 Setup

We use the ELLIPSE dataset (Crossley et al., 2023)
for evaluation, which provides vocabulary scores
for more then 6000 essays by L2 learners of En-
glish. We use the probability scores produced by

our LLAMA2-embeddings based model as it is
the overall best performing model (see table 5) to
predict these vocabulary scores using a Bayesian
linear regression.

The vocabulary scores are on the essay-level,
while our lexical complexity scores are on the token
level, requiring us to perform pooling. We consider
two forms of pooling: mean and max pooling.

In addition, we compare the regression using
our model-derived lexical complexity scores with
a simpler approach: For the simple approach, we
use the proportion of times a word has been put
forward as a correction. We use again mean and
max pooling.

We also include other variables that can be used
to assess vocabulary in our regression:

Min. Frequency. We use the same source of
word frequencies as discussed in section 5.1. We
apply min-pooling to the token frequencies, remov-
ing frequencies of 0.0 (default value).24

CEFR-j. We use the CEFR-j word list discussed
in section 5.1, applying min-max-normalisation, so
that each CEFR level to corresponds to a 0.2 step,
providing a range from 0–1 for comparison with
our probe scores, which also range from 0 to 1. The
CEFR-j scores for tokens are mean-pooled.

Type-Token Ratio. Following the literature on
complexity (Bulté and Housen, 2012), we use the
type-token ratio as a feature. The data is provided
by the dataset, but we use the ratio rather than the
percentage for comparability.

Measure of Textual Lexical Diversity (MTLD).
The ELLIPSE dataset also provides MTLD data,
a metric from lexical diversity derived from the
type-token ratio (McCarthy, 2005), but accounting
for text length. We rescale this data to a mean of 0
and standard deviation of 1.

24We also explored mean-pooling but found its coefficient
to be indistinguishable from 0.
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Grade Level. The ELLIPSE dataset includes stu-
dents from grade 8 to 12. We use this information
and min-max normalise the grade level to make it
comparable with our probe scores.

We compare five regressions models:
1. base: Base model without any of our lexical

semantic production complexity scores.
2. max: Model using the max-pooling of our

lexical complexity scores in addition to base
variables.

3. mean: Model using only the mean-pooling of
our lexical complexity scores in addition to
base variables.

4. max+mean: Model using both complexity
scores.25

5. proportion: Model using the mean and max
pooling error correction proportions instead,
as described above.

7.2 Results and Discussion
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Figure 5: elpdloo scores for Bayesian linear regression
models predicting vocabulary scores.

To compare our five models, we use the expected
log pointwise predictive density, which is estimated
using leave-one out cross-validation (elpdloo). The
elpdloo is a standard metric for comparing Bayesian
models (see figure 5 and table 7) and can be written
as (see Vehtari et al., 2017):

elpdloo =
n∑

i

∫
p(yi|θ)p(θ|y−i)dθ

where y−i are all datapoints except the i-th.

25It might appear more appropriate to use the median rather
than the mean, as the latter also incorporates the max value.
We found, however, that this made a negligible difference.

mean sd hdi3% hdi97%

intercept 3.10 0.07 2.98 3.24
vocabulary σ 0.50 0.00 0.49 0.51
grade level -0.15 0.02 -0.18 -0.12
max scores 0.71 0.06 0.59 0.83
mean CEFR-j 3.76 0.22 3.37 4.19
mean scores -4.46 0.24 -4.92 -4.01
min frequencies 0.05 0.01 0.04 0.07
scale(MTLD) 0.20 0.01 0.18 0.21
type-token ratio -1.23 0.09 -1.40 -1.06

Table 6: Results of Max+Mean model for predicting the
vocabulary scores of ELLIPSE essays.

We also provide the R2 metric in table 7 in the
appendix, because it is more established within in
NLP literature, although it neglects the probabilis-
tic information provided by the Bayesian approach.
It shows the same picture as the elpdloo for the five
models.

The comparison suggests that adding both the
mean- and the max-pooled scores contribute to the
fit of the model. The max-pooling, however, con-
tributes only substantially when combined with the
mean-pooling. The max+mean model also out-
performs the proportion model, showing that the
neural models are helpful.

We provide the HDI for our best fitting model in
table 6 and figure 7. Among the features, the mean
pooled score of our model has the largest absolute
coefficient.26 The coefficient is, however, nega-
tive (HDI: [−4.92,−4.01]), which might appear
surprising at first glance. After all, a higher score
should indicate more complex words, which in turn
one might expect to indicate a higher proficiency.
We believe that this puzzle can be explained by also
taking into account the effect of the max-pooled
scores.

The effect of the max-pooled scores is
smaller, but with high probability positive (HDI:
[0.59, 0.83]), thus pointing in the expected direc-
tion. We interpret this suggestion as follows: the
skilled learner produces few contexts that might
easily lead to confusion, thus rending the average
word token easier to choose, but their most com-
plex word is more challenging than that of a learner
at a lower level.

The surprising negative coefficient is not just
present for our scores, but also for type-token ra-
tio27 (HDI: [−1.40,−1.06]) and grade levels of

26No direct comparison to frequencies or the scaled MTLD
is possible due to the different scale.

27The MTLD, however, has the expected relationship, sug-
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students (HDI: [−0.18,−0.12]). In the case of the
minimum frequencies, we find a somewhat sur-
prising positive coefficient (HDI: [0.04, 0.07]), sug-
gesting that a higher vocabulary score is associated
with avoiding very rare words. De Wilde (2023)
has previously found for L2 writing that “more pro-
ficient learners use more frequent words” (p. 11),
but also notes that the literature is divided on this.
These inverted results suggest a non-linear relation-
ship between L2 learner writing and features which
the literature associates with lexical sophistication.

elpdloo elpddiff se dse R2

max+mean -4709.1 0.0 64.4 0.0 0.26
mean -4771.8 62.7 65.2 11.3 0.24
proportion -4853.8 144.7 65.3 20.0 0.22
max -4873.2 164.1 65.3 18.1 0.22
base -4874.7 165.6 65.5 18.2 0.22
overall -5218.0 508.9 59.6 55.0 0.28
phraseology -5528.4 819.3 57.8 59.6 0.24

Table 7: elpdloo metrics for downstream application task
(predicting vocabulary scores. Besides the main elpdloo-
metric, the table provides the difference to the elpdloo to
the best model, as well as the standard error for these
two values (se and dse respectively).

The ELLIPSE dataset also provides other types
of scores for student essays against which a com-
parison is possible. From those we selected the
overall score, as it is the most important one, and
the phraseology score, as it is the one closest re-
lated from vocabulary. By performing a regression
with the same features on these scores, we can see
whether the features are specific to vocabulary, as
intended. Indeed, we find this to be the case for
elpdloo (see results in table 7 and figure 8),28 de-
spite the well-established halo effect, which leads
annotators to provide roughly similar scores (e.g.
Engelhard, 1994).

Although further research into the connection
between content word replacement errors and vo-
cabulary scores is required, the initial results show
that our complexity scores can improve the perfor-
mance of downstream applications.

gesting that the negative coefficient of the type-token ratio
might be due to the essay length.

28It is not the case for R2 in the case of the overall score,
but this comparison is not directly admissible, because the
variance for the Vocabulary scores (0.36) differs from that
of the Overall score (0.41). The comparison of the elpdloo is
only acceptable because the number of data points and the
predicted variables share a scale.

8 Conclusion

We proposes semantic error prediction as a task
for investigating lexical semantic production com-
plexity. Such an estimate of complexity is useful
for many purposes in educational technology, in-
cluding assessing output by learners and providing
them with information for improving their writing
skills.

Complex word identification systems, in con-
trast, are focused on difficulty in comprehension
rather than production. Semantic error detec-
tion/correction system cannot be used this way,
because they provide an estimate of how likely a
word is to be wrong, not how difficult it was to
produce the word in the first place. Semantic error
prediction, thus, fills a gap in the CALL literature.

We propose and implement a method for creat-
ing semantic error prediction datasets from error
correction datasets. Analysing the dataset with
Bayesian logistic regressions, we found that verbs
show a peculiar accumulation of semantic errors.

Furthermore, we train transformer-embedding
based models for semantic error prediction. These
models perform better than the baselines, although
much room for improvement remains. Finally, we
use the scores produced by the best of our models
on the downstream task of predicting the vocab-
ulary scores of student essays using a Bayesian
linear regression. The results indicate that these
lexical complexity scores improve the model.

Limitations

The present proposal suffers primarily from three
limitations:

First, factors other than lexical semantic com-
plexity might lead to content word replacement
errors, rendering the proposed error prediction task
an imperfect proxy. Future research should investi-
gate other measures for active vocabulary for com-
parison.

Second, the error correction dataset used for
our investigation does not provide information
about important properties influencing error pat-
terns, such as the first language of the L2 learners.
However, our method is applicable to other datasets
providing such information.

Third, our investigation is limited to an English
error correction dataset. Error patterns might differ
between languages. In some languages, for exam-
ple morphologically richer languages, content word
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replacement errors might be harder to identify or
have a weaker connection to lexical semantics.
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B: log
(

π
1−π

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + c

B+I: log
(

π
1−π

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + c+ β6X2X4

X1 = # characters X4 = word cefr-j level

X2 = frequency X5 =

{
1 if token is a verb
0 in other case

X3 = age of acquisition c = (βA2CA2 + βB1CB1 + . . .) = effect of student CEFR level

Figure 6: Equations describing the two Bayesian logistic regression models: Basic (B) and Basic with Interaction
added (B+I).
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Figure 7: HDIs for Max+Mean model predicting the vocabulary scores. Max and mean scores refer to the pooled
results of our neural model.
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Figure 8: elpdloo scores for Bayesian linear regression
models predicting vocabulary scores (top 4 model) as
well as Overall scores and Phraseology scores.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

224



sp
ac

e
B

E
R

T
R

oB
E

R
Ta

L
L

A
M

A
2

m
id

ru
le

ba
tc

h
si

ze
{6

40
,1

28
0,

19
20

,2
56

0,
32

00
}

25
60

25
60

64
0

le
ar

ni
ng

ra
te

{1
·1
0−

2
,5

·1
0−

3
,1

·1
0−

3
,5

·1
0−

4
,1

·1
0−

4
,5

·1
0−

5
,1

·1
0−

5
}

1
·1

0−
4

1
·1
0−

4
1
·1

0−
5

ep
oc

hs
{2

0,
30

,4
0,

50
,6

0}
50

50
40

Ta
bl

e
8:

H
yp

er
pa

ra
m

et
er

s
se

ar
ch

sp
ac

e
an

d
se

le
ct

ed
hy

pe
rp

ar
am

et
er

s.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

225



GRAMEX: Generating Controlled Grammar Exercises from Various
Sources

Guillaume Toussaint1

(1) CNRS, LORIA
Vandœuvre-Lès-Nancy

France

Yannick Parmentier2,3
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Abstract

This paper presents GRAMEX, an applica-
tion designed to assist teachers in the cre-
ation of learning materials, namely grammar
exercises. More precisely GRAMEX leverages
state-of-the-art parsing techniques to morpho-
syntactically annotate texts and turn these
into grammar exercises while aligning these
with official curricula. Allowing teachers to
freely select excerpts of texts from which
to generate specific grammar exercises aims
to increase learners’ engagement in educa-
tional activities. GRAMEX currently supports
4 types of exercises (Fill-in-the-Blanks, Mark-
the-Words, Single and Mutliple Choice ques-
tionnaires) and 3 output formats (JSON ob-
jects, printable workbooks, H5P interactive
content). GRAMEX is under active develop-
ment and has been experimentally used with
teachers of L1-learners in elementary and mid-
dle French schools.

1 Introduction

Grammar learning is known to have a strong im-
pact on language learning in general. Indeed, stud-
ies showed that a lack of self-confidence in one’s
own grammatical skills often leads to broader dif-
ficulties in language learning and writing (Ignacia-
Dorronzoro and Klett, 2007; Castagné-Véziès,
2018). Further investigations also suggest that iso-
lating grammar practice from other learning activ-
ities results in higher learning difficulties (Vincent,
2016). This, combined with the positive effects on
learners’ motivation observed by Peacock (1997),
advocates for the use of authentic texts (possibly
seen in various contexts) as a valuable resource for
automatic generation of grammar exercises.

The GRAMEX project builds on this idea to pro-
vide (1) teachers with a digital environment which

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

can be used to generate grammar exercises from
user-defined texts and learning goals and (2) learn-
ers with an online facility to train and monitor their
progress. The generated exercises are annotated
with fine-grained morphological and syntactic in-
formation along with readability scores (François
and Fairon, 2012) and links to official curricula,
allowing teachers to control exercise generation,
ensuring the adequacy of the output material for
target learners.

Along with this control on exercise generation,
GRAMEX features include:

robustness : the use of efficient neural parsing
techniques combined with error analysis on
parse trees makes it possible to filter out sen-
tences leading to ill-formed questions ;

multilingualism : two languages have been
tested so far (French and English), yet
GRAMEX relies on multilingual parsing en-
gines covering 20+ languages ;

extensibility : thanks to its modular architecture,
GRAMEX can easily be extended to other lan-
guages or new exercise types (see Section 3) ;

interoperability : GRAMEX comes with a REST
Application Programming Interface (API)
and 3 export formats (JSON objects, print-
able workbooks in docx format, interactive
content in H5P format), allowing users to in-
teract with GRAMEX in many ways, includ-
ing within Learning Management Systems
(LMS), external applications or in a classical
paper-based setting.

The remaining of this paper is organized as
follows. In Section 2, we present related work.
In Section 3, we describe how teachers can use
GRAMEX to generate grammar exercises, and how
learners can complete these. In Section 4, we
present GRAMEX’s implementation. In Section 5,

Guillaume Toussaint, Yannick Parmentier and Claire Gardent. GRAMEX: Generating Controlled Grammar Exercises
from Various Sources. Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted
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we comment on GRAMEX status and discuss its
current limitations and ongoing work. We finally
conclude and present future work in Section 6.

2 Related work

There have been many approaches to automatic
generation of grammar exercises over the last
decades. The corresponding systems distinguish
themselves according to their core functionalities.

