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Abstract

Estimating word complexity is a well-
established task in computer-assisted language
learning. So far, however, complexity estima-
tion has been largely limited to comprehension.
This neglects words that are easy to compre-
hend, but hard to produce. We introduce se-
mantic error prediction (SEP) as a novel task
that assesses the production complexity of con-
tent words. Given the corrected version of a
learner-produced text, a system has to predict
which content words are replacements for word
choice errors in the original text. We present
and analyse one example of such a semantic er-
ror prediction dataset, which we generate from
an error correction dataset. As neural baselines,
we use BERT, RoBERTa, and LLAMA2 em-
beddings for SEP. We show that our models
can already improve downstream applications,
such as predicting essay vocabulary scores.

1 Introduction

Automatically estimating complexity of a word is a
core task for computer-assisted language learning
(CALL). This literature uses “complexity” to refer
to the difficulty of processing a word (cf. North
et al., 2023). But words can be difficult to process
in multiple ways, leading to varieties of complexity.
So far, the focus in NLP has been largely on com-
plexity in comprehension. We fill a gap left by this
focus and investigate the overlap of two varieties
of complexity:

1. Lexical Semantic Complexity: The difficulty
of a word due to its meaning.

2. Production Complexity: The difficulty of pro-
ducing a word.
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In the next section, we will discuss these types
of complexity and their overlap in more detail, es-
tablishing their nature and relevance for CALL. To
investigate the overlap, i.e. lexical semantic produc-
tion complexity, we propose the task of semantic
error prediction (SEP) and create an SEP dataset
from an error correction dataset. Our method can
be applied to other error correction datasets.

After describing the creation method for our
dataset, we perform a Bayesian logistic regres-
sion analysis of candidate features for predicting
semantic errors. We then provide SEP baseline
results using BERT, RoBERTa, and LLAMA2 em-
beddings and compare them with the performance
of the feature-based regressions. Finally, we use
scores from the LLAMA2-based model for predict-
ing the vocabulary scores of L2 learner essays with
a Bayesian linear regression.

Our contributions are as follows:
1. We propose a new CALL task, semantic er-

ror prediction, which offers access to lexical
semantic production complexity.

2. We present a method for creating SEP datasets
from error correction datasets as well as a
dataset created that way.

3. We provide results from transformer-based
models for the SEP task.

4. We showcase the use of SEP models for the
downstream application of predicting essay
vocabulary scores.

The scripts required for creating the dataset are
available online at https://github.com/dstro
hmaier/semantic_error_prediction.

2 Types of Complexity

Word complexity, understood here as the difficulty
of a word in processing, has many varieties. We
develop the two overlapping types of complexity in-
vestigated in this paper and why they are important
for CALL.
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2.1 Lexical Semantic Complexity

Lexical semantic complexity is the complexity of
a word due to its meaning. It can be distinguished
from e.g. the syntactic complexity of a sentence
or the orthographic complexity of a word form.
Lexical semantic complexity has long been recog-
nised as one of the main forms of lexical com-
plexity, although its exact nature has been heavily
debated (Cutler, 1983).

The notion of lexical semantic complexity can be
compared with that of lexical sophistication, which
is often understood as the use of low frequency vo-
cabulary items (Laufer and Nation, 1995), although
more detailed analyses have been put forward (Kim
et al., 2018). We will find that, in some contexts,
frequent words are difficult to produce, suggest-
ing a difference between lexical sophistication and
contextual lexical semantic complexity.

Similarly, lexical semantic complexity can be
distinguished from other aspects of lexical com-
plexity, such as morphological complexity. “abjure”
is morphologically simpler but arguably semanti-
cally more complex than “theatergoer”. In fact, we
find in section 5 that character length appears nega-
tively related to contextual semantic complexity.

Lexical semantic complexity poses deep chal-
lenges for CALL applications, as semantic nuances
can be subtle and, thus, identifying semantically
challenging words can be difficult. At the same
time, semantic correctness is especially important
for communication, more so than e.g. word order
and subject-verb-agreement. We can understand
other speakers even when their sentences violate
multiple grammatical rules, but when they produce
multiple semantically incorrect words, communi-
cation tends to break down.1

One reason that lexical semantic complexity has
been difficult for CALL applications is that few
ways exist to estimate it on the word-level. Com-
pared to morphological and syntactic complexity,
for which syllable count and depth of the syntactic
graph serve as easily accessible features, features to
predict the semantic complexity of a word token are
harder to engineer. Many measures for assessing
lexical complexity, such as the type-token ratio, op-

1See Olsson (1972) and Khalil (1985) for support of the
thesis that semantic errors impede communication more than
grammatical errors. The research by Nushi et al. (2022) sug-
gests that formal errors can reduce intelligibility more than
lexical semantic errors, but, in their discussion, formal er-
rors include e.g. the choice of the wrong suffix, which could
arguably be treated as a semantic issue.

erate on the document rather than the word-token-
level (consider the features in table 1 of Bulté and
Housen, 2012, p. 31).

There exist word-type-level features commonly
associated with lexical complexity, such as:

• word frequency,
• age-of-acquisition (for first language speak-

ers), and
• concreteness of the word.
As word-type-level features, they suffer from

three shortcomings:
1. They ignore the contextual aspect of lexical

complexity.
2. They typically fail to account for homonymy

and polysemy, i.e. most data for them are only
available on the word form level.

3. They cannot cover the entire vocabulary, as it
rapidly evolves, e.g. how does the complexity
of “rizz” compare to that of “mid”?

Hence, there is a need for another way to mea-
sure lexical semantic complexity in context, which
we will meet.

