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Abstract

This paper summarizes the participation of our
team (Flawless Lawgic) in the legal named
entity recognition (L-NER) task at LegalLens
2024: Detecting Legal Violations. Given possi-
ble unstructured texts (e.g., online media texts),
we aim to identify legal violations by extract-
ing legal entities such as “violation”, “violation
by”, “violation on”, and “law”. This system-
description paper discusses our approaches
to address the task, empirically highlighting
the performances of fine-tuning models from
the Transformers family (e.g., ROBERTa and
DeBERTa) against open-sourced LLMs (e.g.,
Llama, Mistral) with different tuning settings
(e.g., LoRA, Supervised Fine-Tuning (SFT) and
prompting strategies). Our best results, with a
weighted F1 of 0.705 on the test set, show a
30 percentage points increase in F1 compared
to the baseline and rank 2 on the leaderboard,
leaving a marginal gap of only 0.4 percentage
points lower than the top solution. Our solu-
tions are available at @honghanhh/Iner.

1 Introduction

The internet has revolutionized how we share and
interact with information. Every day, we gener-
ate an enormous quantity of digital textual data in
the form of news articles, blogs, and social media
posts. The information we consume and produce,
not to mention the platforms we interact on contain
a multitude of legal claims, and violations are no
exceptions. It is undeniable that these violations
pose potential risks to individuals and organizations
as well as go against the fabric of legal and ethi-
cal standards, including individual rights, societal
norms, and the principles of justice.

Previous studies often trace the legal violations
from their data trails by using specialized mod-
els tailored for specific domain applications (Silva
et al., 2020; Yu et al., 2020). While these models
can be effective in their narrow domains, they often
lack the necessary versatility to address the wide

array of legal violations across contexts. To address
this, Bernsohn et al. (2024) formulate a new task of
automatically identifying legal violations from un-
structured text sources in the form of legal named
entity recognition (L-NER). While baseline meth-
ods have been created to address this task, there
remains a gap in developing more advanced meth-
ods to sort through this online noise and identify
these breaches.

Inspired by the work of Bernsohn et al. (2024)
on LegalLens consisting of a novel textual dataset
for legal violation identification using large-scale
language models (LLMs), we address a compara-
tive analysis of different approaches on this dataset
through the LegalLens 2024: Detecting Legal Vio-
lations shared task (Hagag et al., 2024). The con-
tributions of this paper are two-fold:

* We propose a comparative evaluation of dif-
ferent techniques, including the adaptation
of various language models (e.g., RoBERTa
(Liu et al., 2019), DeBERTa (He et al., 2021))
as fined-tuning token classifiers against open-
sourced LLMs with token classification and
supervised fine-tuning using LoRA, and zero-
shot prompt engineering approaches, gaining
valuable insights into their applicability and
limitations in the context of legal NLP.

* Our code is publicly available as an open-
sourced repository on GitHub and our models
are accessible via HuggingFace, making our
work more transparent and reproducible.

The paper is organized as below. Section 2 sum-
marizes the previous works for the L-NER task.
Section 3 describes the architecture, dataset, and
evaluation metrics for the comparative analysis. In
Section 4, we report the performances of our meth-
ods on the development set. We also compare our
best classifier on the development set with the test
set against the baseline. Finally, we propose error
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analysis in Section 5, followed by the conclusion
with future works in Section 6.

2 Related Works

The primary works for legal violation identification
were mostly on domain-specific topics such as data
agreements for compliance (Amaral et al., 2023),
data privacy breaches (Silva et al., 2020), and
industry-specific regulations (Nyffenegger et al.,
2024; Yu et al., 2020). Despite their potential,
these studies suffered from the limitation of spe-
cific types of legal domains or particular sectors.