A first distinction can be made between sys-
tems supporting custom text input and those re-
lying on predefined resources (corpora, grammars
and / or lexicons). The latter includes ArikIturri
(Aldabe et al., 2006), Grammar Exerciser (Perez-
Beltrachini et al., 2012) and Lärka (Volodina et al.,
2014). Systems allowing users to enter free text,
like GRAMEX, include MIRTO (Antoniadis et al.,
2006), Sakumon (Hoshino and Nakagawa, 2007),
VIEW (Meurers et al., 2010), Language Muse
(Madnani et al., 2016), Language Exercise App
(Perez and Cuadros, 2017), and FLAIR (Heck and
Meurers, 2022b). These notably differ in the way
input texts are pre-processed to extract candidate
sentences. In the case of GRAMEX, sentence fil-
tering is done by means of fine-grained morpho-
syntactic annotations computed by state-of-the-art
text parsers (namely, SpaCy1 (Honnibal and John-
son, 2015) and Stanza2 (Qi et al., 2020))3 com-
bined in tailored NLP pipelines (see Section 3),
while other systems rely either on partial analy-
ses involving specific part-of-speech tags or syn-
tactic patterns (e.g. MIRTO, Lärka, Sakumon),4 or
on more abstract representations such as sentence
vectorization (e.g. Language Exercise App).

A second distinction concerns their degree of
automation. Most systems require human inter-
vention (i.e., post-edition of questions, such as the
selection of distractors in Multiple Choice ques-
tions) to create ready-to-use grammar exercises.
GRAMEX is designed to limit such intervention as
much as possible. Users are merely required to
validate (and optionally reorder) output questions.
This design choice is questionable, and may be re-
vised in the light of experimental studies involving

1https://spacy.io
2https://github.com/stanfordnlp/stanza
3Note that these are not limited to syntactic analysis sensu

stricto, they include many (neural and / or symbolic) modules
for broader text analysis.

4Like GRAMEX, FLAIR uses state-of-the-art parsers, but
only specific annotations are considered for exercise genera-
tion, following work of Pilán et al. (2016) on candidate sen-
tence selection.

school teachers to be carried out in a near future.

A third distinction can be made on the level of
control offered by these systems. Systems gener-
ally offer a limited control on the generation of ex-
ercises. Noticeable exceptions include Language
Exercise App, where users can define target con-
structions, MIRTO, where users can also link ques-
tions to references providing learners with help-
ful information, Language Muse, which gener-
ates about 24 predefined activities at various lev-
els (sentence, paragraph, discourse) and FLAIR,
which comes with a highly configurable gener-
ation process, where users can for instance de-
fine additional parameters depending on the tar-
get grammatical phenomenon (Heck and Meurers,
2022b). In our case, a trade-off between config-
urability and usability is being sought. GRAMEX

currently allows users to target precise predefined
grammatical concepts extracted from official cur-
ricula (MENJS, 2018). A more fine-grained con-
trol is under development, allowing for instance to
select target syntactic structures (see Section 5).

A fourth distinction concerns their expressivity,
that is, the types of exercises they support. Most
systems support Multiple Choice (MC) question-
naires since these can be automatically processed
to evaluate learners’ performances. The number
and types of supported exercises vary from one
system to another. GRAMEX currently supports
4 exercise types, namely Fill-in-the-Blanks (FiB),
Mark-the-Words (MtW), Multiple Choice (MC)
and Single Choice (SC). Other common exercise
types, not yet supported by GRAMEX include Er-
ror Detection (ED), Memory (Mem), Shuffle (Sh)
and Word Forms (WF). Table 1 summarizes the
expressivity of the above-mentioned systems with
respect to these types.

Finally, let us note that relatively few systems
are able to export exercises to be integrated in ex-
ternal tools (i.e., Learning Management Systems)
out-of-the-box.5 Such systems include VIEW,
which is a browser extension and as such can be
integrated natively with web interfaces, Language
Exercise App and GRAMEX, which can both ex-
port exercises in H5P format (interactive HTML5
content)6 supported by many LMS.

5ArikIturri exports exercises in XML format, which is not
directly usable e.g. in an LMS, but can be relatively easily
converted to other formats for integration.

6https://h5p.org/
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System SC MC ED MtW FiB Mem Sh WF Other

MIRTO × ×
ArikIturri × × × ×
FAST × ×
Sakumon ×
VIEW × × ×
Grammar Exerciser × ×
Lärka ×
Language Muse × × ×
Language Exercise App × × × ×
FLAIR × × × × × ×
GRAMEX × × × ×

Table 1: Exercise types supported by exercise generation systems (these are in chronological order)

3 Workflow description

In a nutshell, GRAMEX is a web application allow-
ing teachers to create exercises from custom texts
depending on target grammatical phenomena and
learner levels. These exercises can be shared with
other users or exported for reuse in other applica-
tions (e.g. LMS). Teachers can furthermore create
collections of activities (so-called lessons) which
follow given learning paths. In the following sub-
sections, we go through the various steps involved
in exercise generation.

3.1 Selecting and annotating input data

In order to generate exercises, users need to first
select an adequate input text.7 They can select
from the following sources : Wikipedia articles,
web pages (identified by their URL), local files8

and free (e.g. copy-pasted) texts.
From this source, the text is extracted (i.e., for-

matting information is removed) and fed to a cus-
tom yet classical NLP pipeline for text annotation.
This pipeline builds on state-of-the-art parsers to
performs various tasks sequentially: sentence seg-
mentation, tokenization, part-of-speech tagging,
morphological analysis and syntactic dependency
parsing. As a result, each sentence from the input
text is annotated with morpho-syntactic informa-
tion in CoNLL format (Buchholz and Marsi, 2006)
and stored in GRAMEX’s database.

Additionally, we also compute and store, for
each annotated sentence, its readability scores

7In our approach, the adequacy between a text and a target
grammatical phenomenon is by design left to the teacher.

8For now, only text and pdf files are allowed, docx files
will be supported soon.

(e.g. Flesch–Kincaid (Kincaid et al., 1975)).9

These scores may be used by teachers to or-
der exercises depending on their readability or to
adapt activities to pupils with special educational
needs.10

The sentences which have been annotated (e.g.,
whose length is above a given threshold and which
contain at least one of the target grammatical phe-
nomena) can be inspected as illustrated in Fig-
ure 1. Sentences which should not be used in ex-
ercises (e.g. due to an inadequate vocabulary) can
be manually filtered out by teachers at this step.

Figure 1: Teacher’s interface to inspect annotated texts

9Other readability assessment Machine Learning-based
techniques have been implemented following work by Her-
nandez et al. (2022), see (Ngo and Parmentier, 2023) ; their
precision on representative data is yet to be evaluated prior to
integrating these into GRAMEX.

10Currently GRAMEX does not use these readability scores
for exercise generation, they are only displayed to teachers in
order to help them to select which sentences to use in exer-
cises. An automatic ordering of questions based among oth-
ers on these metrics, will be explored in a near future.
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3.2 Filtering annotated data

Once the selection and annotation phase described
above is done, user-validated annotated sentences
are stored in GRAMEX’s database, together with
their readability scores. Neural text analysis mod-
ules by their statistical nature may produce er-
roneous annotations (e.g., wrong morphological
features). This is especially true since our NLP
pipeline applies pre-trained dependency parsers to
potentially out-of-domain data.

In order to detect annotations which are likely
to be erroneous before exercise generation, a sta-
tistical filtering is applied. In brief, we compiled a
corpus Cerr of annotation errors by comparing our
pipeline’s annotations with a gold-standard (i.e.,
manually annotated) dataset made of 23,750 sen-
tences coming from the French section of the Uni-
versal Dependency corpus (Nivre, 2016). From
this corpus Cerr, we experimented with various
machine (deep and non-deep) learning algorithms
in order to predict whether a given annotated sen-
tence should be flagged as invalid. The best results
were obtained by using gradient boosting (Fried-
man, 2002) reaching an F-score of 0.63.11

Note that, whatever the result of this filter-
ing step is, the annotated sentence is kept in the
database so that users can manually inspect or edit
it should they want to.

3.3 Aligning annotated data with target
grammatical phenomena

In order to control exercise generation with re-
spect to target grammatical concepts,12 we define
an alignment between these and morpho-syntactic
annotations generated by our NLP pipeline. This
candidate selection is based on curricula-based
predefined filters.

To facilitate the maintenance and extension
of GRAMEX, these alignment filters are defined
in configuration files and use a custom descrip-
tion language inspired by the Grew corpus query
language (Guillaume, 2021) to specify which
morpho-syntactic annotations contribute to a given
target grammar concept. As an illustration, let us
consider the following specification:

[upos=VERB&Mood=Ind&Tense=Fut]

Here, we specify a combination of annotations
which are characteristics of sentences having a

11Filtering is work in progress, especially since all annota-
tion errors are not of equal importance in our context.

12Recall that these concepts come from official curricula.

Figure 2: Teacher’s interface to create exercises

verb in future tense. It reads as follows: the sen-
tence must contain a token whose part-of-speech
tag is VERB, and whose morpho-syntactic fea-
tures include Mood,Ind and Tense,Fut as
key,value pairs.

Concretely, once a text is fully annotated by our
NLP pipeline, these alignment filters are used to
check the presence of any target grammatical con-
cept in annotated sentences and, in case of success
to keep their locations in the sentence (and store
them together with the morpho-syntactic annota-
tions in GRAMEX’s database).

It is worth noting that, although most of the
grammatical phenomena listed in official curricula
are correctly flagged, some (such as simple past in
French) are consistently not. We suspect this is
due to the under-representation of these phenom-
ena in parsers’ training data. In order to circum-
vent this issue, we use a rule-based approach (e.g.
a verb conjugation algorithm) to overwrite the an-
notations given by the parser. In case of ambiguity
(same morpheme for several tenses), we keep all
possible annotations in the database.

3.4 Generating exercises

In order to create an exercise, users have to choose
(i) a text (within the corpus of texts they have pre-
viously asked GRAMEX to annotate), (ii) a target
grammatical concept to work on, (iii) a type of ex-
ercise (among the 4 types currently supported by
GRAMEX, namely FiB, MtW, SC and MC), and
(iv) a number of questions, see Figure 2. Exer-
cises are also given a title and optional keywords
to facilitate their indexing and reuse.

From this configuration, GRAMEX retrieves in
the selected annotated text, the expected num-
ber of sentences exhibiting the target grammatical
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concept. A transformation rule is then applied to
the corresponding sentences to turn them into the
required exercise type. Note that, if the selected
text contains more occurrences of the target gram-
matical concept than the required number of ques-
tions, a random selection is done. This is subject
to modification in the future (see Section 5).

The user is then presented with the generated
exercise, and has the option to replace questions
and / or re-order them. Figure 3 shows an example
of a FiB exercise on past perfect in French gener-
ated by GRAMEX.

3.5 Exporting exercises

Export refers to the possibility for users to down-
load exercises in a given format. This is useful
for creating backups, post-editing exercises or else
sharing exercises with other teachers (who will
import them). Supported export formats include
JSON for programmatic uses, word documents for
paper-based activities, and H5P components for
use in dedicated (on-line or desktop) environments
equipped with an H5P player (e.g., Lumi13).

Figure 4 gives an example of FiB and MC exer-
cises exported in H5P format. Note that if needed,
H5P components can be modified using the free
H5P editor.14

3.6 Sharing exercises

Sharing refers to the possibility for teachers to give
access to their exercises to other users. Sharing
can either be public (that is, to all registered users)
or else restricted to specific users only. Public ex-
ercises can be retrieved using a text-based search
on their title, keywords and content.

Exercises shared with specific users (learners or
groups of learners) can be accessed on invitation
or else by using auto-generated access codes.

3.7 Taking exercises

Learners can access exercises from their dash-
board directly if they have been invited by their
teacher, or else by using their access code. In both
cases, questions can be answered in a dedicated
interface (see Figure 5). Once the exercise is com-
pleted, students are presented with a summary of
their successes and failures (see Figure 6). All at-
tempts can also be monitored by the teacher.

13https://lumi.education/en/
14https://h5p.org/installation

4 Implementation

GRAMEX relies on a client-server architecture,
with a front-end in JavaScript / VueJS15 and a
back-end in Python. These components inter-
act with a MySQL database following a classi-
cal Model-View-Controller design pattern (Kras-
ner and Pope, 1988) as illustrated in Figure 7.

GRAMEX’s database basically contains infor-
mation about users (teachers and learners) and
learning materials. These pieces of information
are organized as follows. Teachers can manage
learners’ accounts, corpora (collections of anno-
tated texts) and learning activities. Activities can
either be a so-called lessons gathering textbooks
and exercises, or tests (standalone exercises). Both
lessons and tests can be shared with specific learn-
ers depending on their profile and / or teachers’
pedagogical choices.

Note that GRAMEX’s exercise generation mod-
ule is used in a similar way when creating lessons
or tests. The only difference lies in whether they
are used in the context of formative or summative
assessment (Sadler, 1998) by teachers (unlike ex-
ercises belonging to lessons, exercises from tests
can be taken only once).

GRAMEX comes with a web user interface built
with the Bulma CSS framework16. Users can use
GRAMEX through responsive web pages designed
for computers and tablets.

The back-end hosts GRAMEX’s NLP pipeline
and database. It also offers a REST API devel-
oped in Flask17 allowing programs (including the
front-end) to interact with the hosted components
via the controller module. The back-end handles
all data manipulations, from text annotation to ex-
ercise generation and export.

Note that the back-end also includes a typescript
module responsible for generating H5P compo-
nents, which are served by the API for download
and reuse in other applications.

5 Current status

GRAMEX is under active development. Design
choices are subject to modification depending on
feedback from teachers. In the following subsec-
tions, we briefly report on a first 2-week experi-
ment, which highlighted some limitations calling
for further development.

15https://vuejs.org/
16https://bulma.io/
17https://flask.palletsprojects.com/
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Figure 3: Fill-in-the-Blanks exercise generated targeting the past perfect tense

Figure 4: Exercises imported on an external H5P player

5.1 Report on experimental uses

GRAMEX has been used by a pool of 4 school
teachers whose pupils’ age range from 9 to 15
years old. They focused on the development of ex-
ercises from raw data (that is, they did not create
lessons). In a few cases (where computers were
available in classrooms), generated exercises were
presented to pupils. In the end of the experiment,

Figure 5: Learner’s interface for taking questions

a questionnaire was sent to teachers to get their
feedback on GRAMEX’s usability (how easy / con-
venient it is to use GRAMEX?) and performance
(how pertinent are the generated exercises?).