2.2 Production Complexity

Production complexity, which we distinguish from
comprehension complexity, is the difficulty of pro-
ducing a linguistic unit either in speech or writing.
For the purposes of the present investigation, pro-
duction will be limited to writing.2

The distinction between comprehension and pro-
duction complexity is related to the distinction
between passive and active vocabulary, i.e. the
recognition-recall difference, because production
typically requires recall. Research into second lan-
guage learning has investigated the difference, find-
ing that even advanced learners show a large gap be-
tween passive and active vocabulary (Laufer, 1998;
Fan, 2000).

Production complexity can diverge from compre-
hension complexity, because a semantic difference
might be important for word choice without being
important for word recognition. One example for
this is the mass-count distinction. A language user
might very well understand a sentence such as “He
drank much milk.” and yet erroneously produce
sentences such as “He drank many milk.”. That is,
the mass-count distinction might play a bigger role
in production than comprehension complexity.

2For a survey of psycholinguistic research into task com-
plexity and its interactions with other forms of complexity for
L2 writing, see Johnson (2017).
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For an example closely linked to word form, con-
sider the case of “price”/“prize”. In English, these
two words differ in form and meaning. In German,
however, the neargraph “Preis” is ambiguous be-
tween the two meanings. This might lead an L2
learner of English with German L1 to be able to
comprehend the English words, while erroneously
producing “prize” instead of “price”.

Multiple data sources exist for assessing word
complexity in general, with a tendency towards
comprehension (Shardlow, 2013; Shardlow et al.,
2020), while production is under-resourced.3 One
reason for this neglect is that much work on word
complexity was intended to improve readability
(see North et al. 2023, and, for an example, see
the introduction of Gooding et al. 2021). Complex
word identification was, thus, conceived of as a step
in a pipeline for adapting text to a specific set of
learners for comprehension (cf. North et al., 2023).

However, systems able to predict which words
learners struggle to produce are also of use for
adaptive teaching systems. Three such use cases
are:

1. Content calibration: When learners are
prompted to produce a particular word, the
complexity of the word should be at the in-
tended level for the task. For example, cloze
tasks require learners to produce words that
can fill a gap in a text. Knowing the produc-
tion complexity of the target word would be
of value for calibrating the item.

2. Assessment: Production complexity scores
can serve to assess learner produced text, even
though the relationship is not simple, as we
will see in section 7.

3. Highlighting during learning: Words in a text
read by a learner might be flagged to make the
learner aware that they are harder to produce.

A further reason for the lack of resources on pro-
duction complexity is that such datasets are harder
to create. Eliciting complexity judgements from
annotators reading a text is relatively simple. There
does not appear to exist a simple equivalent for
production, as it is challenging to ask annotators to
rate the complexity of words while producing them
at the same time.

To address this problem, we are using an error
correction dataset based on learner-written texts
for creating our SEP dataset.4 Our method can be

3One resource specifically for production is the SweLLex
word list (Volodina et al., 2016) for Swedish as an L2.

4Other options for estimating production complexity

applied to any error correction dataset providing
appropriate error annotations and corrections.

2.3 The Overlap: Lexical Semantic
Production Complexity

We are interested in cases where a word is diffi-
cult to produce due to its semantics in a specific
sentential context. This overlap gives rise to its
own dynamics, because, in production, the concep-
tual information is typically activated prior to the
word form information, rather than the reverse, as
in the case of comprehension (see Jiang 2000 for
an example of this). As a result of this reversal, we
expect different complexity patterns in production
than in comprehension.

Specifically, the patterns might show a different
type of contextual effect: Language learners might
inadvertently create contexts that require a certain
word choice and as a result the learners might se-
lect the wrong word. Thus, a word that might be
easy to comprehend and frequently selected in one
context might be difficult to produce in another
context, even though both contexts are created by
the language user.

That lexical semantic production complexity is
impacted by contextual effects is backed up by the
empirical literature on English second language ac-
quisition, which documents a sizeable number of
semantic errors resulting from collocational phe-
nomena (Al-Shormani and Al-Sohbani, 2012; Jep-
tarus and Ngene, 2016). Our approach and dataset
provide a way for CALL applications to account
for such phenomena specific to lexical semantic
production complexity.

3 Related Work in NLP

Our work builds upon the NLP literature for both
word complexity and error detection.

3.1 Word Complexity

The complex word identification (CWI) task, which
has been investigated in multiple shared tasks (Paet-
zold and Specia, 2016; Yimam et al., 2017; Shard-
low et al., 2021), aims to identify complex words
in context. Recently, it has been extended under
the name “lexical complexity prediction” (LCP) to
a continuous task of predicting the complexity of a

would include key-stroke or eye-tracking data. We thank an
anonymous reviewer for these suggestions. These behavioural
trace data, however, render it difficult to differentiate the se-
mantic component of production complexity from other as-
pects.
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word (Shardlow et al., 2021, 2020). For an in-depth
review of the CWI/LCP literature, see North et al.
(2023).

While feature-based machine learning system
were state-of-the-art for many years (Gooding and
Kochmar, 2018), by now end-to-end neural sys-
tems dominate the area (Shardlow et al., 2021).
These models often use BERT-style transformers
as their basis (Devlin et al., 2019; Liu et al., 2019).
In the CWI literature, it has also been shown that
backgrounds of language learners, e.g. their over-
all proficiency level, matter for whether a word is
complex or not (Gooding et al., 2021).

As mentioned above, datasets in the CWI/LCP
literature are generally more appropriate for captur-
ing comprehension rather than production complex-
ity. This tendency is due to the annotation process:
annotators are presented with text for which they
assign complexity labels. Effectively, the annota-
tors engage in comprehension when deciding on a
label.