One of the most popular directions for legal vi-
olation identification was to consider the task as a
named entity recognition (Hanh et al., 2021; Ivaci¢
et al., 2023; Gonzalez-Gallardo et al., 2024) task, or
so-called L-NER. In non-neural approaches, Dozier
et al. (2010) extracted the named entities (NEs)
in the US case law and many other legal docu-
ments by implementing list lookups, contextual
rules, and statistical models. In neural ones, Leit-
ner et al. (2019) suggested a biLSTM-CRF model
for their novel manually annotated datasets about
German court decisions with 19 NEs while others
proposed LSTM-CRF for LeNER-Br! legal doc-
uments in Brazilian. Chalkidis et al. (2020) pre-
sented LEGAL-BERT? with different BERT-based
model fine-tuned on 12 GB of English legal texts.
Further works (Vardhan et al., 2021) elaborated the
neural architecture for legal identification via NER
task by convolutional neural networks (CNN) and
multi-layer perceptions (MLP). Several other lan-
guage models (e.g., BERT, DistilBERT, RoBERTa)
were also fine-tuned to enhance the performance
of legal violation identification (Bernsohn et al.,
2024) in the same LegalLens® corpora.

With the advent of large-scale language mod-
els (LLMs), numerous works have been done to
take advantage of LLMs to [1] explain legal terms
present in legislative documents (Nyffenegger et al.,
2024), [2] analyze the legal textual data (e.g., court
decision analysis, rivalling seasoned law students)
in depth (Savelka et al., 2023), [3] generate syn-
thetic data in legal domains (Oliveira et al., 2024;
Bernsohn et al., 2024), or [4] fine-tune a special-
ized classifier (e.g., L1ama-2) for the downstream
task (Bernsohn et al., 2024), to mention a few.

lhttps://github.com/peluz/lener—br
2https://github.com/nonameemn1p2®20/1egalBERT
Shttps://github.com/darrow-1labs/Legallens

3 Methods

In this section, we explore three different setups
to tackle the challenge of the L-NER task, in-
cluding: [1] We evaluate Transformers variants
(e.g., RoBERTa (Liu et al., 2019), DeBERTa (He
et al., 2021), and DeBERTa-LSTM) through the pro-
cess of fine-tuning; [2] We explore prompting
LLMs in zero-shot settings (Li, 2023) with differ-
ent fine-tuned checkpoints (e.g., Mistral (Jiang
et al., 2023), Llama-2 (Touvron et al., 2023a),
Llama-3.1 (Dubey et al., 2024)); and [3] We per-
form parameter-efficient fine-tuning (PEFT) using
low-rank adaptation (LoRA) with LLMs.

3.1 Architecture

Fine-tuning on the Transformers family: We
evaluate the effectiveness of transformer-based lan-
guage models by fine-tuning RoBERTa* (as a base-
line) and DeBERTa> with and without an additional
LSTM layer (Hochreiter and Schmidhuber, 1997)
following the success of Bernsohn et al. (2024).
We train the models using the AutoModel classes
from the HuggingFace Transformers library. Each
model was trained for 10 epochs with an initial
learning rate of 2e — 5, batch size of 16, warm-up
steps of 500, weight decay of 0.01, random seed of
42, and a max sequence length of 512 tokens. For
the additional layers incorporating DeBERTa, we set
the dropout rate to 0.3. Early stopping was applied
to prevent overfitting.

Prompting LLMs in Zero-Shot Settings: We
evaluate several open-sourced instruction-tuned
LLMs to test their ability on this task. In zero-shot
settings, we treat the L-NER task as a slot-filling
problem, where each slot corresponds to a class
label. We use three different prompts, where: [1]
Prompt 1 is similar to the implicit prompt Bern-
sohn et al. (2024) used for their few-shot classifi-
cation setting; [2] Prompt 2 is what Bernsohn et al.
(2024) used to create their dataset using GPT-4
(OpenAl et al., 2024) before human annotation;
and [3] Prompt 3 is based on rephrasing the prompt
explicitly as a slot-filling problem instead of a NER
task. The prompts can be seen in Figure 2. We use
the JSONFormer® to constrain the outputs into a
structured format. The top experiment’s results

4https://huggingface.co/FacebookAI/
roberta-base

Shttps://huggingface.co/microsoft/
deberta-v3-base

®https://github.com/1rgs/JSONFormer
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have been listed in Table 1, while the complete list
can be found in Table 6 in the Appendix B. This
helps us understand whether fine-tuning is neces-
sary for tackling this task and identify potential
candidates for fine-tuning.