On the usability side, some pupils had difficulty
logging in with auto-generated passwords. Teach-
ers recommended the use of QR-codes to pro-
vide learners with a connection link. Teachers had
troubles understanding the logic behind exercises
and lessons. On the performance side, teachers
encountered issues with complex web pages (ex-
tracted texts were noisy), and were wishing one
could feed PDF files to the application. Finally
teachers indicated they would need more control
on sentence selection. For instance, they would
like to be able to control the presence of various
syntactic constructions in selected questions.
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Figure 6: Learner’s interface on exercise completion

5.2 Limitations and current work

As mentioned above, GRAMEX has been designed
to facilitate exercise generation by providing users
with a semi-automatic process requiring only a
lightweight configuration. Candidate grammati-
cal concepts (and corresponding morpho-syntactic
annotations) are predefined and can be used out-
of-the-box. It turns out that this configuration is
not sufficient as teachers cannot precisely control
the structure of generated questions. GRAMEX’s
workflow is thus being extended to give teachers
the possibility to define syntactic constraints on
the selected sentences. These constraints are writ-
ten in the same description language as curricula-
related filters (see Section 3.3).

Another main limitation of GRAMEX lies in its
use of pre-trained neural modules for text analysis.
As mentioned above, these modules are applied on
unknown texts (potentially out-of-domain). Even
though a statistical filter is applied, teachers can-
not be guaranteed that the provided annotations
(and thus exercises) are correct. We are currently
working on the development of another annotation
error detection module. Two paths are being con-
sidered : using ensemble techniques which would
basically compare between annotations computed
by distinct parsers following work by Surdeanu
and Manning (2010), and using a rule-based ap-
proach were predicted dependency rules would be
compared with a dependency grammar extracted
from manually annotated data following work by
Rehbein and Ruppenhofer (2018).

Another limitation of GRAMEX corresponds to
the limited types of exercises it supports. This
combined with the fact that FiB does not support
answers which would deviate from original texts

Figure 7: GRAMEX architecture

while being correct, makes it crucial to extend
GRAMEX with new exercise types.

6 Conclusion and perspectives

We presented GRAMEX, an environment for
CALL using state-of-the-art parsers to generate
grammar exercises in line with official curricula.
GRAMEX aims to help teachers to create adequate
learning materials with minimal efforts. GRAMEX

is work in progress and benefits from cooperations
with field teachers. Future improvements include
the configuration of exercises by means of an ex-
pressive search engine following Heck and Meur-
ers (2022a), and the extension to new languages.
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Abstract
Second language learners often experience
language anxiety when speaking with others
in their target language. As the generative ca-
pabilities of Large Language Models (LLMs)
continue to improve, we investigate the pos-
sibility of using an LLM as a conversation
practice tool. We conduct a user study with
160 English language learners, where an LLM
chatbot is used to simulate real-world conver-
sations. We present our findings on 1) how
an interactive session with a chatbot might im-
pact performance in real-world conversations;
2) whether the learning experience differs for
learners of different proficiency levels; 3) how
changes in difficulty affects the learner’s expe-
rience; and 4) how online, synchronous con-
versation provided by an LLM compares with
a purely receptive experience. Additionally,
we propose a simple yet effective way to de-
tect linguistic complexity on-the-fly: clicking
on words to reveal dictionary definitions. We
demonstrate that clicks correlate well with lin-
guistic complexity and indicate which words
learners find difficult to understand.

1 Introduction

Rapid advancements in natural language process-
ing technology, brought on by large language
models (LLMs), have opened up new directions
and methods for learning and education. In par-
ticular, language learners have been making use
of LLMs’ language generation abilities to support
their learning experience (e.g. PrettyPolly, 2023;
Microsoft, 2023).

In this paper, we investigate the possibility of
using an LLM for conversational practice in lan-
guage learning. Many existing approaches restrict
the LLM in some way (e.g. Duolingo Team, 2023;
Zhang and Huang, 2024), requiring manual craft-
ing of prompts or syllabuses. Restrictions are

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

common for pre-LLM chatbots in language learn-
ing (Bibauw et al., 2019), as they are rule-based
and can often fail to parse user input correctly.
However, as LLM technology advances, these re-
strictions may no longer be needed.

In our study, we test the limits of LLM capabili-
ties by using an LLM directly without any restric-
tions on topic, context, or grammatical form. We
conduct a user study with 160 English learners,
who are asked to interact with an online chatbot.
In our implementation, our chatbot is designed
to simulate a typical conversationalist so that the
learner can practise chatting in English.

We seek to answer the following research ques-
tions:

RQ1. Does chatting with an online chatbot have
any educational impact on real-life interac-
tion?

RQ2. How does the language learning experience
change for learners at different proficiency
levels?

RQ3. Does adjustment of difficulty level affect
the learner’s experience, either positively or
negatively?

RQ4. How does a conversational setting (combin-
ing comprehension and production) com-
pare to a comprehension-only setting?

Overall, our results suggest that chatbots for con-
versational practice have positive educational im-
pact, though further investigation is required in
some areas. We find that this setup is more suited
to learners at lower proficiency levels; that it pro-
vides more enjoyment over plain reading; and
that personalised difficulty adaptation prevents di-
alogues from becoming too easy. Detailed find-
ings can be found in Section 4.

Additionally, we propose a simple but effec-
tive way to identify linguistic complexity during
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a chatbot conversation: clicking to reveal dictio-
nary definitions. This function can be seamlessly
integrated into any web interface, and our results
demonstrate a clear correlation between clicking
and what the learner finds difficult.

2 Background

Before the advent of transformers and LLMs,
chatbots for computer-assisted language learning
(CALL) were typically rule-based and were only
used for constrained scenarios. Bibauw et al.
(2019) present a pre-LLM survey of dialogue sys-
tems for language learning, and observe that most
systems have implicit or explicit constraints, on ei-
ther the content of the user response or the gram-
matical form. Ones that allow free dialogue are
typically rule based and prone to producing un-
grammatical or nonsensical messages (e.g. Co-
niam, 2014; Jia, 2009)

However, as most chatbots worked within these
constraints, it was also easier to introduce adjust-
ments to the chatbot for language learning pur-
poses. One of the most common adjustments is the
adaptation of difficulty level based on the user’s
linguistic proficiency or previous performance, for
example as implemented by Hassani et al. (2016);
Lu et al. (2006); Nı́ Chiaráin and Nı́ Chasaide
(2016); Su et al. (2015); Vlugter et al. (2009).

With the introduction of neural dialogue sys-
tems and later LLMs, the performance of chatbots
improved greatly (Papangelis et al., 2021; Adi-
wardana et al., 2020; Roller et al., 2021). This
technology made it possible to build chatbots for
CALL with little to no constraints, while gener-
ating grammatical sentences. For example, Tyen
et al. (2022) propose a chatbot setup where the
difficulty of generated text can be adjusted to
user’s proficiency level; Lee et al. (2023) pro-
pose a system (with some restriction on context)
that produces feedback for students; Zhang and
Huang (2024) investigate how vocabulary acqui-
sition is affected by 4 types of chatbots for 4 con-
texts, all connected to an LLM backend. Addi-
tionally, the release of ChatGPT (OpenAI, 2023)
prompted some language learners to use the ser-
vice to help them learn (Microsoft, 2023), even
though ChatGPT is not specifically designed for
language learning.

Despite advances in technology and commer-
cial chatbots for language learning, there is lim-
ited research on the effect of using unconstrained

LLM chatbots to learn a second language. Pre-
vious studies use chatbots that are limited to pre-
determined contexts (Lee et al., 2023; Zhang and
Huang, 2024), or that are rule-based (Coniam,
2014; Jia, 2009), with the feedback that the chat-
bot is difficult to understand or responds with un-
grammatical or nonsensical messages.

In our paper, we use an open-domain LLM chat-
bot, with no restrictions on context, topic, or gram-
matical form. Our chatbot is designed to simulate
a typical conversationalist, so that learners may
practise conversing in their target language. To
our knowledge, this work is the first to perform
user evaluations on open-domain LLM chatbots
for language learning.

3 Study setup

We recruit 160 participants via Prolific1 for our
user study. All participants are screened to ensure
that their first language is not English. They are
then directed to our website, where they navigate
through 4 sections:

1. The first section consists of basic profiling
questions to ascertain the participant’s lin-
guistic background, such as their first lan-
guage (L1). The most common L1s were Pol-
ish, Portuguese, and Italian (full list in the ap-
pendix).

2. The second section is a proficiency test con-
sisting of 25 multiple choice questions to
estimate their proficiency level. The ques-
tions and answers are taken from the Cam-
bridge English Test Your English applica-
tion2. Scores from the test are mapped to the
Common European Framework of Reference
(CEFR) (Council of Europe, 2020), a 6-point
scale representing proficiency, allowing easy
comparison with existing work.

3. The third section is the main interaction with
the chatbot. This involves chatting directly
with the chatbot, or reading messages from
chatbots; variations are described below.

4. The final section consists of closing questions
asking the participant about their experience,
including 2 attention questions to eliminate
low-effort responses. We enclose the full

1https://www.prolific.com/
2https://www.cambridgeenglish.org/tes

t-your-english/general-english/
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list in the appendix, but highlight individual
questions in our Findings section.

Additional details of the user study setup can be
found in the appendix.

Each participant is randomly assigned different
experimental conditions in a 2× 2× 2 design:

• Chatting VS reading
To understand the difference between recep-
tive reading and interactive conversation, we
assign half of our participants to the chatting
condition, and the remaining half to the read-
ing condition. In the chatting condition, each
participant is asked to converse with a chat-
bot. They send messages to the chatbot di-
rectly and can actively steer the conversation
topic. In the reading condition, the partici-
pant cannot send messages, and instead nav-
igates through a conversation between two
identical chatbots. Everything else, such as
the user interface, remains the same.

• Adaptive difficulty VS non-adaptive diffi-
culty
One common feature in language learning
chatbots is the capability of adapting chat-
bot messages based on the user’s proficiency
level. However, it is unclear to us how this
may affect the learning experience, so we ap-
ply the adaptation for half of the participants,
while the other half receive messages gener-
ated with standard top-k sampling (k = 40)
(Fan et al., 2018). For the adaptation, we
follow Tyen et al. (2022) and use a rerank-
ing method with sub-token penalties and fil-
tering, as described in their paper3. See the
appendix for further details on the re-ranking
model and implementation of penalties.

• Dictionary lookup VS no dictionary
lookup
In the dictionary lookup condition, partic-
ipants are able to click on words to look
up their definitions. This function is only
available for words in messages that are sent
from the chatbot. All messages are tokenised
by the RASP parser (Briscoe et al., 2006).

Full details can be found in the appendix.

3Implementation found at https://github.com/W
HGTyen/ControllableComplexityChatbot.

For all three pairs of conditions, participants are
split evenly into two groups, where one group is
assigned one condition and the other group is as-
signed the other condition: for example, there are
80 participants in the chatting condition and 80
participants in the reading condition as well. The
splitting is done in a way that ensures equal cov-
erage across all combinations of conditions: e.g.
there are 20 participants who are chatting and have
adaptive difficulty and dictionary lookup; 20 par-
ticipants who are reading and have adaptive diffi-
culty and dictionary lookup; and so on.

Figure 1: Chat interface presented to participants in the
chatting condition. Messages in blue bubbles are sent
from the user, while messages in grey bubbles are sent
from the chatbot. In this example, the most recent mes-
sage is flagged by the user as being too difficult.

3.1 Chatbot

We use BlenderBot (2.7B parameters) (Roller
et al., 2021) as the base LLM. BlenderBot was
chosen because the model is not instruction-tuned,
and has been fine-tuned on the Blended Skill Talk
dataset (Smith et al., 2020), which combines vari-
ous conversational skills. This allows us to simu-
late a real conversationalist rather than a virtual as-
sistant. Additionally, BlenderBot was previously
used by Tyen et al. (2022) for difficulty adjust-
ment. We use the same setup3 to enable a clear
comparison: for participants in the adaptive condi-
tion, we use a decoding method proposed by Tyen
et al. (2022) (method 5), which allows us to adjust
the difficulty level of generated messages.

In terms of chatbot quality, Roller et al. (2021)
report extensive evaluation results on BlenderBot,
including self-chat human evaluation and interac-
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Figure 2: Responses to confidence-related Likert questions from participants in the chatting condition.

Figure 3: Responses to learning-related Likert questions from participants in the chatting condition.

tive human evaluation. Their results show that
generative BlenderBot (2.7B) performs better than
Meena Adiwardana et al. (2020) and narrowly
loses to human participants in terms of engaging-
ness (49% versus 51%). Tyen et al. (2022) report
self-chat evaluation results of the adapted decod-
ing method based on the Sensibleness and Speci-
ficity Average Adiwardana et al. (2020) and gram-
maticality. Method 5 from their paper was found
to be statistically equivalent to the non-adapted
version in terms of sensibleness, specificity, as
well as grammaticality.

Additionally, to disentangle effects of prompt
crafting or manual changes to the learning expe-
rience, and to minimise effects on chatbot qual-
ity, our current chatbot setup does not use any
prompts, predetermined responses, or linguistic
syllabuses (though they may be added in future
work). All user input goes directly to the LLM,
and all generated messages are sent directly to the
user.

Figure 1 shows a screenshot of the interface
used to interact with the chatbot. Participants are
asked to spend at least 15 minutes on this section,
after which the “End chat session” button would
appear. Participants can also choose to spend more
time with the chatbot if they wished.

4 Findings

4.1 RQ1: Impact on real-life interaction

Increased self-confidence in real-life interaction
Two of our feedback questions (h) and (i), shown
in Figure 2, focus on the learner’s sense of self-
confidence when it comes to real-life settings. We
rely on self-reports as confidence is inherently
about perception of the self, and arguably can only
be measured via self-reports (Paulhus et al., 2007).

The results show that more than half of the par-
ticipants in the chatting condition agree that they
felt more confident about chatting with real peo-
ple, even after 1 session of conversing with the
chatbot. This number increases further to 72%
in question (i), where we ask participants for pre-
dicted self-confidence levels, if given more oppor-
tunities to converse with the chatbot.

Limited learning may increase in the long term
Questions (d), (e), and (f), shown in Figure 3,
focus on the learning of new words, phrases, or
grammatical constructions. While some partici-
pants report learning after just one session, most
disagree with the statements, particularly regard-
ing grammatical constructions. This suggests that
a single chatbot session is unlikely to provide ben-
efits for language learning.

On the other hand, participants are more opti-
mistic when asked to predict learning, if given fur-
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Figure 4: Proportion of Agree or Strongly agree responses to each Likert question, sorted by CEFR level.

Figure 5: Distribution of CEFR levels across all par-
ticipants. CEFR levels are ordered from least to most
proficient.

ther opportunity to converse with the chatbot. This
is in line with our previous finding about confi-
dence, where participants also predict more posi-
tive outcomes if given more time with the chatbot.
As our user study only consists of one session and
is not designed to test longitudinal effects, we are
unable to verify whether there are any actual long
term benefits. However, it is noteworthy that users
themselves have a positive opinion on long-term
chatbot usage, suggesting that their experience had
a motivational effect.