Furthermore, complexity annotation is an arti-
ficial way of engaging with text, which raises the
question of external validity. Even when the anno-
tations are provided by L2 learners, theses learners
are not trying to communicate with another human
language user in a natural manner. By predicting
errors in text production, our approach is closer to
natural engagement with text and, therefore, ad-
dresses this issue.

There also exists a literature on predicting the
CEFR levels of words (Alfter and Volodina, 2018;
Pintard and François, 2020), which is less compre-
hension focused. This literature tends to consider
words or word senses in isolation, rather than in the
context of use (but see Aleksandrova and Pouliot,
2023).

3.2 Error Detection

Semantic errors are covered by the error detection
literature, but much of this literature is focused on
morpho-syntactic errors. Similar to complexity,
error detection and closely related problems have
been the subject of multiple shared tasks (Ng et al.,
2014; Bryant et al., 2019; Volodina et al., 2023).
Similar to CWI/LCP, this field is dominated by
transformer-based models, often combined to in-
crease performance (Qorib et al., 2022; Qorib and
Ng, 2023). For a recent survey of error correction,
see Bryant et al. (2023).

While closely related to SEP, error detection and

correction systems are not designed for the pur-
pose of assessing the lexical complexity of content
words, but rather their correctness. Correctness,
however, can be due to the learner avoiding more
difficult terms and resorting to simpler expressions.
By contrast, our approach is able to distinguish two
correct words with regard to which one was more
complex to produce.

4 Dataset

We present a SEP dataset that can be constructed
from existing resources.5 Our dataset uses error
correction as the starting point for determining
production complexity. Using learner texts as the
source of the dataset ensures high external valid-
ity: The learners are engaged in a naturalistic task
and patterns of their output are used to assess the
lexical semantic complexity.

In constructing our dataset, we only predict the
corrections of word choice errors. That is, we focus
on the word tokens learners should have produced,
but failed to do so. This production failure is taken
as a direct indicator of production complexity.

Our approach only considers the corrected token,
not the erroneously produced words. That is, when
an annotator tags replaces “work” by “job” in a sen-
tence, this is taken as evidence that the “job”-token
in this sentence is complex, without any further
inference regarding “work”.

The reason for this choice is that we are inter-
ested in the complexity of word tokens in a spe-
cific context. It is unclear what we learn from an
erroneously produced token. When a token is pro-
duce, it was evidently feasible to wrongly produce
“work”, even it it was semantically impossible to
produce this word token correctly. Due to these
conceptual problems, our dataset construction will
focus on the context-appropriate words that learn-
ers fail to produce.

Our dataset concerns both the breadth and depth
of lexical knowledge (Bulté and Housen, 2012):
Errors occur both when learners lack items in the
vocabulary, an issue of breadth, and when learners
lack the lexical knowledge to correctly integrate
words into sentences, an issue of depth. Thus, our
research cuts across the theoretical constructs of
lexical complexity presented by Bulté and Housen
(2012, figure 3).

5The scripts required for doing so are made available at:
https://github.com/dstrohmaier/semantic_error_pr
ediction.
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4.1 Dataset Construction
Our starting point is the dataset published as part of
the 2019 BEA shared task on grammatical error cor-
rection (Bryant et al., 2019). This dataset provides
error annotations for sequences, taken primarily
from texts written by second language learners of
English, although the evaluation data also includes
some native speakers. The annotations follow the
scheme of the ERRANT tool (Bryant et al., 2017).
In addition, the dataset provides CEFR levels for
the texts (CoE, 2020).

Since we are interested in semantic word choice
and such word choice can be evaluated only in
a semantic context, we use whole paragraphs ex-
tracted from the dataset as input.6 We then invert
the dataset so as to move from error detection to
error prediction.7

Error Code Meaning Example

R:VERB Verb replacement order → book
R:NOUN Noun r. base → foundation
R:ADJ Adjective r. low → poor
R:ADV Adverb r. graciously → gracefully

Table 1: Selected error types (cf. Bryant et al., 2017).

In the next step, we select the relevant error
types: word replacement errors in which content
words, i.e. nouns, verbs, adjectives, and adverbs
have been replaced by the annotators.8 Ortho-
graphic, morphological, tense, subject-verb agree-
ment and similar are thus excluded from the pre-
diction task to focus on semantic complexity. They
are also corrected, however.

In addition, we render the labels binary: Each
token in the dataset is annotated for whether it has
been corrected using one of the selected error tags.9

6Extremely short paragraphs, for example best wishes at
the end of a letter, are merged into larger paragraphs when
possible. In a small number of cases, the sub-tokenized para-
graphs are longer than the maximal sequence length (512). 7
texts are affected, only one of which belongs to the split used
for evaluation.

7We thank Chris Bryant, one of the original organizers of
the 2019 BEA shared task, for providing code.

8When the replacement crosses part of speech, e.g. a verb
is replaced by a noun or an adverb by an adjective, Errant
typically treats this as an R:OTHER error, which is not used
by us. We assume that when such errors occur, usually more
has gone wrong than just the choice of a wrong word due to
its semantics.

9We only label word tokens with the spaCy POS-tags:
VERB, NOUN, ADJ, ADV. As a result, we exclude a small
number of positive labels for other POS. The largest block of
these positive labels are auxiliary verbs. 344 out of 49118 are
labelled positively, most of which are in their turn forms of
“be”, “have”, and “do”. We use the spaCy en-core-web-sm

For evaluation of these binary tags, we use the F1-
score and the area under the curve (AUC) of the
Receiver Operating Characteristic Curve (ROC).