LoRA with Open-Sourced LLMs: We exper-
iment using different open-sourced LLM fami-
lies, including Qwen2 (Yang et al., 2024), Mistral
(Jiang et al., 2023), Llama-2 (Touvron et al.,
2023b), and Llama-3x (Dubey et al., 2024). We
consider the same data sizes of 7-8 billion para-
metric versions for all the tested LLMs. Follow-
ing the success of PEFT for fine-tuning LLMs as
a token classifier, we leverage LoRA (Hu et al.),
a fine-tuning technique that adds a small, low-
rank matrix to the pre-trained model weights, al-
lowing for efficient adaptation to new tasks with
fewer trainable parameters. LoRA works by keep-
ing the majority of the model’s weights frozen and
only training a small number of parameters spe-
cific to the task, drastically reducing the compu-
tational cost while maintaining high performance.
Each model was trained for the same 10 epochs
with a batch size of LoRA r of 12, LoRA alpha
of 32, and LoRA dropout of 0.1. We use Li
et al. (2023)’s LlamaForTokenClassification
and MistralForTokenClassification, which
use Label Supervision (LS) to constrain the output
predictions. In addition, we perform Supervised
Fine-tuning (SFT) using LoRA on Llama3.1-8b
(Dubey et al., 2024) using the L1ama-3 instruction
format to produce JSONFormer-like JSON outputs.
We use the same LoRA configurations as before for
training and JSONFormer for testing.

3.2 Datasets

We use the training and development sets from
LegalLens (Bernsohn et al., 2024) designed for the
L-NER task to identify violations with four distinct
classes: “violation”, “violation by”, “violation on”,
and “law”. The class description, the number of
instances per class, and their average phrase length

are presented in Table 4 in Section A.

3.3 Evaluation Metrics

The L-NER task’s performance is assessed using
Precision, Recall, and weighted F1-score.

4 Results

Table 1 presents the performance of different mod-
els given three settings: [1] Fine-tuning (e.g.,

Table 1: Comparison of different methodologies for
L-NER on the development set. The table showcases
various models, their sizes, the methods employed, and
their performance metrics, where P is Precision, R is
Recall, and F1 is the F1-score. Both Prompting and SFT
use Prompt 2 as the instruction (see Figure 2).

Models Size Methods P R F1
RoBERTa 125M  Fine-tune 0.568 0.674 0.616
DeBERTa-v3 250M  Fine-tune 0.633 0.664 0.648
DeBERTa-v3+LSTM 250M  Fine-tune 0.577 0.688 0.627
Mistral-ve.3 7B Prompting  0.246  0.258 0.252
Llama-2-hf 7B Prompting  0.122 0.173 0.143
Dolphin-2.9-Llama-3 8b Prompting  0.425 0.509 0.463
Meta-Llama3.1 8B Prompting 0.456 0.282 0.348
Qwen2 7B LS-LoRA  0.228 0.333 0.270
Mistral-ve.3 7B LS-LoRA 0.160 0.272 0.202
Llama-2 7B LS-LoRA 0.372 0.536 0.439
Dolphin-2.9-Llama-3 8B LS-LoRA 0.228 0.370 0.282
Llama-3.1 8B LS-LoRA 0.448 0.637 0.526
Llama-3.1 8B  SFT-LoRA 0.015 0.110 0.027

RoBERTa, DeBERTa); [2] Prompting (e.g., Mistral,
Llama); and [3] LoRA (e.g., Qwen2, Mistral,
L1lama). In general, all the fine-tuned BERT-based
language models outperform LLMs for both LoRA
and instruction-tuning settings by a significant mar-
gin. Across all models, DeBERTa attains the best
performances, achieving an F1 of 64.8% and a Pre-
cision of 63.3% on the development set.

Given the best performance on the development
set of DeBERTa as a fine-tuned token classifier, we
reported the results in weighted F1 of our classifier
on the hidden test set in comparison with other
competitors and the baseline from the LegalLens
2024: Detecting Legal Violations task in Table 2.

Table 2: Results on the test set in the leaderboard.

Teams F1
Nowj 0.416
Flawless Lawgic (Ours) 0.402
UOttawa 0.402
Masala-chai 0.380
UMLaw & TechLab 0.321
Bonafide 0.305
Baseline 0.381

For the LegalLens NER part of the shared task
(Hagag et al., 2024), all competitors performed
higher than the baseline, where our team obtained
second place with only a marginal gap of 4 percent-
age points from the winning solution on the test
set.
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5 Error Analysis

Entity Type Errors: Figure 1 visualizes the com-
parison in F1 performance for each class among
different models reported in Table 1.

violation

violated by = == law
20 40 “60 80 100

violated on

=#= Deberta-v3 =#= Llama3.1-8b =#= Dolphin-Llama3-8b

Figure 1: Comparing performance in F1 of models from
Table 1 on the development set for each class.