4.2 RQ2: Variation in proficiency levels

All participants are asked to complete a series of
multiple choice questions, which are used to gauge
their proficiency level. The distribution of CEFR
levels is shown in Figure 5. None of our partici-
pants are found to be at A1 (most beginner) level:
this is likely due to the initial recruitment and nav-
igation through the consent form, which requires a
minimal level of proficiency to understand.

Proportion of Agree or Strongly agree responses
sorted by approximate CEFR level are visualised
in Figure 4. Note that Agree and Strongly agree
represent positive outcomes in our Likert ques-
tions, while Disagree and Strongly disagree rep-
resent negative outcomes.

We then compute Spearman’s rank correlation

coefficient (ρ) between test scores and answers to
our Likert questions.

Our results show that less proficient learners
are more likely to report and predict positive
outcomes. We find that participants’ scores in the
proficiency test significantly negatively correlate
with:

• enjoyment (question (c), ρ = −0.25, p <
0.002)

• perceived learning of grammatical construc-
tions (question (e), ρ = −0.33, p < 0.00003)

• predicted learning in the long term (question
(f), ρ = −0.27, p < 0.0005)

• predicted self-confidence levels in the long
term (question (i), ρ = −0.36, p ≪ 0.00001)

• interest in continued usage (question (j), ρ =
−0.37, p ≪ 0.00001)

Questions (f), (i), and (j) all pertain to partic-
ipants’ predictions, suggesting that lower profi-
ciency participants find greater potential for future
benefits than high-proficiency participants. This
is a reasonable outcome as more beginner lan-
guage learners would require more practice than
more experienced learners. For question (e), we
hypothesise that the difference between high- and
low-proficiency learners is because grammar is of-
ten taught at earlier stages of learning. High-
proficiency learners are more likely to struggle
with advanced concepts such as use of humour and
slang, linguistic style, etc.

Note that the above correlation scores are com-
puted for all participants (in the reading and chat-
ting conditions). Figure 4 shows that the effect is
stronger for the reading condition than the chatting
condition, where learners at a higher proficiency
level give more positive responses than in the read-
ing condition, particularly for questions (c) on en-
joyment and (i) on predicted confidence.
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Figure 6: Responses to question (k) on perceived difficulty from participants in the adapted and non-adapted
difficulty conditions.

Overall, our results suggest that learners at a
lower proficiency level are more likely to benefit
from interactions with an LLM chatbot, but corre-
lations are not strong and many high-proficiency
learners also report positive outcomes.

4.3 RQ3: Difficulty adaptation

For half of the participants, the chatbots are ad-
justed to their CEFR level (Tyen et al., 2022) based
on their scores in the pre-test. For the remaining
half, the chatbots use standard top-k sampling (Fan
et al., 2018). At the end of the study, participants
are asked about the difficulty level of the messages
in question (k), where the potential responses are:
Too easy, A bit easy, Just right, A bit difficult, and
Too difficult.

Firstly, our results show that there is a signif-
icant difference in perceived difficulty between
those in the adapted condition and those in the
non-adapted condition (p < 0.00009). When
comparing specific responses, we find that par-
ticipants in the adapted version are significantly
more likely to respond with A bit difficult (p <
0.0001), while the number of responses for Too
difficult remain the same, and there are non-
significant reductions in the number of Too easy
and Easy responses. Figure 6 contains a visualisa-
tion of the responses.

The fact that the non-adapted version of the
chatbot is Too easy for many participants is in line
with the finding in Tyen et al. (2022) that Blender-
Bot with no adaptations generates messages at B1
level. If the default difficulty level is B1, many
participants at B2 level or above would consider
the messages to be too easy. Therefore, difficulty
adjustment methods are required.

Our results indicate that difficulty adjustment
via decoding (Tyen et al., 2022) is effective at in-
troducing language aspects which are more diffi-
cult, but are not so difficult that the learner is un-
able to comprehend it. According to Krashen’s
Input Hypothesis of second language acquisition

(Krashen, 1992), successful second language ac-
quisition occurs when the learner is exposed to in-
put that contains ‘i + 1’, referring to “an aspect
of language that the acquirer has not yet acquired
but that he or she is ready to acquire”. This sug-
gests that the ideal perceived difficulty level is be-
tween Just right and A bit difficult. Following this
hypothesis, we surmise that exposure to text with
adjusted difficulty levels is likely more beneficial
for second language learning than to text that is
not adjusted. However, to fully test this theory, a
longitudinal study is required to measure learning
progress.

4.4 RQ4: Conversational interaction versus
receptive reading

In both the chatting condition and reading condi-
tion, messages from the chatbot(s) are generated
on-the-fly using the same decoding strategy. De-
spite using the same setup, we observe distinct lin-
guistic differences between the content generated
in the chatting and reading conditions, likely due
to influence from the user. For example, messages
generated in the reading condition are shorter on
average (p < 0.0002); messages in the chat-
ting condition are more likely to contain questions
(p << 0.00001).

Overall, the Jaccard similarity between chatbot-
generated messages in the chatting and read-
ing conditions is relatively high at 0.35. For
comparison, the Jaccard similarity between all
chatbot-generated messages and messages in the
Blended Skill Talk dataset (Smith et al., 2020)
(which BlenderBot was fine-tuned on) is 0.26; and
the Jaccard similarity between chatbot-generated
messages and user-written messages in the user
study is 0.12.

We additionally explore the impact of reading
versus chatting via survey responses. Surprisingly,
our results show only one main difference between
learners in the chatting and reading conditions:
chatters enjoy the experience more than read-
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Figure 7: Responses to Likert question on enjoyment from participants in the chatting and reading conditions.

ers do. Figure 7 below shows a comparison of
their responses to question (c), which asks whether
participants enjoyed the chatbot session. Chatters
are significantly more likely to give a more posi-
tive response (p < 0.001).

Among all survey question responses, other
than enjoyment, we find no other significant dif-
ferences between the chatting and reading condi-
tions, whether with adaptive or non-adaptive diffi-
culty, or with or without dictionary lookup. This
is a surprising result given the differences in text
content, and the fact that second language pro-
duction is inherently differently from second lan-
guage comprehension (Laufer, 1998; Gernsbacher
and Kaschak, 2003).

There are some suggestive, but non-significant
differences: for example, users in the chatting con-
dition are slightly more likely to predict boosts in
confidence levels, while users in the reading con-
dition are slightly more likely to report learning
new words. However, further study with a larger
group of users is required to understand if these
effects are linked to interaction (or lack thereof).

5 Clicking for dictionary lookup as an
indicator of complexity

In our user study, we implement a clicking mech-
anism where learners can click on words to reveal
their dictionary definition. This function is simple
to implement and integrates seamlessly with the
existing user interface, yet can provide valuable
information about the user’s learning experience.

We find that clicks are a strong indicator of
when a learner finds a word difficult. We report
in Table 1 three statistics that are often correlated
with lexical complexity (Shardlow et al., 2021),
and compare them for words that are clicked on
versus words that are not clicked on. We find that
words that are clicked on are more complex, as
they are significantly longer (p << 0.0001), less
frequent (p << 0.0001), and have a smaller num-
ber of definitions (p < 0.0002).

Statistic Clicked Unclicked
Avg. character length 8.07 3.80
Avg. Zipf frequency 5.69 6.82
Avg. num. of definitions 2.59 5.26

Table 1: Statistics correlated with lexical complexity
for words that are clicked on, versus words that are
not clicked on. Zipf frequency refers to the base-10
logarithm of frequency per 1 billion words; the num-
ber of definitions refers to the number of synsets on
WordNet (Miller, 1994). Bold font denotes the statis-
tic that indicates higher complexity. All 3 statistics
are shown to be significantly different between clicked
and unclicked words (p << 0.0001 for length and fre-
quency; p < 0.0002 for number of definitions).

Furthermore, clicks are also associated with the
reported difficulty level of the overall message.
During our study, participants are able to flag mes-
sages that they consider to be too difficult (see Fig-
ure 1). We find that messages that are flagged as
difficult are 5 times more likely to have words that
are clicked on (11.3%), compared to messages that
are not flagged (2.2%). This demonstrates that
learners are clicking on words that they consider
complex, rather than e.g. out of curiosity, or due
to random, unintentional clicking.

Despite strong evidence that clicks are indica-
tive of lexical complexity, we observe that only
33 out of 80 participants in the clicking condi-
tion make use of this feature. For the 33 partic-
ipants, 4751 messages are sent from the chatbot,
but only 377 clicks are recorded in total. Possible
reasons for the low click-rate include: 1) Partic-
ipants rarely encounter any words that they find
sufficiently difficult; 2) Participants are engaged
in conversation and prefer to continue rather than
pausing to read definitions; 3) Participants find the
dictionary definitions unhelpful; or 4) Participants
forget they have access to this function. Note that
all participants in the clicking condition are in-
formed of this mechanism before their chatbot ses-
sion.

Due to the low click-rate, our data is insuffi-
cient to draw conclusions about potential benefits
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or drawbacks of clicking. Additionally, we find
no significant differences in survey response ques-
tions between the groups with and without this
dictionary lookup function. This is also the case
when looking at groups with or without adaptive
difficulty, or in the chatting or reading conditions.
Further work is required to understand clicking be-
haviour and its impact on the learning experience.

6 Limitations and future work

Scope of user study Our user study involves a
small sample of 160 participants, whose first lan-
guages are mostly European languages, and whose
CEFR proficiency levels are skewed towards the
higher end. Additionally, due to the small number
of participants, we are unable to properly measure
interaction effects despite the 2×2×2 design. Fur-
ther work is required to ascertain if our findings
hold at a larger scale and with a different popu-
lation, and to clarify how LLM chatbots facilitate
language learning.

Measured performance Some of our observa-
tions rely on participants’ self reports rather than
measured linguistic performance. Based on pre-
vious research, our results show promise and are
likely associated with improved performance, but
our study does not measure this directly. In fu-
ture work, we can measure linguistic improvement
over the course of multiple chatbot sessions by
comparing performance before and after the fact.

LLM capability For our user study, we use a
small (2.7B parameters) model for the ease of de-
ployment and inference speed. It is possible to
improve the capability of the chatbot by replac-
ing it with larger models such as LLaMA (Touvron
et al., 2023) and BLOOM (BigScience Workshop
et al., 2022). We expect that results related to en-
joyment are likely to improve with a larger model,
and the conversational experience would be more
realistic.

Personalisation using clicking data Our cur-
rent study does not make use of the clicking data
to adjust the generated messages, but future work
on computer-assisted language learning can make
use of clicks to adapt content on-the-fly to the user.

7 Conclusion

In this paper, we report our findings from our
user study, where we recruit 160 second lan-

guage speakers to interact with LLM-based chat-
bots. Our results show that using an LLM chat-
bot as a language practice tool can improve self-
confidence, and provides a more enjoyable learn-
ing experience compared to purely receptive read-
ing tasks. Although learning outcomes are not ap-
parent after one session, many participants predict
more positive effects in the long term, if given fur-
ther opportunity to interact with the chatbot. This
is especially true for learners at a lower proficiency
level.

In terms of implementation, we introduce click-
ing as a way to reveal dictionary definitions dur-
ing the user study. We find that this method effec-
tively detects words which the learner finds com-
plex, on-the-fly. For the chatbot, we implement a
decoding method that adjusts the difficulty of gen-
erated messages (Tyen et al., 2022). Our results
show that this method generates text that is more
often considered A bit difficult, which is likely to
facilitate learning (Krashen, 1992).

Overall, our findings demonstrate that LLM
chatbots as a language practice tool can bring ben-
efits to different aspects of language learning. We
leave it to future work to measure long-term learn-
ing outcomes of chatbot interaction.
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Neasa Nı́ Chiaráin and Ailbhe Nı́ Chasaide. 2016. The
digichaint interactive game as a virtual learning en-
vironment for irish. In CALL communities and cul-
ture – short papers from EUROCALL 2016, pages
330–336. Research-publishing.net.

OpenAI. 2023. ChatGPT. Accessed on February 1,
2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems, volume 35, pages
27730–27744. Curran Associates, Inc.

Alexandros Papangelis, Paweł Budzianowski, Bing
Liu, Elnaz Nouri, Abhinav Rastogi, and Yun-Nung
Chen, editors. 2021. Proceedings of the 3rd Work-
shop on Natural Language Processing for Conver-
sational AI. Association for Computational Linguis-
tics, Online.

Delroy L Paulhus, Simine Vazire, et al. 2007. The self-
report method. Handbook of research methods in
personality psychology, 1(2007):224–239.

PrettyPolly. 2023. Prettypolly - learn a language by
practicing speaking with ai. Accessed on January
31, 2024.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Matthew Shardlow, Richard Evans, Gustavo Henrique
Paetzold, and Marcos Zampieri. 2021. SemEval-
2021 task 1: Lexical complexity prediction. In
Proceedings of the 15th International Workshop on
Semantic Evaluation (SemEval-2021), pages 1–16,
Online. Association for Computational Linguistics.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

243

https://doi.org/10.3115/1225403.1225423
https://rm.coe.int/common-european-framework-of-reference-for-languages-learning-teaching/16809ea0d4
https://rm.coe.int/common-european-framework-of-reference-for-languages-learning-teaching/16809ea0d4
https://rm.coe.int/common-european-framework-of-reference-for-languages-learning-teaching/16809ea0d4
https://blog.duolingo.com/duolingo-max/
https://blog.duolingo.com/duolingo-max/
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1146/annurev.psych.54.101601.145128
https://doi.org/10.1146/annurev.psych.54.101601.145128
https://doi.org/10.1093/applin/19.2.255
https://doi.org/10.1093/applin/19.2.255
https://doi.org/10.1093/applin/19.2.255
https://doi.org/10.18653/v1/2023.acl-demo.18
https://doi.org/10.18653/v1/2023.acl-demo.18
https://www.microsoft.com/en-us/microsoft-365-life-hacks/writing/using-chatgpt-for-foreign-language-learning
https://www.microsoft.com/en-us/microsoft-365-life-hacks/writing/using-chatgpt-for-foreign-language-learning
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://doi.org/10.14705/rpnet.2016.eurocall2016.584
https://doi.org/10.14705/rpnet.2016.eurocall2016.584
https://doi.org/10.14705/rpnet.2016.eurocall2016.584
https://chat.openai.com/chat
https://aclanthology.org/2021.nlp4convai-1.0
https://aclanthology.org/2021.nlp4convai-1.0
https://aclanthology.org/2021.nlp4convai-1.0
https://www.prettypolly.app/
https://www.prettypolly.app/
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2021.semeval-1.1


Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pe-
dram Zaree, Yue Dong, and Nael Abu-Ghazaleh.
2023. Survey of vulnerabilities in large language
models revealed by adversarial attacks. arXiv
preprint arXiv:2310.10844.