The original dataset provides a public train- and
a dev-split.10 We use the dev-split as an eval-split
and split the train-split into a new train- and new
dev-split. We apply our method to these public
splits, with the new dev-split being primarily used
for development purposes prior to evaluation (e.g.
checking code correctness).

# sequences # tokens # content t. % errors

train 10523 577892 239156 2.45
dev 1170 63420 26409 2.43
eval 1419 88580 36923 2.04

Table 2: Descriptive dataset metrics. “content t.” stands
for tokens with content word POS tags. Percentages
indicate the percentage of content word tokens corre-
sponding to replacement errors.

4.2 Descriptive Metrics
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Figure 1: Replacement error percentages for content
word tokens across CEFR levels (N=native speakers).

The training-split contains more than half a mil-
lion tokens, slightly less than half of which are
content word tokens (see table 2). The dev- and
eval-split are > 10% of that size.

Across splits, around 2.4% of content word to-
kens correspond to semantic errors,11. These over-
all numbers, however, mask considerable differ-
ences in the error percentages across CEFR levels:
The lower the CEFR level, the more content word

model for POS-tagging (Honnibal et al., 2020).
10The test split is not public and therefore not used by us.
11The number for the eval split in table 2 is lower, because

the dev split also includes native speakers.
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Figure 2: Percentages of errors for different POS across splits and CEFR levels (N=Native).

replacement errors are committed by a learner (see
figure 1).

Across POS-tags, verbs are particularly likely
to have been corrected, around 3.5% of the time
(see figure 2). Verbs are a greater source of errors
for second language learners of English, even at
the C2 level, but the effect disappears for native
learners of English, which are included in the eval
split of the dataset. We speculate that this might be
due to the higher context dependence of verbs, at
least when compared to nouns (Gentner and France,
1988; Kersten and Earles, 2004; Earles and Kersten,
2017).12 The context-dependence might take a
language specific form, leading to L1-interference
for L2 learners.

4.3 Qualitative Inspection

In this section, we consider hand-picked examples
of replacement errors from our new train split.

The qualitative inspection suggests that learners
often replace words with neargraphs, e.g. using “as-
pects” instead of “respects” or “affection” instead
of “infections”.13 That being said, mistaken words
and their corrections are also semantically related,
with learners using “blame” instead of “guilt” and
“contaminated” instead of “polluted”.

Some mistaken tokens exhibit a lack of speci-
ficity. For example, in the corrected sentence “And
some buses drive at night to transport [take →
transport] passengers.” “transport” replaces “take”.

12The claim that verbs are more context-dependent is related
to the idea that a verb predicates something of something
else, thus being constrained both by what it predicates and
the subject of its predication. The idea that verbs play this
connecting role might be tracked back at least to Aristotle,
who in De Interpretatione (3.16b6–7) asserts that “it [a verb]
is a sign of things said of something else” (Aristotele, 1994, p.
44).

13Errant provides a separate tag for orthographic error
(R:ORTH), which we do not use.

While the meaning of the sentence can be under-
stood without this correction, transport is more
specific than take. It would be too simplistic, how-
ever, to think that learners always use less specific
words.

Adjectives provide evidence that the words learn-
ers fail to produce are not necessarily highly spe-
cific or generally lacking from their vocabulary:
“good” is one of the adjectives most often inserted
by annotators. It typically replaces more specific
adjectives such as “suitable” and “healthy” that fail
to be contextually appropriate. This observation
underlines the difference between lexical semantic
complexity in production and comprehension: a
learner producing “suitable” instead of “good” is
likely able to comprehend the word “good”.

A lack of idiomaticity can also lead to correc-
tions. For example, annotators changed “big enter-
prises” to “big businesses”. Similarly, annotators
replace “main friend” with “best friend”. In these
cases, a reader will be able to comprehend the sen-
tences with either word choice, but the corrected
formulation is more idiomatic.

Errors due to a lack of idiomaticity are one rea-
son why semantic error prediction is a highly chal-
lenging. Consider the following sentence:

“I began doing this sport three years ago when I
lost my job [work → job].”

In this sentence, the annotators replaced “work”
with “job”, but this is a very nuanced correction,
that arguably involves collocational preference as
well as semantic detail.

5 Bayesian Regression Analysis

To analyse the dataset, we perform a Bayesian logis-
tic regression using Bambi (Capretto et al., 2022),
a package for Bayesian regression models based on
PyMC (Oriol et al., 2023). We fit the regression on
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the combined training and evaluation splits of the
data using only tokens that were tagged as content
words using spaCy (Honnibal et al., 2020). Since
we are also primarily interested in interpreting the
features, we drop rows that lack a feature required
for any of the regression models.

We estimate two models. The first is a base
model which has as input features (see next section
for details):

• length of the word in characters,
• word frequency,
• age of acquisition, and
• whether the token is a verb.
The second models adds an interaction effect

between being a verb and the frequency. The equa-
tions are described in appendix figure 6.

5.1 Observed Variables for Regression

Except for being a verb, all the explanatory vari-
ables were selected based on their general usage
in the complex word identification literature (e.g.
Gooding and Kochmar, 2018). However, in SEP
the features are for the corrected learner text.

Length in characters. Provides the length of the
token as counted in characters.

Frequency. We use the wordfreq package for
Python,14 specifically the Zipf frequency estimate.
The package uses 0 as the default value of words
not found in the word list.15

Age of acquisition (AoA). While the age of ac-
quisition is a metric for L1 acquisition, it can also
be applied to L2 acquisition under the simplifying
assumption that both acquisition processes proceed
from simpler to more complex words. While this
assumption is probably not correct in all cases due
to vocabulary transfer from L1 to L2, it offers a suf-
ficiently close approximation of learning order (as
our results show; see also the correlation of learn-
ing order documented by Flor et al. 2024). The
AoA values are taken from the dataset presented
in Kuperman et al. (2012).16 The coverage by this
dataset is incomplete and tokens for which no AoA
is available are dropped from the dataset. Other
tokens from the same sentence are still used for

14https://github.com/rspeer/wordfreq. The pack-
ages uses the ExquisiteCorpus (https://github.com/Lum
inosoInsight/exquisite-corpus).