Of all classes, the entity type “violation” had the
lowest F1 despite its richness in training examples,
especially for longer and more complex entities,
followed by “violated on”. DeBERTA showed the
most competitive performance for all classes, espe-
cially in identifying the entity types “violated on”
and “violated by” by a large margin. The perfor-
mance of our best classifier on the development set
is reported in Table 3. This indicates that training
separate models for each class, or certain classes
grouped together might be an interesting avenue to
explore.

Additionally, the three datasets exhibit signifi-
cant variability, as illustrated by the distinct class
coverage of models in Figure 3 in Appendix B,
which provides insights into the data distribution.
This variability may explain why models trained
on the training set may not generalize well to the
development and test sets. Moreover, analyzing the
named entities present in each slot and examining
how various models perform about these, could
yield additional valuable findings.

Table 3: Results per class on the development set using
DeBERTA token classifier.

Classes ‘ Precision Recall F1-score
LAW 0.928 0.853 0.888
VIOLATED BY 0.969 0.840 0.900
VIOLATED ON 0.608 0.600 0.604
VIOLATION 0.574 0.627 0.599

The Disparity in Performance: Although
DeBERTa outperformed other masked language
models of smaller size (e.g., RoBERTa), a larger
model size does not always lead to better perfor-
mance, especially when LoRA fine-tuning is used,
which can sometimes lead to poorer results. This
is consistent with the results of Li et al. (2023),
which highlighted the difficulties in fine-tuning the
LLMs compared to the smaller masked language
models (e.g., BERT), especially when the amount of
training data is limited.

Furthermore, we acknowledged the difference
in objective functions between DeBERTa as a
fine-tuned token classifier and other LLMs (e.g.,
Llama-3.1) as a SFT-LoRA classifier. ~While
DeBERTa employed the per-token cross-entropy ob-
jective function, LLMs fine-tuned via causal lan-
guage modelling, wherein the task is to learn the
joint probability distribution of all tokens by max-
imizing the likelihood of the data. As a result,
DeBERTa provided a more fine-grained and stronger
gradient signal that well constrained the class space
by the number of possible entities in our dataset.
This highlights the gap between masked and ca-
sual language models in token classification tasks
for specific domains like L-NER. Additionally, as
shown in the findings of Li et al. (2023), LS LoRA
provided significant improvement over SFT-LoRA.
However, there is still room for improvement when
compared to DeBERTa.

Practical Use of LLMs for Legal Domain: De-
spite not surpassing the performance of fine-tuned
and LoRA methods, prompt-based methods are still
a promising tool for finding the potential violation
for legal documents, especially when working with
limited data of the same domain or when no anno-
tated data is available for a given domain. While
it may not be as good as models trained on dedi-
cated annotated data (fully supervised ones), it can
significantly speed up the process by suggesting
the violation types later reviewed and refined by
human experts.

Additionally, tools like JSONFormer, which en-
force structured output constraints, can help sig-
nificantly in automating these tasks. By ensuring
that model outputs conform to predefined formats
(e.g., JSON), these tools simplify post-processing
workflows, making the outputs easier to analyze
and validate using non-LLM methods, as struc-
tured formats facilitate clearer interpretation and
error-checking mechanisms (Liu et al., 2024).
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In-Domain Fine-Tuning: We evaluated the per-
formance of fine-tuned DeBERTa checkpoints on
several NER datasets relevant to this task 7. Sur-
prisingly, no significant improvement was observed
compared to the base DeBERTa model. However,
based on our analysis of the zero-shot performance
capabilities of LLMs (see Figure 3), there appears
to be greater overlap between the dataset styles of
the training set and the hidden test set than between
the training and development sets. This suggests
that having better distributions of train-dev-test
splits can help with improving upon this task. Addi-
tionally, domain-specific fine-tuning where similar
patterns are reflected could also potentially enhance
the performance of LL.Ms, although further exper-
imentation is required to validate this hypothesis.
Therefore, future work could explore fine-tuning an
LLM on a legal domain corpus, which may yield
better results for this and similar tasks (Jiang et al.,
2024).

