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Abstract

Pronunciation is an important, and difficult as-
pect of learning a language. Providing feed-
back to learners automatically can help train
pronunciation, but training a model to do so
requires corpora annotated for mispronuncia-
tion. Such corpora are rare. We investigate
the potential of using the crowdsourced an-
notations included in Common Voice to indi-
cate mispronunciation. We evaluate the qual-
ity of ASR generated goodness of pronuncia-
tion scores through the Common Voice corpus
against a simple baseline. These scores allow
us to see how the Common Voice annotations
behave in a real use scenario. We also take
a qualitative approach to analyzing the corpus
and show that the crowdsourced annotations
are a poor substitute for mispronunciation an-
notations as they typically reflect issues in au-
dio quality or misreadings instead of mispro-
nunciation.

1 Introduction

Pronunciation of utterances is a difficult task for
language learners, and there is limited research
on how best to generate feedback automatically
(Agarwal and Chakraborty, 2019; Moses et al.,
2020; Neri et al., 2006; Witt, 2012). However,
such feedback can be an invaluable tool for those
learning a language who want to improve their
speaking skills, allowing them to practice when
a human teacher is not available. Ideally, the
feedback should reflect the judgements of a native
speaker of the targeted language variant and be tar-
geted at the learner’s desired dialect (e.g., British
vs. American English) and skill level. One current
method for evaluating pronunciation is to interpret
the confidence of an Automatic Speech Recogni-
tion (ASR) model as the goodness of pronuncia-
tion (Moses et al., 2020). Doing so makes a crucial
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assumption that the accuracy of the transcription is
representative of the learner’s pronunciation accu-
racy.

One of the challenges in investigating the qual-
ity of automatic feedback is that there is only one
publicly available corpus with human judgements
on pronunciation, L2-ARCTIC (Zhao et al., 2018).
Since it does not contain examples of native speak-
ers producing the same sentences, we cannot use
it for our purposes.

The Common Voice corpus (Ardila et al., 2020)
does not contain pronunciation annotation, but
does contain upvote and downvote scores per ut-
terance. We propose using these crowdsourced up-
and downvote scores as a stand-in for pronuncia-
tion scores. We hypothesize that a clip receiving
both up- and downvotes indicates a mispronunci-
ation because annotators disagree on the quality,
and clips with only upvotes indicate proper pro-
nunciation as well as clear audio. To test whether
these labels can be used for evaluating pronunci-
ation scorers, we create a task to classify whether
a given audio clip in the Common Voice corpus
has any downvotes using the generated pronunci-
ation scores as input. Assuming that the output of
a Speech Recognition model is a measure of pro-
nunciation accuracy (Moses et al., 2020), a neural
model should be able to use that output to predict
the presence of downvotes.

Typically, in ASR, the task is transcribing audio
data into orthographic text. In this work we per-
form a zero-shot classification of downvoted clips
using an ASR model (section 5.1). The final layer
of this architecture is a softmax layer, providing
probabilities, which form the basis of our base-
line pronunciation scorer and which we compare
across speakers to generate feedback (section 4).

Our results show that detecting downvotes in
Common Voice is difficult. The baseline, inter-
preting the speech recognition softmax output as
feedback, achieves only 81.4% with tuning, and in
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the low 60s when comparing learner’s utterances
to expert’s and predicting downvotes from the
comparison. Looking closely at some of the exam-
ples and contents affirms that the voting on Com-
mon Voice utterances is a poor substitute for mis-
pronunciation annotation. This highlights the need
for a dedicated corpus annotated specifically for
pronunciation for the development of tools provid-
ing pronunciation feedback to language learners.

2 Related Work

Pronunciation feedback systems were researched
in depth in the 1990s and 2000s (Witt, 2012),
as they have been shown to improve learner’s
pronunciation (e.g., Agarwal and Chakraborty,
2019; Neri et al., 2006; Dalby and Kewley-Port,
1999). Early pronunciation feedback used Hid-
den Markov Models (HHMs; Franco et al., 2000;
Dalby and Kewley-Port, 1999), following the use
of HMMs for Speech Recognition at the time (Ma-
lik et al., 2021). Bratt et al. (1998) collected a cor-
pus annotated for pronunciation during this time
for evaluating these systems, but it is no longer
available.