Eric Michael Smith, Mary Williamson, Kurt Shuster,
Jason Weston, and Y-Lan Boureau. 2020. Can you
put it all together: Evaluating conversational agents’
ability to blend skills. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2021–2030, Online. Asso-
ciation for Computational Linguistics.

Pei-Hao Su, Chuan-Hsun Wu, and Lin-Shan Lee.
2015. A recursive dialogue game for personalized
computer-aided pronunciation training. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(1):127–141.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Gladys Tyen, Mark Brenchley, Andrew Caines, and
Paula Buttery. 2022. Towards an open-domain chat-
bot for language practice. In Proceedings of the 17th
Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2022), pages 234–
249, Seattle, Washington. Association for Computa-
tional Linguistics.

P. Vlugter, A. Knott, J. McDonald, and C. Hall. 2009.
Dialogue-based CALL: a case study on teaching
pronouns. Computer Assisted Language Learning,
22(2):115–131.

Jiashuo Wang, Haozhao Wang, Shichao Sun, and Wen-
jie Li. 2023. Aligning language models with human
preferences via a bayesian approach. arXiv preprint
arXiv:2310.05782.

Zhihui Zhang and Xiaomeng Huang. 2024. The im-
pact of chatbots based on large language models on
second language vocabulary acquisition. Heliyon,
10(3).

A Study setup details

Screening Our participants are recruited from
Prolific and filtered using the built-in screening
process. Participants must have a non-English lan-
guage for their first language, primary language,
and earliest language in life. As this does not guar-
antee that each participants’ first language is not
English (one can have multiple first languages),
we also ask for their first languages later in the
study. Additionally, we filter out participants liv-
ing in countries where English speakers are in the
majority (e.g. US, UK, Australia, etc.).

All participants’ first languages can be found in
Table 2.

First language Number of participants
Polish 60

Portuguese 32
Italian 17
Greek 11

Spanish 11
Hungarian 8
German 7
Russian 3
Czech 3

Slovene 2
Afrikaans 2
Latvian 1
French 1
Arabic 1

Romanian, Moldovan 1
Urdu 1
Dutch 1

Turkish 1
Tagalog 1

Ukranian 1

Table 2: All first languages among our participants.
Note that each participant can specify more than one
first language.

Payment Before the study begins, participants
are told that they will be paid a minimum of £7
for roughly half an hour of their time, including at
least 15 minutes of chatbot interaction. Pay will
increase with every additional 15 minutes spent
with the chatbot(s), up to a maximum of £13. All
entries are manually verified before payment to re-
move low-effort or invalid entries.

Consent form Participants are redirected to our
website for the study, where they are presented
with a consent form detailing how their data will
be used. The consent form was written with sec-
ond language speakers in mind, to ensure that be-
ginner learners can also understand it. Participants
can also contact the authors via email or the mes-
saging system on Prolific regarding any concerns
about the study. To proceed to the next section,
participants must consent to their data being used
for research purposes. However, they can with-
draw their consent at any point, up to 6 months
after the study. They may also exit the task any
time they wished.

Profiling questions There are two questions in
this section:

1. What is/are your first language(s)?
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Participants can select one or more languages
out of a list of ISO-639 languages.

2. How long have you been learning English?
Participants enter a number followed by a
choice of “years” or “months”.

Proficiency questions 25 multiple choice ques-
tions were used to estimate the proficiency level
of users. Questions are taken from the Cambridge
English Test Your English application (General
English) 4. Participants are asked to select one of
3 or 4 options for each question. Scores are then
converted to CEFR levels, as done on the website.
This CEFR level is used as input to the difficulty
adaptation mechanism (Tyen et al., 2022).

Chatbot interaction At the beginning of this
section, participants are informed that:

1. They should not reveal any personal informa-
tion, even if asked.

2. The chatbots are not real people, despite what
the messages may say, but messages will be
read by researchers afterwards.

3. There is a risk that the chabots may generate
inappropriate messages. Participants can flag
messages as inappropriate by clicking on the
‘Flag as inappropriate’ button. Clicking on
the button again un-flags the message.

4. Information or opinions in the generated
messages should not be taken for fact.

5. If participants are finding the messages dif-
ficult, they can flag messages as too difficult
by clicking on the ‘Flag as too difficult’ but-
ton. Clicking on the button again un-flags the
message.

6. There will be attention questions in the next
section, so participants should read messages
carefully.

7. (For those in the dictionary lookup condition)
Participants can click on words to look them
up in the dictionary.

After acknowledging the above, participants
may begin the chatbot interaction. In both reading
and chatting conditions, messages are generated
on-the-fly, using an NVIDIA Tesla V100 GPU.

4https://www.cambridgeenglish.org/tes
t-your-english/general-english/

Figure 8: Interface presented to participants in the read-
ing condition. Messages on both sides are chatbot-
generated using the same parameters.

Reading condition In the reading condition, the
user reads a conversation between two identical
chatbots with the same settings. The user interface
can be found in Figure 8. Unlike the UI for the
chatting condition (in Figure 1), the user presses a
button to reveal the next message, instead of typ-
ing in a text input field. Note that to maintain fair
comparison, all messages in either the reading or
chatting conditions are generated in real time.

Adaptive condition In the adaptive condition,
all chatbot messages are generated using a
weighted reranking decoding method (Tyen et al.,
2022). This method consists of 3 components:

1. Sub-token penalties to adjust probabilities of
tokens during generation

2. A reranker model to assign adjusted scores to
each generated candidate message

3. A filter to remove generated candidates that
contain ungrammatical words

For the reranker model, we use weights directly
from https://github.com/WHGTyen/C
ontrollableComplexityChatbot/t
ree/master/complexity_model with-
out performing any additional fine-tuning. The
final score of each generated candidate is calcu-
lated as the average rank between ranked probabil-
ity scores and ranked complexity scores, weight-
ing both equally:

r(P (C)) + r(|Luser − LC |)
2

(1)

C is the candidate message; r is a ranking function
returning a rank out of 20 candidates; Luser is the
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CEFR level of the user, and LC is the predicted
CEFR level of the candidate message.

For the vocabulary filter, we use a list of En-
glish words from https://github.com/d
wyl/english-words, but ignore capitalized
words (indicating proper nouns). For the sub-
token penalties, the probability of each token t is
given by:

P (t) =

{
P (t) · φ(Lt − Luser) if Lt > Luser

P (t) otherwise
(2)

where Lt refers to the CEFR level of token t and
Luser refers to the user’s CEFR level, determined
by proficiency test scores at the beginning of the
user study. The level is determined before any text
is generated, does not change throughout the con-
versation, and is implemented in the same way re-
gardless of reading/chatting or lookup conditions.
For the function φ representing the normal distri-
bution, we follow parameters used in the original
paper, µ = 0 and σ = 2.

Inappropriate language Participants have the
ability to flag messages as being inappropriate.
Of the 21,283 messages sent by a chatbot, 359
(1.69%) were flagged as such. A small sample
reveals that about half of these messages were
flagged due to being nonsensical, or logically or
pragmatically unsuitable for the context, rather
than offensive – this may be due to some partic-
ipants misinterpreting the word “inappropriate”.
The remaining half generally touch on politically
sensitive topics, use politically incorrect terms, or
are offensive or insulting in some way.

The existence of these messages is concern-
ing for chatbot usage in educational settings, es-
pecially for younger learners. Recent work on
AI alignment has produced considerable improve-
ments over the past few years (see Ji et al. (2023)
for a comprehensive survey), but it is still possible
to elicit inappropriate messages, especially when
under specially crafted attacks (Shayegani et al.,
2023). In its current form, we believe that LLM
chatbots are best suited for an adult audience who
are aware and informed of the nature of language
models. However, current technology on LLM
safety is improving rapidly, and new methods for
mitigating toxicity are being developed constantly
(e.g. Ouyang et al. (2022); Bai et al. (2022); Wang
et al. (2023)), so it may soon be possible to deploy
chatbots that are safe for younger audiences.

Feedback questions Table 3 shows the full list
of questions asked after each chatbot session.
Questions vary slightly depending on whether the
participant is assigned the chatting or reading con-
dition.

Questions (a) and (b) are attention questions
used to eliminate low-effort entries where the par-
ticipant failed to engage with the task. Among our
submissions, only 4 are removed for this reason.
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Chatting condition Reading condition

Attention questions

(a) Were there messages from BlenderBot that did not
make sense? If so, can you give some examples?

Were there messages from BlenderBot 1 or 2 that did
not make sense? If so, can you give some examples?

(b) Tell us one fact about BlenderBot that you learned from
this conversation.

Tell us one fact about either BlenderBot 1 or 2 that you
learned from this conversation.

Likert questions

(c) I enjoyed chatting with BlenderBot. I enjoyed reading the messages between BlenderBot 1
and BlenderBot 2.

(d) I learned a new word/phrase while chatting with
BlenderBot.

I learned a new word/phrase while reading these mes-
sages.

(e) I learned new grammar while chatting with BlenderBot. I learned new grammar while reading these messages.

(f) I think I can learn more words / phrases / grammar if I
chatted longer.

I think I can learn more words / phrases / grammar if I
read more of these messages.

(g) I feel more comfortable chatting with BlenderBot now
than at the beginning.

N/A

(h) Chatting with BlenderBot made me feel more confident
about chatting in English with real people online.

Reading these messages made me feel more confident
about chatting in English with real people online.

(i) If I can chat with BlenderBot a few more times, it will
make me feel more confident chatting online in English
with real people.

If I can read more of these messages, it will make me
feel more confident chatting online in English with real
people.

(j) I would like to continue using this chatbot in the future. I would like to continue reading similar messages in the
future.

Feedback questions

(k) What did you think about the difficulty of the messages?
Options: Too easy / A bit easy / Just right / A bit difficult / Too difficult

(l) Do you have any other thoughts, comments, or feedback for us? (free text response)

Table 3: Questions answered by each participant after their chatbot session.
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Abstract

Multiword expressions (MWEs), due to their
idiomatic nature, pose particular challenges in
comprehension tasks and vocabulary acquisi-
tion for language learners. Current NLP tools
fall short of comprehensively aiding language
learners when encountering MWEs. While pro-
ficient in identifying MWEs seen during train-
ing, current systems are constrained by limited
training data. To address the specific needs
of language learners, this research integrates
expansive MWE lexicons and NLP methodolo-
gies as championed by Savary et al. (2019a).
Outcomes encompass a specialized MWE cor-
pus from Wiktionary, the enhancement of Lin-
guse, a reading application for language learn-
ers, with MWE annotations, and empirical val-
idation with French language students. The
culmination is an MWE identifier optimally
designed for language learner requirements.

1 Introduction

Second language acquisition is a complex pro-
cess that involves developing and refining a range
of competences. One such competence—lexical
competence—includes the knowledge of and abil-
ity to use a certain category of lexical items, known
in the field of Natural Language Processing (NLP)
as multiword expressions (MWEs). Examples of
such items are all of a sudden ‘suddenly’, a hot dog
‘a sausage sandwich’, larger than life ‘attracting
attention’, to carry out ‘to perform’ or to do one’s
best. In language teaching, this category is often
referred to as “fixed expressions,” which consist of
multiple words learned as cohesive units (Council
of Europe, 2001, p. 110). Despite the differing ter-
minologies across computational and educational
spheres, the essence of these lexical items remains
consistent: they pose distinct idiomatic challenges

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

that resist straightforward grammatical or semantic
interpretation.

The concept of MWEs, defined by Baldwin and
Kim (2010), encompasses lexical items that: (a)
can be decomposed into multiple lexemes; and
(b) display lexical, syntactic, semantic, pragmatic,
and/or statistical idiomaticity. It is precisely this
idiomaticity that makes MWEs a notable stumbling
block for language learners and a significant com-
putational challenge in NLP.

Given these complexities, there is a compelling
need for computer-assisted language learning so-
lutions that address the acquisition of such lexical
items. We address this need by focusing on the inte-
gration of MWE identification techniques into Lin-
guse, a reading application designed for language
learners. The aim is to bridge the gap between
the pedagogical requirements of second language
learners and the capabilities of state-of-the-art NLP
systems.

2 Related work

Challenges encountered when processing MWEs
include ambiguity, idiomaticity, flexibility, and lexi-
cal proliferation (Sag et al., 2002). Two main tasks
in this context are: MWE discovery and MWE
identification. Discovery aims to find new MWEs
in text corpora, while identification deals with an-
notating known MWEs in running text (Constant
et al., 2017). Our focus is on MWE identification,
as it allows MWEs to be cross-referenced with lexi-
cal resources, which is crucial in language learning.

Traditional approaches to MWE processing
included treating them as ‘words with spaces’
(Smadja, 1993; Evert, 2005) but one category has
proven particularly resistant to this treatment: ver-
bal multiword expressions (VMWEs). They exhibit
non-adjacency of components (spend a lot of time),
syntactic and word order variability (time spent),
and syntactic ambiguity (turn on the heating vs.
turn on the floor) (Savary et al., 2017).
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To address these challenges, the PARSEME net-
work created standardized corpora with VMWE
annotations in 26 languages and organized a series
of multilingual shared tasks on automatic identifi-
cation of VMWEs (Savary et al., 2017; Ramisch
et al., 2018, 2020). The focus in evaluation grad-
ually moved from generic performance measures
to those focusing on previously unseen VMWEs
(Ramisch et al., 2020), which proved critically hard
to identify. Savary et al. (2019a) claim that this dif-
ficulty stems from the inherent nature of VMWEs’
idiosyncrasy, which resists generalisation over un-
seen data.

However, much progress can still be achieved
in identification of seen VMWEs, by addressing
their morpho-syntactic flexibility, as shown by Pas-
quer et al. (2020b) with the Seen2020 system, un-
derpinned by rule-based candidate extraction and
filtering techniques. In edition 1.1 of the shared
task it yielded a macro-average F1 score of 0.83,
surpassing four other systems in the identification
of seen VMWEs. In edition 1.2 it was rebranded as
Seen2Seen for the closed track (in which only the
annotated corpora provided by the shared task or-
ganizers are used) and as Seen2Unseen with some
modifications for the open track (in which other
external resources can also be used) (Pasquer et al.,
2020a). It shows limited performance in the un-
seen MWE-based category (4th/7, F1: 13.7) but
remains competitive in the global (seen+unseen)
MWE-based category (1st/2 in the closed track,
2nd/7 overall, F1: 63.0). It was only outperformed
by one of the neural models (Taslimipoor et al.,
2020), employing a fine-tuned, multilingual BERT
(Devlin et al., 2019) for joint parsing and identifi-
cation.