150 does not correspond to zero occurrences due to the
zipfian transformation.

16Downloaded from https://osf.io/kz2px/.

training and evaluation. We scale the age of acqui-
sition to a mean of 0 and variance of 1 to make it
comparable to the CEFR-j.

CEFR-j. The CEFR-j project provides the CEFR
level of word types based on the word lists pro-
vided by Open Language Profiles and Octanove.17

We convert and scale the CEFR-j data to make it
comparable with the AoA.

Is verb. The spaCy tags were used for this fea-
ture. It was motivated by our previous analysis,
suggesting that verbs are much more likely to be
semantic errors (see section 4.2).

CEFR. The underlying dataset provides the
CEFR level for the submissions. We treat this as a
categorical variable.18

5.2 Results and Interpretation
A Bayesian logistic regression produces a proba-
bility distribution over the parameters of interest.
For the estimated parameters, we report the highest
density interval (HDI), i.e. the interval of minimum
width containing the parameter with a certain prob-
ability. As is the standard for Bambi, we consider
the 94% HDI credible interval (i.e. the interval
spanning from 3% to 97%). HDIs are often treated
analogously to frequentist confidence intervals, but
have the straightforward interpretation that, given
observed data,19 the effect has a 94% probability
of falling within the interval.

The results for the base model can be seen in
table 3 and figure 3. In line with the expectations
from the CWI literature and the previous analysis,
we find that;

• more frequent content words are less likely to
be semantic errors (HDI: [−0.21,−0.11]),

• content words with a higher CEFR level
are more likely to be semantic errors (HDI:
[0.09, 0.16]),

17The lists were downloaded from https://github.com
/openlanguageprofiles/olp-en-cefrj/. The CEFR-J
Wordlist Version 1.5 was compiled by Yukio Tono, Tokyo
University of Foreign Studies (Negishi et al., 2013). We use
the CEFR-j list over others, because it is on the level of word
form + POS rather than word sense. For example, the online
EVP lists CEFR levels A1 and C2 among others for different
senses of the noun “head”, while CEFR-j only provides A1 for
the noun. Furthermore, CEFR-j provides a permissive license
and easy access.

18In contrast to CEFR-j, we do not convert and scale the
CEFR-level to be able to compare it to the AoA. The reason for
this difference is that we do not intend a comparison with AoA,
because it is a student-level rather than token-level variable.

19More rigorously, given the model specification, the prior,
and the observed data.
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mean sd hdi3% hdi97%

is verb 0.80 0.03 0.75 0.85
cefr[C2] -1.49 0.08 -1.6 -1.35
cefr[C1] -0.91 0.06 -1.02 -0.8
cefr[B2] -0.5 0.05 -0.59 -0.4
cefr[B1] -0.25 0.05 -0.33 -0.15
cefr[A2] -0.07 0.05 -0.15 0.03
scale(cefr-j) 0.12 0.02 0.09 0.16
scale(aoa) 0.09 0.02 0.05 0.13
frequency -0.16 0.03 -0.21 -0.11
character length -0.06 0.01 -0.07 -0.04
intercept -2.39 0.16 -2.69 -2.08

Table 3: Estimated parameters of base model. Mean, standard
deviation, and HDI boundaries of the estimated posterior are
provided.

• content words with a higher AoA are
more likely to be semantic errors (HDI:
[0.02, 0.05]), and

• students with higher CEFR level are generally
less likely to commit errors,

• verbs are more likely to be semantic errors
(HDI: [0.75, 0.85]) compared to other content
words.

Contrary to what one might expect from the
CWI literature, longer words appear less likely
to be replacements for semantic errors (HDI:
[−0.07,−0.04]). That is, a word in the corrected
sentence being longer is not an indicator of it corre-
sponding to a semantic error. This could be a result
of human annotators avoiding complex corrections
for pedagogical reasons, or an effect of learners
rarely intending to write long words. The finding
is in line with “good” being one of the most fre-
quent corrections for adjectives, replacing words
like “suitable” and “healthy”.

The second model, which introduces an interac-
tion between frequency and being a verb, compli-
cates the picture considerably (see table 4 and fig-
ure 4). Being a verb stops being a strongly positive
predictor for semantic errors (HDI: [−0.64, 0.06]),
while the interaction between frequency and be-
ing a verb is positive (HDI: [0.15, 0.18]). This ad-
ditional analysis suggests that the effect of verbs
being more likely to be semantic errors is due to
frequent verbs. This is line with our speculation
that verbs enjoy a special status due to their con-
textual dependence: learners struggle with verbs
because they are heavily constrained by context,
not because they are rare.

One practical implication of this result is that a
focus on the correct use of frequent verbs could be
beneficial to support learners in production.

mean sd hdi3% hdi97%

frequency:is verb 0.22 0.04 0.15 0.28
is verb -0.3 0.19 -0.64 0.06
cefr[C2] -1.49 0.08 -1.63 -1.35
cefr[C1] -0.91 0.06 -1.02 -0.81
cefr[B2] -0.50 0.05 -0.60 -0.40
cefr[B1] -0.25 0.05 -0.33 -0.15
cefr[A2] -0.07 0.05 -0.16 0.02
scale(cefr-j) 0.12 0.02 0.09 0.16
scale(aoa) 0.10 0.02 0.06 0.13
frequency -0.28 0.03 -0.34 -0.22
character length -0.06 0.01 -0.07 -0.04
Intercept -1.80 0.19 -2.17 -1.46

Table 4: HDI (3–97% interval) of model with interaction
between being a verb and frequency (B+I). Table includes
mean, standard deviation, and HDI boundaries of the posterior.