As speech recognition moved to neural network
models (Malik et al., 2021; Hannun et al., 2014),
pronunciation feedback followed (Agarwal and
Chakraborty, 2019; Moses et al., 2020). Moses
et al. (2020) use DeepSpeech (Hannun et al., 2014)
to score pronunciation of Te reo Māori, an in-
digenous language in New Zealand, using their
own speech and text corpora by calculating con-
fidence scores for characters, as opposed to utter-
ances, in an elicited sentence or phrase. There is
no information available on how the scoring is per-
formed. It appears to consist of the probability of
the character from the target sentence appearing at
its aligned timestamp, which is interpreted as the
model’s confidence for that character. They “ob-
served the model working with confident te reo
speakers as expected”. (Moses et al., 2020)1

There are currently many proprietary apps for
language learning which include pronunciation
training in some form (Coulange, 2023). Com-
mon practice for these apps is to give the learner
an elicitation phrase and an example of an ex-
pert pronouncing it, then request the learner say
the phrase. Most apps, such as Memrise2 and

1Only a poster is available for this work https://pa
pareo.nz/docs/PapaReo_NeurIPS2020_Poster
.pdf

2https://www.memrise.com

DuoLingo3, give only binary feedback (correct or
incorrect), on a phrase or word level. ELSA4 is
able to give feedback on specific letters, based on
phonemes, but only teaches English. Our long
term goal is to generate feedback as narrowly as
ELSA with a system that can generalize to multi-
ple languages.

3 The Common Voice Dataset

We use the Common Voice English data. Com-
mon Voice is a large multilingual collection of
audio data for speech recognition crowdsourced
by Mozilla (Ardila et al., 2020). It consists of
around 1.6 million clips (≤10 sec.) of read
sentences/phrases totalling 2 319 hours. Users
can contribute recordings of sentence readings,
or judgements of other’s readings by upvoting or
downvoting clips5. Only clips with at least one
upvote are ultimately included in the validated
dataset.

Though the upvotes and downvotes do not nec-
essarily indicate a mispronunciation, they do in-
dicate problems as judged by human contributors.
Because mispronunciation is a potential reason for
an annotator to downvote a clip, these judgements
give us the best indication for which clips are mis-
pronounced.

4 System Overview

4.1 System Pipeline

The pipeline for the process of generating feed-
back for a given elicited phrase begins with run-
ning both the expert and the learner productions
of the phrase through the speech recognizer, Coqui
(see Section 5.1) and retrieving a softmax proba-
bility distribution per time slice. Coqui operates
by segmenting an audio file and predicting the
character, or lack of a character, present in each
segment. This takes the form of a probability dis-
tribution over the candidate alphabet. It then re-
combines the segments into orthography, combin-
ing repeating characters6 and inserting spaces as
informed by a language model. Figure 1 shows
this process, starting with the extraction of proba-
bility distributions in the first transition from the

3https://www.duolingo.com
4https://elsaspeak.com
5There is no meta data available about the individual lan-

guage skills of those upvoting and downvoting.
6Double letters, such as the T’s in letter, are handled by a

special character prediction.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

68

https://papareo.nz/docs/PapaReo_NeurIPS2020_Poster.pdf
https://papareo.nz/docs/PapaReo_NeurIPS2020_Poster.pdf
https://papareo.nz/docs/PapaReo_NeurIPS2020_Poster.pdf
https://www.memrise.com
https://www.duolingo.com
https://elsaspeak.com


Figure 1: The extraction process for retrieving one probability distribution per character from the audio clip. 1)
Extract probability distributions for time slices using via ASR. 2) Align these to the elicitation phrase. 3) Then
select one representative distribution per character. The first row of each table represents the highest probability
character, the second row that character’s probability, and the 3rd and 4th rows are the next highest probability
characters. Each column contains a probability for each character, remaining character probabilities are represented
by ellipses.