These outcomes suggest that rule-based systems
like Seen2020 can be highly competitive for seen
MWE identification, even when juxtaposed with
more sophisticated models. Their principal limita-
tion is the relatively low diversity of MWEs seen
during training. This problem might be tackled by
using fully unsupervised methods, e.g. inspired
by metaphor detection, in which contextual and
static word embeddings are used to represent the
idiomatic and literal meaning of a potential MWE,
respectively (Zeng and Bhat, 2021).

Another solution is to leverage existing MWE
lexicons, which possibly contain many MWEs not
seen in manually annotated corpora. Namely, the
lexicon entries known to be MWEs, can be automat-

ically identified in large corpora with a relatively
high reliability. This is due to the fact that, although
VMWEs are potentially ambiguous (take the cake
can be understood idiomatically or literally), they
seldom appear in their literal or accidental forms in
corpora (Savary et al., 2019b). Thus, the sentences
containing lexicon entries can be used as an aug-
mented training corpus, as shown by Kanclerz and
Piasecki (2022) for English and by Hadj Mohamed
et al. (2024) for Arabic. Sentences illustrating the
usage of an MWE can also be found in the lexicon
itself, as is the case for Wiktionary (Muzny and
Zettlemoyer, 2013), and leveraged for MWE identi-
fication (Tedeschi et al., 2022). Importantly for our
work, such methods enable linking the identified
MWEs with human-readable definitions, useful for
language learners. They also facilitate the control
over the precise list of identifiable MWEs. This
might pave the way towards adapting MWE identi-
fication to the learners’ proficiency level.

3 Didactic framework

As the purpose of this study is the integration of
automatic MWEs identification and annotation in
teaching French as a foreign language, an exclu-
sive focus on technical solutions may fall short of
meeting the diverse needs of language learners. To
remedy this shortcoming, it is essential to integrate
a didactic framework, strongly inspired by linguis-
tic approaches.

In contemporary linguistics not only single word
forms but also MWEs are considered an essential
component of language, particularly of its lexical
subsystem (Mejri, 1999; Sułkowska, 2013; Tutin,
2018). A profoundly modified understanding of
the concept of meaning in linguistics, strongly im-
pacted by cognitive science and the renewal of se-
mantics, revealed that not only single words but
also some syntactically complex items should be
perceived as fully fledged units of meaning. Con-
sequently, in Foreign Language Teaching (FLT),
MWEs, referred to as fixed expressions, are in-
troduced within the framework of communicative
language competences, notably lexical and seman-
tic ones (Council of Europe, 2001, pp. 108–109).
However, these expressions represent a major issue
in both fields owing to syntactic constraints, includ-
ing degree of combinatorial fixity and discontinuity,
and semantic features such as non-compositionality
vs. opacity and their gradation (Cavalla, 2016;
Tutin, 2018). This complexity gives rise to a par-
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ticularly broad category of phenomena encompass-
ing sentential formulae, phrasal idioms, and fixed
frames (Council of Europe, 2001, pp. 110–111)
that a language learner must internalize as whole
units of meaning to effectively communicate, which
leads to difficulties in both receptive and produc-
tive activities (Cavalla, 2009; Cavalla and Labre,
2019). Moreover, the didactic approaches present
in French student’s books (e.g. the Edito series)
hardly help learners to cope with these difficulties
as not sufficient attention is paid to the multi-stage
procedure of teaching new lexical or grammatical
items (Puren, 2016), especially at the conceptual-
ization and training levels (Dryjańska, 2024).

Two main lexical approaches in FLT can be dis-
tinguished: incidental (Fr. incident) and explicit
(Fr. explicite). The former subordinates lexical
learning to the objectives of reading or writing
activities whereas the latter implies a structured
lexical progress based on lexical exercises and the
appropriation of metalexical concepts (Grossmann,
2011). The incidental lexical approach has much
in common with the concept of synthetic reading
(Fr. lecture synthétique), a linear reading process
that aids the introduction of new language struc-
tures and simultaneously encourages a focus on
the text as a whole, satisfying learners’ curios-
ity, enriching their experience and helping them
to develop their personality Cornea (2010). Gross-
mann (2012), when exploring the role of lexical
competence in the reading process from a cogni-
tive perspective, observes that it is based on the
reader’s ability to match encountered lexical units
with representations, such as mental images, and
to integrate them into their evolving mental model.

In our project we combine the above lexical
and reading approaches. The automatic identifi-
cation and annotation of MWEs developed within
its framework is supposed to foster the process of
the acquisition of new fixed expressions while read-
ing independently, which additionally contributes
to the development of some general competences
such as the ability to learn (Council of Europe,
2001, p. 101, 106). However, it should be noted
that the didactic framework seems to impose some
specific constraints on MWE identification and an-
notation regarding evaluation in terms of the met-
rics like precision, recall and F1 score (cf. Sec-
tion 7). Although there is an obvious tendency to
increase the recall of the process, if it is followed
by a diminution of the precision, on account of a

higher number of erroneously identified fixed ex-
pressions, the quality of such a tool will be poorly
assessed according to teaching objectives. Low pre-
cision risks injecting noise and confusion into the
learning environment. While these metrics offer
insights into the efficacy of MWE identification
systems, a genuinely holistic assessment can only
be achieved when integrated within broader learn-
ing tools and measured against the actual benefits
conferred upon the learner. Therefore, we intro-
duce Linguse (cf. Section 8), a tool dedicated to
language learning through reading, which encom-
passes MWE identification as one of its original
features.

4 Assumption and hypothesis

The ambition of our work it to connect the do-
mains of NLP and language learning by supporting
learning activities with MWE identification. A sec-
ondary aim is to receive downstream feedback from
end users, and connect them in this way to ongoing
research on MWEs. In doing so, we seek to recon-
cile the practical needs of language learning with
the theoretical work in NLP.

Inspired by the two preceding sections, we make
the following assumption:
Assumption: A large MWE coverage is desirable

when automatically annotating text for lan-
guage learners. This ensures its utility to learn-
ers in various stages of language mastery and
equips them with the linguistic flexibility they
need in real-world scenarios.

This assumption motivated our preference for
a large MWE lexicon offering example sentences
even for rare expressions, as discussed in the fol-
lowing sections. Grounded in the assumption, our
research posits the following hypothesis:
Hypothesis: A rule-based system, trained on ex-

ample sentences from a lexicon, can success-
fully extend MWE coverage while maintain-
ing satisfactory performance metrics.

The following sections describe the practical ap-
proach taken to corroborate this hypothesis.

5 Data

This section describes the MWE material employed
in this project, outlining the various sources of
MWE data and the construction of a lexicon-driven
MWE corpus.
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5.1 Sources of MWE data

Alongside the theoretical work on aligning notions
of MWEs, various data sources on French MWEs
were reviewed from both the NLP and the language
learning domains. The goal is to identify sources
suitable for direct evaluation and those that shed
light on MWEs relevant to language learners. Un-
fortunately, traditional language learning resources
like textbooks often lack explicit MWE data, mak-
ing them less adequate for systematic identification
of MWEs relevant to education. Additionally, copy-
right constraints prevent their exploitation.

Despite this, four supplementary data sources
where identified, two from the realm of lan-
guage learning—FLELex and PolylexFLE—and
two from the field of NLP—PARSEME and Deep-
Sequoia.
FLELex: A graded lexicon for learners of

Français Langue Etrangère (FLE) (François
et al., 2014). It offers normalized word fre-
quencies by CEFR competence level and in-
cludes MWEs1.

PolylexFLE: Tailored to MWEs in French and
aiming to facilitate second language acquisi-
tion (Todirascu et al., 2024). It contains 4,525
MWEs and their CEFR competence levels and
focuses on verbal MWEs2.

PARSEME 1.2: An NLP corpus for French,
mainly annotated for VMWEs (Ramisch et al.,
2020). It comprises 20,961 manually anno-
tated sentences3.

Deep-Sequoia: Providing multi-layer annotations
on French sentences (Candito et al., 2017).
Its 3,099 sentences overlap with the French
PARSEME corpus but extend MWE annota-
tions beyond VMWEs4.

All datasets exhibit a relatively low count of
unique MWEs, as summarized in Table 1. For stan-
dardization of the counts, MWEs sharing the same
multiset of lemmas were considered duplicates.
MWE headwords in FLELex and PolylexFLE were

1The dataset comes along in two versions and only the
CRF-tagged version contains MWE data. The levels are A1,
A2, B1, B2, C1 and C2 according to the Common European
Framework of Reference for Languages. See https://ce
ntal.uclouvain.be/cefrlex/flelex/.

2During the execution of our project, the data was not yet
publicly available but a sample of 136 MWEs was graciously
provided to our consideration. The full dataset can now be
accessed at https://github.com/amaliatodiras
cu/PolylexFLE.

3https://gitlab.com/parseme/sharedtas
k-data/-/tree/master/1.2/FR

4https://deep-sequoia.inria.fr/

Table 1: Unique MWE Counts Across Datasets

DATASET # MWES (UNIQUE)

FLELEX 1,979
POLYLEXFLE 4,525
PARSEME 1.2 1,800
DEEP-SEQUOIA 2,109

automatically tokenized and lemmatized, while
PARSEME 1.2 and Deep-Sequoia employed origi-
nal lemmas.

5.2 Extracting structured data from
Wiktionary

To address the scarcity of unique MWEs in exist-
ing datasets, we created a lexicon-based training
corpus. The choice of lexicon required careful con-
sideration, and the Wiktionary Project5 emerged as
an ideal candidate. It offers an open, community-
driven platform under a Creative Commons Share-
Alike license, ensuring both accessibility and adapt-
ability for research applications.

Beyond these merits, Wiktionary provides data
for multiple languages, facilitating the future scala-
bility of our methodology. It also supplies example
sentences and supplementary linguistic informa-
tion, both crucial for building an MWE-rich train-
ing corpus and providing language learners with
additional information about annotated MWEs. Es-
pecially the latter makes Wiktionary a great data
source for applications targeting language learners
(e.g. Simonnet et al., 2024).

Wiktionary is primarily an unstructured wiki
maintained by thousands of volunteers with vary-
ing degrees of technical skills. Therefore, its source
code is expressed in easily formatable and human-
readable wikicode, a light-weight markup language
leveraging templates and modules in the Lua pro-
gramming language for formatting content. This
setup necessitates the extraction of structured data
from Wiktionary to accomplish automated down-
stream tasks.

Among the several existing extraction projects,
DBnary (Sérasset, 2015) and Wiktextract (Ylonen,
2022) are the most robust and advanced candi-
dates. After comparison, Wiktextract emerged as
the superior option owing to its ability to flexi-
bly expand Lua Templates, thereby achieving a
higher extraction quality. A particular concern was
that DBnary—due to lacking the same flexibility—

5https://wiktionary.org/
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exhibited undesired artifacts in example sentences,
which would compromise the integrity of our train-
ing corpus.

While the Wiktextract project publishes a fully
extracted dataset of the English Wiktionary which
also includes a large number of French headwords6,
this dataset unfortunately provides only limited cov-
erage of French example sentences—a crucial fea-
ture for our project. We, therefore, had to adapt the
Wiktextract script to parse the French Wiktionary
directly. The adapted version was able to extract
headwords, part-of-speech tags, and word senses.
For each word sense, a gloss and example sentences
(if present) were extracted as well as potential sub-
senses, whereby additional tags, categories and
meta data such as source and authors were placed
in separate fields resulting in clean text for glosses
and example texts7.

5.3 Corpus creation

To support our hypothesis, it is essential to demon-
strate that an MWE identification system can be
trained using example sentences from a lexicon.
These sentences may undergo automatic prepro-
cessing but should require minimal manual inter-
vention. This requirement necessitates that the
MWE identification system be capable of learning
solely from positive examples, as lexical example
sentences provide only positive instances for each
MWE.

However, to validate and refine the system, neg-
ative examples are needed to measure precision.
Consequently, constructing a development and test
set involves some degree of manual annotation
to identify occurrences and non-occurrences of
MWEs. Ultimately, to confirm that the system
meets the performance goal of being useful to lan-
guage learners, a fully annotated test set is required.
This test set should ideally be drawn from a corpus
representative of general French, rather than from
a distribution of lexical example sentences.

In the following sections, we detail the process
of creating the training and test sets used to evaluate
WiktSeen.

6See https://kaikki.org/index.html.
7The adapted script is available in the pull request to the

main Wiktextract project: https://github.com/tat
uylonen/wiktextract/pull/223. The Wiktextract
project has since expanded and now parses the French Wik-
tionary edition out of the box.
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Figure 1: Building a train set from Wiktionary example
sentences

5.3.1 Preprocessing the Wiktionary corpus

Following the extraction of structured data from a
Wiktionary dump dated 07.04.2023, several steps
of data processing were undertaken to construct a
coherent training corpus. Figure 1 schematically
illustrates this process.

Our initial concern was to identify MWEs
among the extracted lexical entries, or more for-
mally, the set W of MWE types present in Wik-
tionary. We used whitespace characters within the
headwords as discriminating markers for MWEs.
Next, the Wiktionary-specific part-of-speech (POS)
tags were mapped to Universal POS tags to facili-
tate universality and integration with existing NLP
tools. Furthermore, we flattened the ‘senses’ and
‘subsenses’ fields into a consolidated list of glosses
and example sentences for each lemma-POS pair.

Applying this heuristic, we identified 119,561
MWEs, of which 31,794 were plural forms, i.e. hav-
ing only one gloss containing the string ‘pluriel d’,
disregarding capitalization. These plural forms are
not useful for two reasons: (i) the corresponding
Wiktionary entries contain no definitions other than
a reference to the single form entry (we need a
definition to explain the meaning of MWEs to the
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user), (ii) the occurrences of these forms can still be
spotted in text by our MWE identification method,
which is based on lemmas of the MWE compo-
nents. After excluding these plural forms, we were
left with 87,767 MWEs in W , each characterized
by a unique lemma-POS combination.

In order to identify the necessary components of
each MWE, the lemma of each MWE—represented
by the entry’s headword—was automatically tok-
enized and lemmatized. In this manner, we derived
for each MWE type a multiset of single word lem-
mas whose joint occurrence we consider a neces-
sary condition for the occurrence of the MWE as a
whole (e.g. la crème de la crème (lit. ‘the cream
of the cream’) ‘the best part’ yields {crème, crème,
de, le, le}).