6 Conclusion

In this study, we presented a comparative analysis
of three different approaches to identify the legal vi-
olations via the L-NER task at LegalLens 2024 De-
tecting Legal Violations, including [1] fine-tuning
masked language models as token classifier; [2]
zero-shot prompt engineering with LLMs; [3] fine-
tuning LLMs with LoRA as token classifier. Overall,
the first approach using DeBERTa as the backbone
outperformed other settings, demonstrating the gap
in performance between masked language models
and other causal LLMs in token classification tasks,
especially when the amount of training data is lim-
ited. As a result, when a complete training dataset
is accessible, opting for a fully-supervised fine-
tuned system remains the optimal choice. However,
instruction-tuning LLMs with well-defined prompt-
ing is still a potential technique with competitive
results when no annotated data is available.
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A Dataset Statistics

We provide additional statistics and descriptions
to help understand the data distribution as shown
in Figure 4. The most interesting part is the distri-
bution of data in each split: The train split has a
data distribution of roughly 3:1 for VIOLATION to
the other classes, whereas this becomes 8:1 for the
development set. However, the test set has almost
a 1:1 ratio. Additionally, if we look at the tokens
per class, then the train and development set have
comparable distributions, whereas the test set has
more tokens per class.

Table 4: Entity distribution and the average length of
L-NER entities in LegalLens.

Entities # Examples Average Length
Train Dev Test Train Dev Test
LAW 217 75 246 8.38  3.04 19.27
VIOLATION 710 616 371 88.02 80.45 139.81
VIOLATED BY 217 75 379 5.94 2.39 16.65
VIOLATED ON 217 75 333 5.68 238 21.72

The entities include: LAW (specific law or regula-
tion breached), VIOLATION (content describing the
violation), VIOLATED BY (entity committing the

violation), and VIOLATED ON (victim or affected
party).

B Empirical studies on zero-shot
instruction tuning

To elaborate on the potential of instruction-tuning
using LLLMs without the need for adequate anno-
tated data and computation resources, we provided
an ablation study on zero-shot performances to
identify legal violations given 3 prompt designs
where the first two prompts (P1 and P2) were in-
spired by the work of Bernsohn et al. (2024) and
the last prompt (P3) considers the task as a slot-
filling problem instead of token classification task
(see the prompt examples in Figure 2).

Prompt 1 (Explicit)
Perform Named Entity Recognition (NER) on the text below. Identify and extract the following entities:
- LAW: Any law, regulation, act, or legal entity.
- VIOLATION: Any indication of a legal violation, breach of contract, or misconduct.
- VIOLATED BY: The individual, entity, or organization responsible for the violation
- VIOLATED ON: The individual, entity, or organization affected by the violation.

Text: {<input string>}

Prompt 2 (Implicit)
Perform Named Entity Recognition (NER) on the text below. Identify and extract the following entities:
- LAW: What is the law or regulation that has been broken?
- VIOLATION: What is the content that describes the violation?

- VIOLATED BY: Who committed the violation? Provide explicit and concise information.
- VIOLATED ON: Who was affected by the violation? Provide explicit and concise information.

Text: {<input string>} /

Prompt 3 (Task Rephrase]
Extract the relevant information from the text below and fill in the following slots:

- LAW: What is the law or regulation that has been broken?

- VIOLATION: What is the content that describes the violation?

- VIOLATED BY: Who committed the violation? Provide explicit and concise information.

- VIOLATED ON: Who was affected by the violation? Provide explicit and concise information.

Text: {<input string>}

Figure 2: The three prompts we experimented with for
the zero-shot setting. The color changes highlight the
differences between each prompt.