audio, represented by an arbitrary waveform, to
the middle table. Each column in this table rep-
resents one time slice where the first row is the
highest probability character, the second row is
that character’s probability (rounded to 2 decimal
points), and the remaining rows indicate proba-
bilities for other likely characters for this time
slice. The model also predicts word boundaries,
represented by a space (white columns). The
next step aligns the probability distributions to
the elicitation phrase, using a modification of the
Needleman-Wunsch algorithm (see Section 5.2).
The alignment is shown via the colors, e.g., all
green columns align with the first character in
the elicitation phrase. Based on this alignment,
the best distribution (i.e., column) per character is
chosen to represent the corresponding character in
the elicitation phrase. The chosen distributions for
each character are shown in the lower table in Fig-
ure 1.

Once we have an alignment between the prob-
ability distributions and true character labels, we

need to choose one distribution per character in
the elicitation phrase (i.e., one column per color,
as shown in the lower table in Figure 1) to compare
between speakers. This guarantees every charac-
ter in the elicitation phrase is aligned to at least
one probability distribution, even if the most prob-
able character is not the true character. We de-
cide which distribution, from all aligned candi-
dates, to use for each character by choosing the
single distribution where the probability of the true
character is highest. These final distributions, one
per true character, are what we compare between
speakers to generate a score for each character.

The process to this point is executed on the
learner and expert’s pronunciations of the same
phrase, resulting in two probability distributions
per character of the phrase which we can compare
pairwise. Since similarity comparisons are depen-
dent on the similarity metric, we use three differ-
ent algorithms for this comparison: cosine similar-
ity, Jensen-Shannon Divergence (Lin, 1991), and
Cross Entropy (see Section 5.3).
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Elicitation phrase H O . . .

Best hypothesis: expert H O . . .
Best hypothesis: learner H O . . .

Comparison

% 0.992 0.975 . . .
Hel 0.034 0.097 . . .
JSD 0.001 0.011 . . .
XEn 0.016 0.047 . . .

Table 1: Example comparing the expert and learner
and probability distributions (for the first two charac-
ters shown in Figure 1), resulting in a single score per
character and similarity metric.

The pairwise comparison of the two speakers’
productions per character is shown in Table 1.
The probability distributions for each character
per speaker is scored using the comparison al-
gorithms, creating a single score per algorithm,
which serves as feedback for each character. Since
we do not know which similarity metric is the
most suitable one, we experiment with three dif-
ferent ones (see section 5.3 for details).

4.2 Quantitatively Evaluating the Corpus
As discussed above, our goal is to evaluate the po-
tential of Common Voice’s annotation as a stand
in for pronunciation annotation. I.e., we use the
downvotes as indication for incorrect pronuncia-
tion. We use the vote annotations as our silver
standard; the task then is to predict whether a
given clip has any downvotes (irrespective of the
number of upvotes) using ASR generated pronun-
ciation scores. Assuming the pronunciation scor-
ing algorithms work well, a classifier should be
able to identify clips with downvotes. Since the
number of votes per clip is small, we use a bi-
nary classification problem rather than predicting
the number of downvotes. Most clips have a max-
imum of 3 total votes, and have 1 downvote and 2
upvotes if there are any downvotes. All clips have
at least one upvote.

4.3 Data Preprocessing
We choose to focus on sets of files which contain
at least 10 different speakers producing the same
sentence. We then randomly sample 1 000 of these
sets, containing 34 105 total utterances. Of these,
the Coqui model fails to process 9,061 clips be-
cause of problems identified in preprocessing (e.g.
the transcript contains unknown characters, or the
clip is longer than 10 seconds). Our final count

Dataset WER CER
Sampled Common Voice 0.252 0.153
LibriSpeech clean 0.052 0.019
LibriSpeech other 0.150 0.073

Table 2: Word Error Rate (WER) and Character Error
Rate (CER) of sampled data used in our evaluation and
Coqui AI’s reported scores for English (Coqui, 2021).

for clips is 25 044. Table 2 shows the Word Error
Rate (WER) and Character Error Rate (CER) of
the sampled data, along with the scores reported
by Coqui for the used model when testing on the
full dataset (in the version of 2021) (Coqui, 2021).