6 Deep Learning Models

We put forward baseline deep learning mod-
els trained for semantic error prediction using
our dataset. The models are probes trained on
embeddings from pre-trained transformer mod-
els (Vaswani et al., 2017).

6.1 Architecture

We use the English BERT and RoBERTa mod-
els as the basis of our architecture (Devlin et al.,
2019; Liu et al., 2019).20 In addition to these well-
researched models, we also explore the more re-
cent and larger LLAMA2-7B model (Touvron et al.,
2023).

We use these models without fine-tuning to cre-
ate embeddings of the word tokens in question.
Due to subtokenisation, the base model might pro-
duce more than one embedding per word token,
which we address with mean pooling of the subto-
ken embeddings. Research has suggested that the
last layers of BERT-like transformer models are
not best suited for lexical semantic tasks (Vulić
et al., 2020). Therefore, we create our embeddings
by mean pooling over layers 1–10 (inclusive), i.e.
excluding the last two layers, for the BERT and
RoBERTa models. For LLAMA2, the role of the
different layers is not as well-established and we
resorted to averaging the output of layers 1–30, i.e.
ignoring the last two layers again.

Probes are fine-tuned on the word embeddings,
which requires less computational resources than
training the whole transformer. The probes consist
of a hidden layer (size 100), an output layer, and a
SoftMax pooling layer, described by the following

20We use the base-size models. All models are loaded using
the huggingface transformers library (Wolf et al., 2020).
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Figure 3: HDI credible intervals (3–97%) for coefficients of the base model (B).
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Figure 4: HDI (3–97% interval) for coefficients of the interaction model (B+I).

equations:

e = embedding

h = ReLU(Whiddene+ bhidden)

scores = LogSoftMax(Woutputh+ boutput)

6.2 Training

The probes are trained by first performing
hyperparameter-search using 5-fold cross-
validation on the combined data from the train- and
dev-split. The hyperparameter search randomly
draws 20 hyperparameter settings from the space
(see table 8 for details). The probe is then trained
on the combined train- and dev-split using the
hyperparameters reaching the highest F1-score
in cross-validation.21 For training, we use the
AdamW algorithm (Loshchilov and Hutter, 2018).
The evaluation occurs on the eval-split.

The extreme label imbalance of the dataset can
lead the probes to exhibit a bias towards assigning
negative labels. To address this, we over-sample
the positive labels during training, so that there is
an equal number of positive and negative labels.

6.3 Results and Interpretation

Due to the imbalance of the labels, accuracy is
not a meaningful metric for our dataset. Instead,

21The hyperparameter search space and the best hyperpa-
rameters for each probe are available in the online materials at
https://github.com/dstrohmaier/semantic_error_pr
ediction/tree/main/probe_kwargs.

we use the F1-score and the area under the curve
of the ROC (AUC). The AUC can be interpreted
as the probability that a randomly chosen positive
instance, i.e. a content word token that is a replace-
ment, will have a higher score than a randomly
sampled negative instance.

Table 5 provides the overall results, as well as
the results for each CEFR level (including the “N”
level for native speakers). We compare the deep
learning models against a baseline that labels all
tokens as corresponding to semantic errors (“all
True”),22 and the regression models discussed in
section 5.23

With a threshold of 0.5, the logistic regression
models fail to achieve an F1-score of above 0%.
The AUC score is more promising, consistently
outperforming the 50%-threshold of the all True
baseline. The transformer-embeddings based mod-
els outperform the regression baselines: with only
one exception, there is at least one transformer
model that outperforms the best regression model
for every CEFR level. The exception is the AUC
for the A1 level (B: 67.6%). In this case the in-
formation of the student CEFR level might be of
sufficient importance to outweigh the performance

22Labelling all tokens negatively would lead to an F1 of 0.
23For the native test data, the CEFR label of the student is

given as C2, since this is the closest available class. Otherwise
the comparison to the regressions models favours the later,
because they are not evaluated on missing data, e.g. when the
age of acquisition of a word is not accessible.
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Overall A1 A2 B1 B2 C1 C2 N

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

all True 4.0 50.0 6.4 50.0 6.8 50.0 6.0 50.0 4.7 50.0 3.6 50.0 2.3 50.0 1.1 50

B 0.0 68.7 0.0 67.6 0.0 60.1 0.0 59.8 0.0 62.6 0.0 55.6 0.0 69.4 0.0 54.7
B+I 0.0 69.0 0.0 66.7 0.0 60.4 0.0 60.3 0.0 62.4 0.0 58.4 0.0 68.7 0.0 54.0

BERT 9.6 67.8 10.4 64.3 13.1 69.1 15.2 66.8 9.4 66.5 7.3 68.2 8.5 73.2 2.7 59
RoBERTa 10.8 69.2 12.4 64.7 13.8 67.2 13.0 70.1 14.1 72.8 10.5 66.3 10.8 78.1 1.8 59
LLAMA2 11.0 69.8 11.9 64.6 14.9 68.1 15.7 70.8 12.4 68.8 6.5 67.4 3.0 72 2.8 58.2

Table 5: Scores in percentages. The baseline scores result from assigning True to all tokens or all content word tokens.

advantage of the transformer embeddings.
Looking across CEFR levels, no simple trend in

performance holds. Both A1 (highest transformer
AUC: 64.7%) and C1 (highest AUC: 68.2%) appear
particularly challenging. One generalisation that
can be made is that the numbers on the native data
are the worst (F1:: 2.8%, AUC: 59%). We assume
that this is due to the absence of native essays in the
training data. In effect, this result strongly suggests
that the error patterns for native and L2 speakers
differ considerably. After all, the C2 level, which
is supposedly the closest to the native skill, has the
highest performance! That being said, the native
data are from a different source, the LOCNESS
corpus (Granger, 1998), which might also explain
the low performance.