Table 6 reports the zero-shot performances
of three different prompt designs on the train-
ing, development, and test sets of the Legal-
Lens dataset.  Four groups of LLMs have
been investigated, including [1] Llama vari-
ants (e.g., Meta-Llama2-7b, Meta-Llama3-8b,
Dolphin-Llama3-8b, Meta-Llama3.1-8b); [2]
Mistral variants (e.g., Sauf-7b, Mistral-7b,
Dolphin  Mistral-7b); [3] Gemma (e.g.,
Gemma2-2b); and [4] Phi (e.g., Phi-3-mini,
Phi-3.5-mini). Overall, the P2 prompt structure
consistently yielded better results than the other
two prompts for all the tested LLMs. We suspect
P2 is better because this is the style used to cre-
ate the examples in the first place using GPT-4
(Bernsohn et al., 2024). Additionally, when the
explicit prompts (P1) specify which items to look
for, whereas P2 implicitly formulates the question.
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However, using a T-test (see Table 5), we find that
none of the p-values are below the common thresh-
old of 0.05. This means there’s no statistically sig-
nificant difference in F1 among the three prompts.
In other words, based on this test, no single prompt
stands out as significantly better than the others in
terms of performance. Therefore, p-tuning (Liu
et al., 2023) might be an interesting dimension to
explore in the future.

Table 5: T-test results for prompt comparison.

Comparison t-statistic -value Significant

P P (p < 0.05)
P1 vs P2 -1.352 0.194 No
P1vsP3 -0.366 0.718 No
P2 vs P3 1.028 0.318 No

Table 6: Zero-shot performances on the training, devel-
opment, and test sets. The bold scores perform best,
while the highlighted scores are models that reach over
0.4 in F1.

Model Prompt Train F1 Dev F1 Test F1

1 0.114 0.063 0.157

Saul-7b 2 0.316 0.259 0.318

3 0.259 0.171 0.266

1 0.149 0.120 0.198

Meta-Llama2-7b 2 0.175 0.143 0.215
3 0.152 0.110 0.177

1 0.255 0.180 0.290

Meta-Llama3-8b 2 0.327 0.247 0.347
3 0.294 0.195 0.322

1 0.406 0.334 0.422

Dolphin-Llama3-8b 2 0.463 0.360 0.474
3 0.438 0.363 0.451

1 0.254 0.195 0.305

Meta-Llama3.1-8b 2 0.319 0.253 0.348
3 0.271 0.203 0.310

1 0.166 0.082 0.262

Mistral-7b 2 0.354 0.252 0.400

3 0.348 0.211 0.383

1 0.330 0.270 0.390

Dolphin Mistral-7b 2 0.424 0.356 0.419
3 0.381 0.301 0.416

1 0.232 0.192 0.237

Gemma2-2b 2 0.292 0.217 0.318

3 0.182 0.146 0.199

1 0.386 0.308 0.430

Phi-3-mini 2 0.398 0.338 0.416

3 0.305 0.225 0.374

1 0.417 0.342 0.467

Phi-3.5-mini 2 0.420 0.338 0.470
3 0.377 0.287 0.425

The graph highlights significant variability
across the three datasets, as evidenced by the three
distinct regions, which offers valuable insights into
the data distribution from a qualitative standpoint
(see Figure 3). This, along with the token distri-

violation

law

violated b =
Y 0100020030 40 50 60 70

violated on
m®=m Dolphin-Llama3-8b (Train) m=®=m Dolphin-Llama3-8b (Dev)
m®= Dolphin-Llama3-8b (Test) m=®== Dolphin-Mistral-7B (Train)
Dolphin-Mistral-7B (Dev) Dolphin-Mistral-7B (Test)
me®mm Phi-3.5-mini (Train) Phi-3.5-mini (Dev)
Phi-3.5-mini (Test)

Figure 3: Per-class performance of the three models
(based on overall F1) for the training, development, and
test sets using zero-shot prompting. We use Prompt 2
for all since it consistently worked better than the other
two across all models. Fine-grained values have been
mentioned in Table 6.

bution variability as discussed in Section A helps
us understand why models trained on the training
set struggle to generalize effectively to the develop-
ment and test sets. To further explore this, it would
be beneficial to evaluate the model coverage on the
other solutions across the three dataset splits.

It should be noted that given the token distri-
bution, smaller LLM (up to 8b parameters as we
tested) could come with the limitation of not being
able to reproduce longer phrases (especially for
“violation”) which could be improved by scaling up
the model sizes, especially given that the original
dataset was curated using GPT-4 (Bernsohn et al.,
2024).

We also find that Dolphin, the uncensored check-
points of both L1ama-3-8b and Mistral-7b, sig-
nificantly outperform their aligned counterparts in
the zero-shot classification task. This could be due
to the alignment tax (Lin et al., 2024). However,
additional qualitative investigation into the data is
required before this can be confirmed.
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