By comparing the Coqui STT output of each
clip with all other clips of the same sentence (see
Section 5.3), we generate 511 532 comparisons.
Since we define an expert utterance as one with-
out downvotes, we only accept comparison pairs
where one clip only has upvotes (expert) and the
other as the language learner. To reduce the data
to a manageable size given our compute resources,
we reduce these randomly to 20 000 comparisons,
split into 15 000 for training and 5 000 for testing.

5 System Components

5.1 Speech Recognition
We use the freely available model, Coqui STT7

(Coqui, 2021), based on Baidu’s DeepSpeech
(Hannun et al., 2014). Out of the box, Coqui STT
predicts an orthographic transcription of speech in
an audio file by slicing it into chunks of a specified
length (default: 20ms), and using an LSTM net-
work to produce a softmaxed probability distribu-
tion over candidate characters per slice. This is il-
lustrated in Figure 1 where the waveform is sliced
into 20ms chunks, represented by the columns in
the middle table. The rows represent probabilities
of candidate characters.

Coqui STT was trained on approximately
47 000 hours of audio data from Common Voice
(Ardila et al., 2020), LibriSpeech (Panayotov
et al., 2015), and Multilingual LibriSpeech (Pratap
et al., 2020). Both Librispeech corpora are com-
prised of segmented audiobook data.

Coqui STT’s predictions over the sliced audio
results in far more characters than the transcrip-
tion; it decodes this long form transcription into
the final predicted words using a Connectionist
Temporal Classification (CTC) decoder (Graves

7https://coqui.ai (no longer maintained).
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et al., 2006). We modify Coqui STT to preserve
and return the softmax output in the form of prob-
ability distributions per 20ms time slice of the
LSTM in the model’s results, where the proba-
bility space is the set of all potential orthographic
characters, thus bypassing the CTC decoder.

5.2 Needleman-Wunsch Alignment

Since we need to align the transcripts of the time
slices to the correct transcription, rather than de-
coding the speech signal, we modify the alignment
algorithm by Needleman and Wunsch (1970).

The algorithm’s original purpose is to align two
DNA sequences by calculating the distance be-
tween all possible alignments, using Levenshtein
distance, and adding insertions to one or both se-
quences as needed. It then uses a backtrace to find
the sequence resulting in the lowest divergence.

The original algorithm results in a 1 : 1 align-
ment, with some characters aligned to an inser-
tion character. When there are multiple possible
alignments of equal weight, Needleman-Wunsch
only returns the best entirely aligned sequences.
However, for our problem, we need a many to one
alignment, allowing us to be intentional about se-
lecting a distribution per elicitation phrase char-
acter, rather than relying on the 1 : 1 mappings.
We modify the algorithm to allow pairing multiple
items from the longer sequence (audio slices) with
an item from the shorter sequence (correct tran-
scription).

5.3 Comparing Distributions

We use three algorithms designed to compare
probability distributions. The first is Hellinger
Distance (Hellinger, 1909). It is a simple sum-
mation of comparisons between elements in the
probability space normalized to be bounded by 0
and 1. The second is Jensen-Shannon divergence
(JS; Lin, 1991). JS divergence is based on KL di-
vergence (Kullback and Leibler, 1951), but it is
symmetrical, making it a more consistent measure
of similarity. It is also bounded by 1 when us-
ing probability distributions given the base of the
log used is 2. The third is cross entropy. This is
our only comparison metric which is not bounded
by 0 to 1, and, like Jensen-Shannon divergence,
a higher score indicates more dissimilar distribu-
tions.