That LLAMA2 has the highest overall F1 (11%)
and AUC (69.8%) suggests that the size of the lan-
guage model is a factor. Generally, however, the
differences are small and the highest AUC value is
achieved by RoBERTa for the C2 level (78.1%).

In light of the dataset difficulty, it is not sur-
prising that the F1-scores are low. The higher
AUC are somewhat encouraging, especially for cer-
tain CEFR levels (e.g. C2 for RoBERTa reaching
78.1%). To support educational technologies, it
will be important to better differentiate between
complex and other words, i.e. to increase the AUC.
That being said, the current scores can already be
used as an input feature for downstream tasks, as
we show in the next section.

7 Downstream Application

We show that the scores of one of our models sup-
port essay score prediction as a downstream task.

7.1 Setup

We use the ELLIPSE dataset (Crossley et al., 2023)
for evaluation, which provides vocabulary scores
for more then 6000 essays by L2 learners of En-
glish. We use the probability scores produced by

our LLAMA2-embeddings based model as it is
the overall best performing model (see table 5) to
predict these vocabulary scores using a Bayesian
linear regression.

The vocabulary scores are on the essay-level,
while our lexical complexity scores are on the token
level, requiring us to perform pooling. We consider
two forms of pooling: mean and max pooling.

In addition, we compare the regression using
our model-derived lexical complexity scores with
a simpler approach: For the simple approach, we
use the proportion of times a word has been put
forward as a correction. We use again mean and
max pooling.

We also include other variables that can be used
to assess vocabulary in our regression:

Min. Frequency. We use the same source of
word frequencies as discussed in section 5.1. We
apply min-pooling to the token frequencies, remov-
ing frequencies of 0.0 (default value).24

CEFR-j. We use the CEFR-j word list discussed
in section 5.1, applying min-max-normalisation, so
that each CEFR level to corresponds to a 0.2 step,
providing a range from 0–1 for comparison with
our probe scores, which also range from 0 to 1. The
CEFR-j scores for tokens are mean-pooled.

Type-Token Ratio. Following the literature on
complexity (Bulté and Housen, 2012), we use the
type-token ratio as a feature. The data is provided
by the dataset, but we use the ratio rather than the
percentage for comparability.

Measure of Textual Lexical Diversity (MTLD).
The ELLIPSE dataset also provides MTLD data,
a metric from lexical diversity derived from the
type-token ratio (McCarthy, 2005), but accounting
for text length. We rescale this data to a mean of 0
and standard deviation of 1.

24We also explored mean-pooling but found its coefficient
to be indistinguishable from 0.
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Grade Level. The ELLIPSE dataset includes stu-
dents from grade 8 to 12. We use this information
and min-max normalise the grade level to make it
comparable with our probe scores.

We compare five regressions models:
1. base: Base model without any of our lexical

semantic production complexity scores.
2. max: Model using the max-pooling of our

lexical complexity scores in addition to base
variables.

3. mean: Model using only the mean-pooling of
our lexical complexity scores in addition to
base variables.

4. max+mean: Model using both complexity
scores.25

5. proportion: Model using the mean and max
pooling error correction proportions instead,
as described above.

7.2 Results and Discussion

4900 4800 4700
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Figure 5: elpdloo scores for Bayesian linear regression
models predicting vocabulary scores.

To compare our five models, we use the expected
log pointwise predictive density, which is estimated
using leave-one out cross-validation (elpdloo). The
elpdloo is a standard metric for comparing Bayesian
models (see figure 5 and table 7) and can be written
as (see Vehtari et al., 2017):

elpdloo =
n∑

i

∫
p(yi|θ)p(θ|y−i)dθ

where y−i are all datapoints except the i-th.

25It might appear more appropriate to use the median rather
than the mean, as the latter also incorporates the max value.
We found, however, that this made a negligible difference.

mean sd hdi3% hdi97%

intercept 3.10 0.07 2.98 3.24
vocabulary σ 0.50 0.00 0.49 0.51
grade level -0.15 0.02 -0.18 -0.12
max scores 0.71 0.06 0.59 0.83
mean CEFR-j 3.76 0.22 3.37 4.19
mean scores -4.46 0.24 -4.92 -4.01
min frequencies 0.05 0.01 0.04 0.07
scale(MTLD) 0.20 0.01 0.18 0.21
type-token ratio -1.23 0.09 -1.40 -1.06

Table 6: Results of Max+Mean model for predicting the
vocabulary scores of ELLIPSE essays.

We also provide the R2 metric in table 7 in the
appendix, because it is more established within in
NLP literature, although it neglects the probabilis-
tic information provided by the Bayesian approach.
It shows the same picture as the elpdloo for the five
models.

The comparison suggests that adding both the
mean- and the max-pooled scores contribute to the
fit of the model. The max-pooling, however, con-
tributes only substantially when combined with the
mean-pooling. The max+mean model also out-
performs the proportion model, showing that the
neural models are helpful.