This process occasionally led to minor inaccu-
racies, such as converting the headword a priori
to *avoir priori ‘have priori’ caused by the added
complexity of lemmatizing fragmented text. In
adopting this approach, we deferred responsibility
for the delicate question of determining the canoni-
cal form and necessary components of an MWE to
the Wiktionary authors—a pragmatic choice which
will have to be justified by the outcomes8.

Finally, example texts underwent a SpaCy (Hon-
nibal and Montani, 2017) processing pipeline con-
sisting of tokenization, POS-tagging, lemmatiza-
tion, and dependency parsing. These texts were
then partitioned into individual sentences based
on parsing outcomes. While these newly delin-
eated sentence boundaries largely matched the orig-
inal example sentences, they were occasionally
more liberal. This strategy was intentional: shorter
sentences reduce the complexity of searching for
MWE candidates and also mirror the preprocess-
ing steps that our MWE identifier will eventually
employ on unprocessed real-world text.

5.3.2 Training set
The initial extraction process transforms rich-text
formatted Wiktionary entries into plain text, elim-
inating the specific formatting that often but not
always (and not always correctly) marks MWE
occurrences in example sentences. Consequently,
we needed to re-identify the spans of MWE occur-
rences within these examples.

To address this, we ran a systematic search for

8For instance, while commencer à ‘start to (do something)’
is a MWE entry in Wiktionary, it is considered a single verb
with a selected preposition (i.e. a word combination relevant
to valency rather than to idiomaticity) in Sequoia.

MWEs as defined by their multisets of lemmas
across all preprocessed sentences, not limiting the
search to just the single MWE a sentence was an ex-
ample of. To manage the computational complexity
of the search, we assumed that MWEs tagged with
the POS labels ‘ADJ’ (e.g., bon à rien (lit. ‘good
for nothing’) ‘unable to succeed’), ‘ADV’ (e.g.,
de temps en temps ‘from time to time’), ‘ADP’
(e.g., au lieu de ‘instead of’), ‘CONJ’ (e.g., à
mesure que ‘as’), ‘INTJ’ (e.g., à la bonne heure
‘splendid!’), ‘NOUN’ (e.g., lune de miel ‘honey-
moon’), and ‘PROPN’ (e.g., Académie française
‘the French Academy’) must manifest as contin-
uous lemma sequences in the text. For all other
POS tags, we allowed any discontinuities as long
as a complete multiset of lemmas was present in an
individual sentence. For very prevalent multisets of
lemmas, we stopped the search after having found
more than 1,000 occurrences.

The search yielded a comprehensive list of MWE
candidates. An MWE candidate was automatically
included in the training set when it was the sole
candidate in a sentence which was known to be an
example of that MWE. All other candidates were
kept as undefined candidates for potential manual
classification. Figure 1 describes this automatic
derivation of our training set.

The figure also illustrates a partial manual anno-
tation process of undefined candidates. The out-
comes of this effort are included in our total corpus
but were used neither in training nor evaluation.

5.3.3 Test set
The training set (as well as the manually annotated
parts of the total corpus) is composed exclusively
of lexical example sentences which, prima facie,
have no claim to being representative of modern
French. To evaluate the real-life performance of
our system, as experienced by language learners, a
general corpus annotated with MWEs is required.
As discussed in Section 5.1, few such corpora exist,
with Deep-Sequoia being notable for its inclusion
of MWE annotations beyond just verbal MWEs.

The main difficulty in evaluating our system on
Deep-Sequoia is the potential discrepancy between
its notion of MWEs (the set S of MWE types)
and that of Wiktionary (the set W of MWE types).
Some MWEs are annotated in Deep-Sequoia and
included in Wiktionary (W

⋂
S), such as à peu

près ‘approximately’. Others are included in Wik-
tionary but not annotated in Deep-Sequoia (W \S),
such as en aval de ‘downstream of’ (only en aval
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Figure 2: Creating a test set based on Deep-Sequoia

would be annotated in S according to the Deep-
Sequioa annotation guidelines).

Given our choice, as guided by the hypothesis, to
follow Wiktionary’s notion of an MWE, we need to
evaluate our system’s performance on the entirety
of W . Claiming to annotate all MWEs in W (ex-
tending coverage) while in practice evaluating on
only the labels provided in Deep-Sequoia (W

⋂
S),

would reduce any claim about satisfactory perfor-
mance to just the limited subset of W

⋂
S. The

fact alone that MWEs in W
⋂
S have undergone

a formal check of their MWE-hood,9 while those
in W \ S are based on the looser standards of the
Wiktionary community, necessitates close attention
to the latter group.

We, therefore, decided to create our test set based
on the Deep-Sequoia corpus, employing a two-
pronged approach. For the MWEs from W

⋂
S,

we reused the annotations from Deep-Sequoia. For
the MWEs from W \ S, we added manual anno-

9The MWE annotation guidelines used for Sequoia have
the form of decision diagrams driven by formal linguistic tests.
They are available at https://gitlab.lis-lab.fr/
PARSEME-FR/PARSEME-FR-public/-/wikis/Gu
ide-annotation-PARSEME_FR-chapeau.

tations. Figure 2 describes the creation process of
our test set.

Similar to our approach for the training set, we
searched for MWE candidates in the Deep-Sequoia
corpus using multisets of lemmas corresponding to
the MWEs of type W . We retained the provided
corpus annotations (tokenization, POS tags, depen-
dency parsing) but adjusted the contraction of du
‘of.the.MASC.SING’ to align with our automatic
preprocessing pipeline10.

The resulting MWE candidates were pre-
selected for either automatic or manual annotation
by comparing their multisets of lemmas to those
corresponding to MWE types S. In particular, if
any occurrence of a given multiset of lemmas was
annotated in Deep-Sequoia as an MWE, then a spe-
cific occurrence of that multiset of lemmas was
automatically classified as either a positive or neg-
ative candidate based on whether or not it had an
MWE label. This heuristic assumes that Deep-
Sequoia is consistent, meaning that, if an MWE
was annotated once, all its occurrences are anno-
tated. All other MWE candidates were then man-
ually classified, applying the decision rule: label
it as a positive candidate if one of the senses of
the MWE entry is present; otherwise, as a negative
candidate.

The combined test set comprises MWEs from
both W

⋂
S and W \ S, covering the entirety of

W 11.
This dichotomy introduces some label consis-

tency issues. For instance, Deep-Sequoia does not
distinguish between MWEs with the same lemma
but different POS labels, whereas Wiktionary does
(e.g., à court terme ‘in the short term’ has an en-
try as an ADJ and as an ADV). Consequently, an
occurrence of à court terme ‘in the short term’
might be labelled as both ADJ and ADV if auto-
matically annotated, whereas manual classification
would disambiguate the part-of-speech. We expect
these inconsistencies to be minimal and consider
them an acceptable trade-off for reducing manual
annotation efforts.

10While Deep-Sequoia tokenizes du ‘of.the’ to de le ‘of the’,
SpaCy keeps it as a single token. Aligning the lemmatization
protocols is crucial since our identification system searches
for MWE candidates based on the multisets of lemmas seen
during training.

11Since we are only concerned with identifying and evaluat-
ing seen MWEs, in practice, the test set only covers the subset
W of W , which corresponds to the MWEs our system sees
during training, i.e. the MWEs included in the training set.
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Table 2: Corpus statistics

NO. OF TOTAL TRAIN TEST (SEQUOIA)

MWES 87,767 28,459 1,318
SENT. 126,558 48,020 3,099
TOKENS 2,555,207 1,194,824 68,615
POS. C. 57,053 49,165 1,972
NEG. C. 31,052 0 10,494
UND. C. 1,102,488 233,170 0

5.4 Corpus statistics

As a result of the steps described above, distinct
outcomes of this paper are a unique MWE corpus,
comprising Wiktionary’s example sentences, and
the Deep-Sequoia corpus, annotated with MWEs
from the Wiktionary lexicon.

Table 2 presents comprehensive statistics for the
total corpus, its subset used for training, and the
Deep-Sequoia test set, fully annotated with train-
able MWEs from Wiktionary12. For each set, the
table reports the number of MWEs with unique
lemma-POS pairings (that have at least one candi-
date occurrence), sentences, tokens, and the num-
ber of found MWE candidates, classified as posi-
tive (a true MWE), negative (a literal or incidental
occurrence of the constituent lemmas of an MWE
in a sentence), or undefined (awaiting manual clas-
sification).

One significant achievement is the scale of
unique MWEs included in the corpus, which ex-
ceeds that of previous data sources by an order of
magnitude (compare Section 5.1).

6 MWE identification with WiktSeen

The corpus described in the previous section be-
came a cornerstone of WiktSeen, a rule-based
MWE identification system, closely modeled after
the Seen2020 system developed by Pasquer et al.
(2020b). We opted to base WiktSeen on this particu-
lar model due to its strong performance in identify-
ing seen MWEs during the PARSEME shared task
edition 1.1. The rule-based nature of Seen2020 of-
fers several advantages that align with our research
goals. Firstly, it allows for relatively straightfor-
ward implementation and customization. Secondly,
it is able to learn from positive examples alone,
eliminating the need for labeling negative examples
(or of making sure to catch all positive examples

12It is worth noting that the count of undefined candidates
is a conservative estimate. The search for new candidates for
MWEs with high-frequency lemma multisets was halted after
identifying the first 1000 candidates.

in the dataset). Thirdly, its rule-based architecture
enables reasoned analysis and debugging of the
system’s performance. This last point is especially
important in our setup since it allows us to distin-
guish errors introduced by the system from errors
introduced during the task and dataset design.

These attributes make WiktSeen instrumental for
testing our hypothesis: that a rule-based system,
trained on lexically-rich example sentences, can
extend MWE coverage without compromising per-
formance metrics. The previous achievements of
Seen2020 in the PARSEME shared task bolster our
confidence in this hypothesis, allowing us to focus
more on corpus design and informing the further
course of research through user experiments.

A notable enhancement in our implementation
is the integration of WiktSeen as a custom SpaCy
pipeline component. This plug-and-play compati-
bility enables seamless integration with other nat-
ural language processing tasks, facilitating easy
deployment in downstream applications13.

In the subsequent sections, we will outline the
key features of WiktSeen, emphasizing where it di-
verges from the original Seen2020 system. For a
more comprehensive understanding of the underly-
ing architecture, we direct the reader to the original
work by Pasquer et al.

6.1 Candidate extraction

WiktSeen employs a two-stage process for MWE
identification, with the first stage dedicated to can-
didate extraction. During the training phase, the
system registers multisets of lemmas correspond-
ing to the necessary components of an MWE for
each observed POS and MWE lemma combination.
In the prediction stage, WiktSeen searches each sen-
tence for matches to these registered multisets of
lemmas, effectively identifying initial candidate
occurrences of MWEs.

To enhance search efficiency, WiktSeen allows
for configuration of POS-specific continuous can-
didate matching. By default, continuous matching
is applied to MWEs with the POS tags: ‘ADJ’,
‘ADV’, ‘ADP’, ‘CONJ’, ‘INTJ’, ‘NOUN’, and
‘PROPN’. Candidates that pass this initial extrac-
tion are then forwarded to the subsequent stage for
further filtering14.

13The pipeline component is available at https://gith
ub.com/empiriker/mwe-detector.

14It’s worth noting that the candidate extraction stage fol-
lows the same logic as our search for annotation candidates
during corpus creation. This necessarily impacts the interpre-
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6.2 Trainable Rule-Based Filters

The second stage in WiktSeen’s MWE identification
pipeline focuses on enhancing precision through
filtering. The system utilizes a combination of
seven filters, F1 to F7, that take the observed mor-
phosyntactic properties of MWE components into
account.

One key distinction between WiktSeen and the
original Seen2020 is in how these filters are trained.
While the latter learns filter settings for each MWE
class based on PARSEME VMWE tags, WiktSeen
learns individual filter settings for each specific
MWE, except for the global filters F5 and F6. The
7 filters are defined as follows:

F1: Components should be disambiguated
This filter only accepts candidates with mul-
tisets of POS tags that were observed during
training (e.g. point/VERB out/ADV) but not
point/NOUN out/ADV).

F2: Components should appear in specific or-
ders (Ignoring discontinuities) This filter only
accepts candidates whose POS tags appear in the
same order as observed in the training data, dis-
regarding any discontinuities (e.g. point/VERB
out/ADV but not out point).

F3: Components should appear in specific or-
ders (Considering discontinuities) Similar to
F2, but it takes into account all POS tags from
the first to the last candidate token, considering
discontinuities (e.g. point that/PRON out but
not point that/SCONJ it/PRON is/VERB out).

F4: Components should not be too far This
filter only accepts candidates whose largest dis-
continuity is no greater than the largest observed
discontinuity.

F5: Closer components are preferred This
global filter selects the candidate with the small-
est discontinuity among all matches for a given
multiset of lemma within a sentence.

F6: Components should be syntactically con-
nected Another global filter that passes can-
didates where the tokens form a (weakly) con-
nected dependency subgraph or/and are in a
grandparent/grandchildren relation.

F7: Nominal components should have seen in-
flection If a candidate match contains exactly
one noun, this filter expects the noun to appear
with a previously observed inflection (turn ta-
bles but not turn table). If there are zero or

tation of our results which we discuss in the next section.

more than one noun, the candidate automatically
passes this filter.

The original Seen2020 system featured an eighth
feature concerned with nested VMWEs. Due
to the practical absence of nested MWEs in the
Wiktionary-based MWE training corpus, this filter
is set permanently to true in WiktSeen.

6.3 Tuning active filters

In the original Seen2020 paper, an 8-bit param-
eter was tuned on the development set to deter-
mine which filters should be active during predic-
tion. This 8-bit parameter was trained per language
present in the data set and then applied globally for
all classes of VMWEs.

Following this lead, we ran all combinations of
a 7-bit parameter on a small development set and
kept the the best performing filter combination,
determined by the F1-score, before evaluating on
the test set.

In the future, a separate active filter parameter
could be trained for each different POS class of
MWEs (verbal, nominal...). However, initial ex-
periments have shown that this technique requires
quite a large development set. Otherwise, filter
tuning would quickly overfit the few MWEs of
each POS class present in the development set. We,
therefore, opted to only tune a single set of global
filters.

7 Results

The evaluation of the WiktSeen system faces sev-
eral initial difficulties: a) lack of negative examples
in the created French MWE corpus, b) small over-
lap in MWE-hood with existing corpora, and c)
an atypical distribution of MWEs in the training
set. These issues were largely addressed through
manual creation of a Sequoia-based test set (see
Section 5.3.3).