Comparison Algorithm Accuracy

Baseline 81.4
Jensen-Shannon 60.6

Cross Entropy 60.9
Hellinger 64.2

Table 3: Results per comparison algorithm scores as
input to the downvote detection model.

5.4 The Downvote Detection Model

We evaluate our approach on the downvote detec-
tion task, trained on the comparison scores (see
above). The downvote detection classifier con-
sists of a Multi-Layer Perceptron with a softmax
output layer, implemented using scikit-learn (Pe-
dregosa et al., 2011). The goal of this classifier
is a binary classification of whether a given clip
has downvotes (indicating mispronunciation). The
input features are the per character pronunciation
scores from the distribution comparisons for each
phrase. Phrases are of variable length, so the input
is padded with ones to the length of the longest
phrase. The final parameters are shown in Table 8
in the appendix. We optimized over the parame-
ters using the Adam optimizer. The initial learning
rate and beta 1 for Adam were the most impactful.
More hidden layers did not improve performance,
indicating that a complex network is not necessary
for this task.

6 Quantitative Evaluation

In Table 3, we compare the accuracy of the down-
vote detection model when using the different
comparison algorithms. The best results, 81.4%,
are obtained by the baseline algorithm, using the
probability of each character in the elicitation
phrase from the speech recognition model’s soft-
max. This is a binary classification with a 50 : 50
split, i.e., random chance should yield about 50%
accuracy. As an upper bound, 81.4% is therefore
too low to be reliable. All of our comparison algo-
rithm scorers perform at around 60-64%. They are
similar to each other, with the Hellinger algorithm
performing best after the baseline. This suggests
that elaborate methods are not necessary for pro-
ducing effective scores of pronunciation.

7 Qualitative Analysis

In this section, we probe deeper into the model,
the task, and the corpus. If the vote annotation on
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Figure 2: The distribution of pronunciation scores gen-
erated by the distribution comparison algorithms as
percentages. The x-axis for Cross Entropy is different
because it is not bounded by 0-1.

the clips in Common Voice are a reliable indicator
of pronunciation quality, that should be reflected
in the data. To test this, we choose a subset of in-
stances we consider representative of the broader
corpus with regard to both ASR performance and
the mix of upvotes and downvotes.

7.1 Data in Aggregate

Figure 2 shows the distribution of scores by per-
cent for each of the scoring methods. Each bin
contains the output of the distribution compari-
son algorithm interpreted as a pronunciation score,
within the bin’s width of 0.1. Since cross entropy
is not bounded by 1, its scores range to 35 for our
data. However, such high scores are highly infre-
quent, thus we do not show scores >2. The scores
generated from instances both with and without
downvotes are included in these histograms. Sep-
arating the instances by presence of downvote re-
sults in nearly identical graphs.

For the baseline algorithm, the majority of
scores are in the 0.9-1.0 bin. Since these are the
probabilities given by the baseline for the char-
acter in the elicited phrase, this indicates that the
ASR model is confident and accurate most of the
time. This is expected for an English model, espe-
cially given the quantity of training data this model
was trained on. The baseline model rarely returns
intermediate probabilities. Consequently, when it
predicts the wrong character or chooses no predic-
tion, it still tends to do so confidently. The Jensen-
Shannon scorer presents a similar pattern, the ma-
jority of scores are in the bin representing the best

scores. (Since it is a distance metric, 0 represents
the highest similarity and therefore a positive pro-
nunciation score.)

The Hellinger scorer differs from the baseline,
Jensen-Shannon, and Cross Entropy scorers in that
it produces far fewer scores at the extremes of 0
and 1 or greater, instead making more distributed
judgements. These differences indicate that some
additional information is captured by the Hellinger
scorer with regard to the relationship between the
baseline and expert productions of the elicited
phrase. The baseline scorer outperforming the
Hellinger scorer (see Table 3) in our implicit eval-
uation task indicates that this relationship is not
productive in predicting downvotes.