We provide the HDI for our best fitting model in
table 6 and figure 7. Among the features, the mean
pooled score of our model has the largest absolute
coefficient.26 The coefficient is, however, nega-
tive (HDI: [−4.92,−4.01]), which might appear
surprising at first glance. After all, a higher score
should indicate more complex words, which in turn
one might expect to indicate a higher proficiency.
We believe that this puzzle can be explained by also
taking into account the effect of the max-pooled
scores.

The effect of the max-pooled scores is
smaller, but with high probability positive (HDI:
[0.59, 0.83]), thus pointing in the expected direc-
tion. We interpret this suggestion as follows: the
skilled learner produces few contexts that might
easily lead to confusion, thus rending the average
word token easier to choose, but their most com-
plex word is more challenging than that of a learner
at a lower level.

The surprising negative coefficient is not just
present for our scores, but also for type-token ra-
tio27 (HDI: [−1.40,−1.06]) and grade levels of

26No direct comparison to frequencies or the scaled MTLD
is possible due to the different scale.

27The MTLD, however, has the expected relationship, sug-
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students (HDI: [−0.18,−0.12]). In the case of the
minimum frequencies, we find a somewhat sur-
prising positive coefficient (HDI: [0.04, 0.07]), sug-
gesting that a higher vocabulary score is associated
with avoiding very rare words. De Wilde (2023)
has previously found for L2 writing that “more pro-
ficient learners use more frequent words” (p. 11),
but also notes that the literature is divided on this.
These inverted results suggest a non-linear relation-
ship between L2 learner writing and features which
the literature associates with lexical sophistication.

elpdloo elpddiff se dse R2

max+mean -4709.1 0.0 64.4 0.0 0.26
mean -4771.8 62.7 65.2 11.3 0.24
proportion -4853.8 144.7 65.3 20.0 0.22
max -4873.2 164.1 65.3 18.1 0.22
base -4874.7 165.6 65.5 18.2 0.22
overall -5218.0 508.9 59.6 55.0 0.28
phraseology -5528.4 819.3 57.8 59.6 0.24

Table 7: elpdloo metrics for downstream application task
(predicting vocabulary scores. Besides the main elpdloo-
metric, the table provides the difference to the elpdloo to
the best model, as well as the standard error for these
two values (se and dse respectively).

The ELLIPSE dataset also provides other types
of scores for student essays against which a com-
parison is possible. From those we selected the
overall score, as it is the most important one, and
the phraseology score, as it is the one closest re-
lated from vocabulary. By performing a regression
with the same features on these scores, we can see
whether the features are specific to vocabulary, as
intended. Indeed, we find this to be the case for
elpdloo (see results in table 7 and figure 8),28 de-
spite the well-established halo effect, which leads
annotators to provide roughly similar scores (e.g.
Engelhard, 1994).

Although further research into the connection
between content word replacement errors and vo-
cabulary scores is required, the initial results show
that our complexity scores can improve the perfor-
mance of downstream applications.

gesting that the negative coefficient of the type-token ratio
might be due to the essay length.

28It is not the case for R2 in the case of the overall score,
but this comparison is not directly admissible, because the
variance for the Vocabulary scores (0.36) differs from that
of the Overall score (0.41). The comparison of the elpdloo is
only acceptable because the number of data points and the
predicted variables share a scale.

8 Conclusion

We proposes semantic error prediction as a task
for investigating lexical semantic production com-
plexity. Such an estimate of complexity is useful
for many purposes in educational technology, in-
cluding assessing output by learners and providing
them with information for improving their writing
skills.

Complex word identification systems, in con-
trast, are focused on difficulty in comprehension
rather than production. Semantic error detec-
tion/correction system cannot be used this way,
because they provide an estimate of how likely a
word is to be wrong, not how difficult it was to
produce the word in the first place. Semantic error
prediction, thus, fills a gap in the CALL literature.

We propose and implement a method for creat-
ing semantic error prediction datasets from error
correction datasets. Analysing the dataset with
Bayesian logistic regressions, we found that verbs
show a peculiar accumulation of semantic errors.

Furthermore, we train transformer-embedding
based models for semantic error prediction. These
models perform better than the baselines, although
much room for improvement remains. Finally, we
use the scores produced by the best of our models
on the downstream task of predicting the vocab-
ulary scores of student essays using a Bayesian
linear regression. The results indicate that these
lexical complexity scores improve the model.

Limitations

The present proposal suffers primarily from three
limitations:

First, factors other than lexical semantic com-
plexity might lead to content word replacement
errors, rendering the proposed error prediction task
an imperfect proxy. Future research should investi-
gate other measures for active vocabulary for com-
parison.

Second, the error correction dataset used for
our investigation does not provide information
about important properties influencing error pat-
terns, such as the first language of the L2 learners.
However, our method is applicable to other datasets
providing such information.

Third, our investigation is limited to an English
error correction dataset. Error patterns might differ
between languages. In some languages, for exam-
ple morphologically richer languages, content word
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replacement errors might be harder to identify or
have a weaker connection to lexical semantics.
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B: log
(

π
1−π

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + c

B+I: log
(

π
1−π

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + c+ β6X2X4

X1 = # characters X4 = word cefr-j level

X2 = frequency X5 =

{
1 if token is a verb
0 in other case

X3 = age of acquisition c = (βA2CA2 + βB1CB1 + . . .) = effect of student CEFR level

Figure 6: Equations describing the two Bayesian logistic regression models: Basic (B) and Basic with Interaction
added (B+I).
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Figure 7: HDIs for Max+Mean model predicting the vocabulary scores. Max and mean scores refer to the pooled
results of our neural model.
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Figure 8: elpdloo scores for Bayesian linear regression
models predicting vocabulary scores (top 4 model) as
well as Overall scores and Phraseology scores.
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