However, the methodology used for corpus cre-
ation has its own consequences for interpreting
the results. Specifically, the same candidate gen-
eration method was used to search for annotation
candidates as is used by WiktSeen in the candidate
extraction stage. This implies that our evaluation
method can only reasonably evaluate the second
stage, i.e., the filtering stage. Consequently, the
baseline recall of our model (without any filtering)
would be 100%.

We deem this acceptable in the context of lan-
guage learning, where it may not be necessary to
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match a formally precise span of an MWE. Re-
sponsibility for defining the constituent parts of
an MWE is delegated to Wiktionary. Furthermore,
filtering is considered the harder part compared to
candidate extraction, and it is the aspect we aim to
evaluate more strictly.

7.1 Evaluation procedure

With this in mind, a three-step evaluation procedure
was adopted.
Model training The model is trained on the

training set, which comprises the bulk of the
available data without manual classification.

Filter tuning We use a (random sentence-based)
20% split of our Deep-Sequoia corpus as a de-
velopment set. The trained model’s second stage
predicts filter values on this set, allowing us
to calculate binary classification metrics. We
then identify optimal filter settings based on the
F1-score, balancing precision and recall. This
approach ensures that filter tuning occurs on a
sample distribution matching the final test set.

Final evaluation The model, trained only on the
original training set, is evaluated on the remain-
ing 80% of the Deep-Sequoia corpus using the
optimal filter settings determined in step 2. This
evaluation provides an estimate of the model’s
performance on a natural distribution of MWE
occurrences, serving as an empirical check on
its utility.

Through this evaluation process, we aim to assess
WiktSeen’s capabilities in a way that aligns with the
project’s objectives and underlying assumptions.

7.2 Filter tuning

Figure 3 displays the F1-scores across different fil-
ter settings. Notably, the highest-performing com-
binations involve the activation of filters F2, F5
and F6. These filters respectively require the POS
tags of MWE components to match the order ob-
served during training (F2), prefer closer compo-
nents among candidates of the same MWE (F5),
and enforce syntactic connectedness (F6).

Apart from the optimal filter set, the figure con-
tains many hints on how to improve filters in a
future iteration. Just to give an example, F7 (nomi-
nal components should have seen inflection) seems
to extraordinarily benefit precision albeit at a huge
price in recall. A conclusion might be that only
some MWE classes profit from F7, or that the train-
ing set was not diverse enough in terms of MWEs

Figure 3: Performance for different filters on dev

whose nominal components are not fixed.

7.3 Results on Deep-Sequoia
We report the results on the Deep-Sequoia corpus
with optimal filter settings for the entire test set
(80% split) and its partitions by annotation pro-
cess and POS. Table 3 presents the global metrics
and metrics for subsets corresponding to the MWE
types W ∩ S and W \ S (see Figure 2). Table 4
provides metrics per POS class. For better inter-
pretability, both tables include the number of MWE
candidates (positive/positive+negative candidates)
and the number of unique MWE candidates (with
at least one positive candidate/with any positive or
negative candidate) per respective subset.

On the full test set, WiktSeen achieves an F1-
score of 0.776. However, a significant disparity
emerges when comparing the results on W ∩S and
W \ S. For MWEs adhering to the formal defini-
tion of MWE-hood in Deep-Sequoia, the identifi-
cation task appears nearly solved with an F1-score
of 0.929. However, for MWEs introduced only in
Wiktionary, the F1-score drops to 0.535.

This disparity can be partly attributed to the
composition of each data slice in terms of unique
MWEs with positive versus any candidate occur-
rence. In W ∩ S, the ratio of true candidates to
all candidate matches is 1100

1554 ≈ 7
10 , compared to

624
8716 ≈ 7

100 in W \ S. This suggests that expres-
sions considered MWEs by Deep-Sequoia exhibit
multisets of lemmas that are more likely to be true
candidates, whereas Wiktionary introduces many
MWEs lacking this property, making identification
much harder in W \ S. In a sense, this is the op-
posite relationship of what Savary et al. (2019c)
have found for verbal (!) MWEs: i.e., that any
morphological and syntactical candidate structure
that exhibits features of a VMWE is much more
likely to be a true occurrence of the MWE than a
literal reading. Apparently, W \S introduces many,
mostly non-verbal MWEs that exhibit the opposite
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Table 3: Performance on test with top filters

TEST TEST|W∩S TEST|W\S

F1 0.776 0.929 0.535
PRECISION 0.751 0.939 0.484
RECALL 0.804 0.92 0.598

# OCCS 1,734/10,270 1,110/1,554 624/8,716

# MWES 709/1,258 427/432 282/826

Table 4: Performance on test with top filters by POS

POS F1 PREC. REC. # OCC. # MWE

ADJ 0.664 0.531 0.886 88/232 41/78

ADP 0.618 0.787 0.509 283/714 64/89

ADV 0.771 0.660 0.927 327/1,112 162/266

CONJ 0.718 0.832 0.632 133/199 36/48

INTJ 0.714 0.556 1.000 5/20 3/13

NOUN 0.913 0.907 0.919 467/523 237/261

PRON 0.732 0.872 0.631 65/2,024 6/31

PROPN 0.722 0.700 0.745 47/76 17/25

VERB 0.777 0.708 0.862 318/5,078 142/428

X 1.000 1.000 1.000 1/292 1/19

relationship between occurrences of their multisets
of lemmas and true idiomatic occurrences.

Examining results by POS class, WiktSeen’s per-
formance remains relatively stable across different
groups. It performs best on nominal MWEs, av-
eraging on verbal MWEs, and worse on adjective
and adpositional MWEs. These results indicate that
WiktSeen generalizes well across MWE classes but
also highlight areas for improvement. The low
precision for adjective MWEs is partly due to the
difficulty in distinguishing them from adverbial
MWEs, which often share the same lemma multi-
sets. The poor recall for adpositional MWEs may
result from F6’s check for syntactic connectedness
disproportionately affecting this MWE class. These
observations suggest directions for error analysis
and future enhancements.

Overall, the global F1-score of 0.776 is encour-
aging. We hypothesize that human language learn-
ers, even without expert knowledge of their target
language, can tolerate some noise in MWE identifi-
cation without compromising its usefulness. While
its performance leaves room for improvement, Wikt-
Seen can likely already provide real-world value.
We tested this hypothesis through application in
Linguse and subsequent user experiments, as dis-
cussed in the following sections.

8 Linguse

Linguse is a reading application for language learn-
ers that predates this research15. As a web appli-
cation, it allows learners to upload texts in vari-
ous formats and provides an interface optimized
for reading comprehension and vocabulary acqui-
sition. This is achieved by identifying all lexical
items in a text, facilitating context-aware retrieval
of glosses and translations, and cross-referencing
them with lexical items previously read by the user.
Originally, Linguse’s identification of lexical items
was limited to single words. In our research, we
collaborated with Linguse to enhance its reading
interface by integrating MWE identification, en-
abling us to test how language learners interacted
with and appreciated the identification of MWEs
in their reading material.

While e-books and reading devices are widely
used by foreign language learners, research on their
educational use, particularly on the impact of their
dictionary functionality (typically involving single-
word identification and annotation) on the devel-
opment of reading and lexical skills, is scarce in
foreign language teaching literature (Davidson and
Carliner, 2014; Rettberg, 2020). MWE identifica-
tion is rarely implemented in reading devices,16

highlighting the significance of our efforts to de-
velop this functionality in Linguse and test its ef-
fectiveness through user experiments. This gap in
existing tools motivated our development and as-
sessment of MWE identification within Linguse,
aiming to enhance language learning outcomes.

9 User experiments

The primary aim of the didactic part of this study
is to collect feedback from end-users (French lan-
guage learners), offering valuable insights into their
specific needs and practical considerations. This,
in turn, is expected to inform the scientific commu-
nity, refining the scope of scientific tasks in align-
ment with real-world applications and shaping the
trajectory of future research. These experiments
were undertaken in partnership with the Institute
of Romance Studies at Warsaw University. A class
of 12 students studying the French language at the
B1 level participated in the study. The experiments,

15Accessible via https://linguse.com.
16Kindle provides definitions for some manually selected

phrases in English. See also https://github.com/B
oboTiG/ebook-reader-dict/blob/master/do
cs/fr/README.md

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

258

https://linguse.com
https://github.com/BoboTiG/ebook-reader-dict/blob/master/docs/fr/README.md
https://github.com/BoboTiG/ebook-reader-dict/blob/master/docs/fr/README.md
https://github.com/BoboTiG/ebook-reader-dict/blob/master/docs/fr/README.md


conducted from mid-May to mid-June 2023, were
guided by three primary objectives:

1. to assess the impact of MWE identification on
language learning,

2. to evaluate Wiktionary’s utility as a guideline
and knowledge base for MWE annotation,

3. to understand the practical needs and expec-
tations of B1-learners with respect to MWE
identification.

The user experiments were designed with a fo-
cus on gathering qualitative data, but quantitative
part was also necessary. Participants were given
a set of three tasks to be performed in their own
time: a prequiz to assess their prior knowledge of
MWEs, a reading task based on a series of French
texts (Fournier, 2011) within the Linguse applica-
tion, internally annotated with MWEs (throughout
this period, they were supposed to take notes on
any aspects they found confusing, useful, or inter-
esting), a postquiz to assess any improvement or
changes in their understanding of MWEs.

The pre- and the postquizzes, providing data for
the quantitative evaluation, were based on the Vo-
cabulary Knowledge Scale (Paribakht and Wesche,
1996) that requires the participants to evaluate their
understanding of an MWE on a 5-level scale. While
the first two levels take the learner’s self-evaluation
at face value, for the subsequent categories, par-
ticipants were requested to provide evidence of
their knowledge, such as synonyms, translations,
or example sentences. This combination of self-
reporting and evidence-based scoring allows us
to gauge not just the breadth but also the depth
of participants’ MWE knowledge. The qualita-
tive evaluation consolidated insights from both a
semi-structured group feedback session and semi-
structured individual interviews.

The user experiments reveal several key findings
that contribute to both theoretical and practical dis-
course on MWE identification in language learn-
ing. Regarding the quantitative evaluation, the most
salient outcome pertains to the difference of pre-
quiz and postquiz results. The score obtained in the
postquiz, representing the knowledge of 10 MWEs
randomly chosen from the text read by the students
during the second task of the experiment, was 2.575
and it increased by 0.775 compared to the score
in the prequiz regarding the same MWEs. This
result may suggest a positive influence of MWE-
annotated texts on lexical competency; however,
the robustness of these findings is limited by the

low participant count, and therefore, further studies
are needed for more conclusive evidence.

As far as the qualitative feedback is concerned,
overall, three themes closely related to our objec-
tive to evaluate the efficiency of the MWE identi-
fication and annotation for a reading tool emerged
from the feedback, whose conclusions are very
briefly presented in the following:
General Experience: Users generally expressed
a positive to very positive sentiment towards the
tool, affirming its utility in aiding their reading
in a foreign language, as it can be confirmed by
this statement: “Normally I want to look up all
unknown words; here it was easy to focus on the
text”.
Reading Assistance: The tool’s multi-faceted read-
ing assistance, which includes word and MWE def-
initions, but also the availability of alternative help,
like translations, useful when definitions were in-
sufficient, was praised by the students. We noted
the following opinion: “I liked that there were often
multiple definitions for a word. Though sometimes
definitions were missing or not sufficient. Then the
translation feature helped me”.
Annotation Quality: Some students noted inad-
equacies regarding annotation, but they were for-
giving of minor annotation errors, suggesting that
perfect accuracy is not required for the reading
tool to be beneficial. It can be illustrated by the
following statement: “When reading it was most
important to understand the bigger picture, small
annotation errors didn’t matter”.

To sum up, the overarching need for MWE iden-
tification tools in language acquisition was vali-
dated by user experience. It should also be empha-
sized that the utility of providing comprehensive
lexical information emerged as crucial, reinforcing
the strengths of our lexicon-based approach, which,
by design, links to lexical data sources. Further-
more, our innovative didactic approach to ground-
ing MWE identification in a community-driven lex-
icon faced no objections from participants, who
are frequent users of resources like Wikipedia or
Wiktionary. This suggests the practicality of the
reading tool developed in our study and indicates a
negligible impact of any inaccuracies on its overall
usefulness.

10 Conclusions

This research project, situated at the intersection
of NLP and language learning, aimed to enhance
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learning activities through MWE identification
while providing valuable insights from end users
to MWE research.

Our findings support the hypothesis that a rule-
based system, trained solely on positive MWE ex-
amples from a lexicon, can significantly expand
MWE coverage while maintaining satisfactory per-
formance metrics. The MWE coverage of our sys-
tem is an order of magnitude larger compared to
other sources. User experiments confirmed that
language learners highly value broad MWE cov-
erage, which is essential for assisting learners at
various levels of expertise. Although the perfor-
mance metrics of our rule-based system, WiktSeen,
are not outstanding, they are deemed satisfactory
because they do not detract from its utility for lan-
guage learners. On the contrary, user experiments
indicate that second language learners can handle
noisy assistance as long as a multitude of resources
are provided in context.

11 Implications and Future Work

The outcomes of this project offer promising av-
enues for future research and development. Specif-
ically, the user-oriented components of the project,
such as the MWE-annotated reading interface, have
demonstrated practical benefits for language learn-
ing.

The immediate next step could be to provide a
larger development set by expanding Wiktionary-
based MWE annotations to the PARSEME corpus.
This would allow for a more nuanced evaluation of
the system’s performance and potentially lead to
class-specific filter optimizations. Other aspects of
diversity, such assessing the variety and disparity
of MWE types (Lion-Bouton et al., 2022) both in
the dataset and in system predictions, might prove
beneficial for the lexical competence of language
learners.

Further enhancements to the system itself should
also be explored. New filters could be devised to
target prevalent error sources. While it is tempt-
ing to explore advanced machine-learning algo-
rithms such as transformers for MWE identifica-
tion, we consider a gradual approach. Preliminary
results and user feedback indicate that significant
real-world benefits can still be obtained using the
existing rule-based system, thus questioning the
immediate need for adding complexity through a
vector-/transformer-based approach.

We would also like to explore how well our

method translates to other languages in order to
provide assistance to learners of target languages
other than French, too. Wiktextract has recently
started to extract and make available data from the
Chinese, German, Japanese, Polish, Russian, and
Spanish editions of Wiktionary which considerably
improves the availability of MWE lexica with ex-
ample sentences. Finally, the fact that WiktSeen
is based on Seen2020 which was tested and eval-
uated on 14 languages (one of which was French)
with good overall results, gives us reason to opti-
mism that, using our approach, similar results are
possible for more languages.
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