While the distributions in Figure 2 show an
overview of the scorers, they do not directly com-
pare the scorers to one another. We are most in-
terested in how the comparison scorers relate to
the baseline, as the baseline is representative of
the model’s confidence in its transcription. Fig-
ure 3 provides a direct comparison of the baseline
scorer with the 3 scorers per character in each elic-
itation phrase. The diagonals provides a point of
reference; scores above the diagonal are scored as
worse pronunciation by the respective scorer for
the same character, and scores below the diagonal
are scored as better.

For the comparisons with the Hellinger distance
and Jensen-Shannon divergence (top and middle
of Figure 3), 1 on the y axis indicates a correct pro-
nunciation, so the diagonal indicating agreement
between the comparison and baseline has a neg-
ative slope. Most of the points appear below the
agreement diagonal, showing that the scorers are
more forgiving overall of mispronunciation. On
both extremes of the x axis, 0 and 1, there is a
broad range of scores on the y axis. As discussed
above, this is where the majority of baseline scores
appear, especially around 1, which is why the den-
sity at those extremes is much higher. From 0.9-
1.0 on the x axis, the y axis has points ranging
from 0-1, but the majority tend to be low, indicat-
ing that the Hellinger scorer tends to agree with
the Baseline scorer when the ASR model is con-
fident. There is more disagreement between the
scorers at the 0 x axis extreme. This may be influ-
enced by the smaller sample size compared to the
1 extreme, but there are enough points to confirm
that the Hellinger scorer is more forgiving when
the ASR model has low confidence. Of the non-
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Figure 3: The relationship between scores in the base-
line and the Hellinger, Jensen-Shannon, and Cross En-
tropy scorers. Each point represents a character’s pro-
nunciation score with the baseline on the x axis and
the graph’s respective comparison scorer on the y axis.
Scores on the diagonal are equally scored by the base-
line and the comparison scorer.

Baseline scorers, the Hellinger scorer performed
best, which is likely due to the higher agreement it
has with the Baseline.

The middle plot in Figure 3 compares the base-
line with the Jensen-Shannon Divergence scorer.
There is far less agreement in the Jensen-Shannon

scorer than the Hellinger/Baseline comparison in
the intermediate scores, but overall the Jensen-
Shannon and Baseline scorers compare very sim-
ilarly, being generally more forgiving when the
ASR model has low confidence in its predictions.

Cross Entropy, unlike Hellinger Distance and
Jensen-Shannon, is not bounded by 0-1, so there is
no agreement diagonal in the bottom plot in Fig-
ure 3. Similar to Jensen-Shannon and Hellinger,
most of the points are concentrated around the 0
and 1 extremes of the x axis. Because the Cross
Entropy scores are on a much larger scale, creat-
ing a threshold for a mispronunciation would be
at a different value than for the other scorers, and
difficult to determine.

7.2 Specific Examples

As discussed in Section 3, the dataset used
for these experiments is intended and annotated
specifically for speech recognition, not for any
specific pronunciation or dialect. This is, however,
the closest available annotation to our task. The
annotations on the audio clips collected indicate
whether the speaker in a clip “accurately [spoke]
the sentence”, represented as upvotes or down-
votes. Downvotes can indicate a mispronuncia-
tion, but also frequently indicate bad audio quality
or missing audio. Conversely, upvotes do not dis-
tinguish between dialects, since a desired charac-
teristic of ASR is the ability to generalize over di-
alect. We investigate a small number of examples
further, relying on the first author’s native Amer-
ican English judgments. In addition to looking
into different issues resulting from the data, we are
also interested in the question whether the differ-
ent similarity metrics we used can provide com-
plementary information to the baseline scores.

We take a closer look at individual examples
from Common Voice, illustrating a range of issues,
see Tables 4, 5, 6, and 7. Scores that show a dis-
tance > 0.3 from a perfect pronunciation (0 or 1,
depending on the metric) are highlighted in red,
indicating a mispronunciation.

Table 4 demonstrates the expected behavior in
the case of a mispronunciation. The last word,
feel, is mispronounced by learner 174840. The
f is dropped and the e’s are pronounced as a
lax high front vowels instead of tense. The
ASR model is able to correctly transcribe the clip
as how do you feel, though it reports being
nearly equally confident that the last word is hear.
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h o w d o y o u f e e l

Expert 0.995 0.801 0.962 0.965 0.882 0.918 0.880 0.901 1.000 1.000 0.998 0.999
Baseline 0.992 0.975 0.985 0.919 0.897 0.943 0.973 0.971 0.352 0.752 0.381 0.040

Hellinger 0.031 0.247 0.095 0.083 0.104 0.046 0.148 0.065 0.634 0.132 0.311 0.871
JSD 0.001 0.076 0.012 0.009 0.015 0.003 0.030 0.006 0.439 0.022 0.130 0.848

Cross Entropy 0.047 1.490 0.333 0.256 0.766 0.220 0.707 0.250 1.509 0.413 1.410 4.639

Table 4: Comparing Expert 167006 and Learner 174840.

h o w d o y o u f e e l

Expert 0.999 0.999 0.999 0.981 0.961 0.994 0.994 0.990 0.998 0.999 0.998 0.999
Baseline 0.992 0.975 0.985 0.919 0.897 0.943 0.973 0.971 0.352 0.752 0.381 0.040

Hellinger 0.034 0.097 0.060 0.165 0.119 0.024 0.055 0.034 0.629 0.132 0.309 0.872
JSD 0.001 0.011 0.004 0.033 0.028 0.001 0.004 0.002 0.437 0.022 0.130 0.848

Cross Entropy 0.016 0.047 0.026 0.186 0.347 0.100 0.066 0.118 1.514 0.415 1.406 4.640

Table 5: Comparing Expert 156711 and Learner 174840.

h o w d o y o u f e e l

Expert 0.999 0.999 0.999 0.981 0.961 0.994 0.994 0.990 0.998 0.999 0.998 0.999
Baseline 0.869 0.876 0.643 0.758 0.033 0.484 0.537 0.352 0.871 0.941 0.919 0.859

Hellinger 0.077 0.233 0.349 0.253 0.744 0.464 0.470 0.369 0.234 0.163 0.187 0.076
JSD 0.008 0.061 0.136 0.078 0.645 0.244 0.258 0.177 0.060 0.029 0.038 0.007

Cross Entropy 0.208 0.197 0.640 0.457 5.009 1.051 0.903 1.543 0.208 0.091 0.134 0.224

Table 6: Comparing Expert 156711 and Learner 103321.

While the Hellinger and Jensen-Shannon scorers
capture these issues just as the baseline scorer
does, the Cross Entropy scorer is much more crit-
ical, indicating errors where there are none in the
first three words.

Table 5 shows the same learner as in Table 4,
but compared with a different expert. The baseline
scores are identical to Table 4 because they are in-
dependent of the expert. Though the expert scores
are high in both Tables 4 and 5, the scores gener-
ated by the comparison scorers correctly indicate
better pronunciation of the vowels in the first three
words, especially in the Cross Entropy compari-
son. This demonstrates the impact that the selec-
tion of the expert has on scoring when using the
comparison metrics, especially for the Cross En-
tropy scores. In the implicit evaluation, the com-
parison metrics perform worse than the baseline,
but the impact of the choice of expert shows that
there is at least some potential in those scorers
which is not captured by that evaluation.

Table 6 contains an example where the expert
speaker speaks clearly and the learner, though
sounding native, does not enunciate clearly, so that
the ASR model misunderstands you in the pro-
duction, shown by the low scores. In this example,
the forgiveness of the Jensen-Shannon scorer cap-

tures better that the learner pronounces the phrase
correctly despite their lack of enunciation. The
Hellinger scorer and cross entropy scorer closely
reflect the baseline. This again shows the poten-
tial of the comparison scorers not captured by the
implicit evaluation.

In Table 7, the expert speaker pronounces the
phrase correctly, but the quality of the audio is
very poor, and the ASR model has trouble tran-
scribing the clip, though it is understandable to a
native speaker. The learner also pronounces the
clip correctly, i.e., the baseline scorer is correct in
its feedback. The other scorers, however, incor-
rectly indicate mispronunciations in the learner’s
pronunciation. This is an issue with our expert
selection more than with the annotation. How-
ever, in the case of this speaker being selected
as a learner instead of a speaker, several charac-
ters would still be incorrectly marked as mispro-
nounced. Choosing an expert carefully is critical,
and in this case, the Common Voice annotation is
not reliable enough to do so. Overall, we reveal an
issue in our methodology for selecting the expert
side of the comparison, specifically that the lack
of any downvotes is a poor selection criterion, as
poor quality clips may get through the annotation
without any downvotes.
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Expert 0.271 0.074 0.000 0.770 0.903 0.973 0.988 0.979 0.997 0.952 0.001 0.000
Baseline 0.992 0.990 0.984 0.984 0.992 0.999 0.999 0.997 0.997 0.995 0.993 0.998

Hellinger 0.434 0.804 0.750 0.283 0.125 0.050 0.047 0.028 0.020 0.109 0.680 0.704
JSD 0.235 0.770 0.572 0.097 0.020 0.003 0.003 0.001 0.001 0.015 0.496 0.499

Cross Entropy 2.675 8.502 2.385 2.218 0.578 0.114 0.095 0.070 0.041 0.384 0.086 0.004

Table 7: Comparing Expert 18456694 (bad quality audio) and Learner 18400454.

8 Conclusion & Future Work

Our investigation has shown that the upvote and
downvote annotations make a poor substitute for
a properly annotated pronunciation corpus. Clips
which have native sounding speech also have
downvotes because of the poor audio. There is a
great deal of variation in dialect and audio qual-
ity, which is desirable for training a speech recog-
nition model, but represents noise when grading
pronunciation. A downvote is far more commonly
used as an indicator of an issue with the file it-
self than of a mispronunciation. The issue goes
both ways as well, many clips with very poor au-
dio quality have no downvotes but are not accu-
rately processed by the speech recognition system.
Most clips also have very few votes overall (most
commonly 3), which prevents us from using ratios
of up- and downvotes.

Many of the issues we identified, especially in
section 7, indicate that there is a need for a speech
corpus annotated for pronunciation. Many of the
problems, such as selection of experts and varia-
tion in dialect and audio quality, can only be ad-
dressed by a careful collection of data and having
clearly defined annotations.

As demonstrated in section 7.2, the compari-
son scorers still demonstrate some promise. Since
the data situation makes it impossible to evaluate
our scorers accurately, our next step is to collect
a speech corpus annotated for pronunciation. We
can then evaluate and continue to develop these
scorers.

9 Limitations

We recognize that we make several critical as-
sumptions throughout this work necessary to inter-
pret our results: 1) Moses et al. (2020) show that
using the ASR softmax probabilities per character
is a reasonable way to score goodness of pronun-
ciation. Our results indicate that either our model
(see section 4.2) does not capture the relationship
between pronunciation and downvotes, or there is

none (the latter possibility being supported by our
qualitative analysis). 2) There are no pronuncia-
tion corpora available with the type of annotations
required for the task. In the absence of such data,
we use the closest alternative. While it is possible
to create such corpora for e.g. English, it may not
be possible for many under-resourced languages.
For the latter, using Common Voice may still be
the only option. 3) We assume that the compari-
son metrics used are reliable. However, this can
only be tested empirically once we have usable
data. Finally, the ASR model is trained solely for
speech recognition and not finetuned for the task
of pronunciation. As we have no character level
annotation to work with, finetuning is not possible
in this work.
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A Model Parameters

Best Model Parameters

input embedding 152
hidden layer size 128, 64, and 32

activation ReLU
optimizer Adam
batch size 200

learning rate 5e-4
Adam beta 1 0.80

Table 8: Optimized model parameters for the implicit
evaluation.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

77


