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Abstract

This paper presents our system description and
error analysis of our entry for NLLP 2024
shared task on Legal Natural Language Infer-
ence (L-NLI) (Hagag et al., 2024). The task
required classifying these relationships as en-
tailed, contradicted, or neutral, indicating any
association between the review and the com-
plaint. Our system emerged as the winning
submission, significantly outperforming other
entries with a substantial margin and demon-
strating the effectiveness of our approach in
legal text analysis. We provide a detailed anal-
ysis of the strengths and limitations of each
model and approach tested, along with a thor-
ough error analysis and suggestions for future
improvements. This paper aims to contribute
to the growing field of legal NLP by offering
insights into advanced techniques for natural
language inference in legal contexts, making
it accessible to both experts and newcomers in
the field.

1 Introduction

In today’s digital age, vast amounts of information
circulate online, creating an overwhelming stream
of text that spans news articles, social media, and
user-generated content. Within this unstructured
data, legal violations often remain hidden, blending
into the surrounding noise. Legal violations fre-
quently leave behind data traces. To identify these
traces and detect violations, prior research in Legal
NLI (Koreeda and Manning, 2021) has typically
utilized specialized models designed for particular
domain applications (Silva et al., 2020) (Yu et al.,
2020). Uncovering these violations is not only
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crucial for upholding individual rights and ethical
standards, but also for maintaining societal justice
in an increasingly digital world. Addressing this
challenge requires more than traditional methods.
While existing models have proven effective within
their specialized domains, they lack the flexibility
needed to tackle the complex and varied nature of
legal violations found in diverse online contexts.
Our work seeks to bridge this gap by leveraging
advanced language models for the nuanced task of
Legal Natural Language Inference (L-NLI), as part
of the NLLP 2024 shared task. The aim was to clas-
sify relationships between legal complaints and re-
views as either entailed, contradicted, or neutral. In
this study, we implemented a range of techniques,
including multi-layered fine-tuning and alignment
strategies, to enhance text classification. We experi-
mented with several LLMs, such as Gemma (Team,
2024), Phi3 (Abdin, 2024), Zephyr (Tunstall et al.,
2023), LLaMA (Dubey et al., 2024), Mistral (Jiang
et al., 2023), OpenHermes (Teknium, 2023) and
Qwen (Yang et al., 2024) refining each model for
optimal performance. These approaches proved
highly effective, with our system outperforming
other entries by a large margin. Beyond technical
achievements, we present a thorough error analysis,
highlighting where the models excelled / struggled.
Through our findings, we aim to advance the field
of legal NLP, making complex legal analysis ac-
cessible to a wider audience, while pushing the
boundaries of NLI in legal domain. The code and
models used in the official submission and the later
found best model can be found here. ' 2

"https://github.com/1-800-SHARED-TASKS/
EMNLP-2024-NLLP

2https://huggingface.co/
collections/1-800-SHARED-TASKS/
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2 Dataset

The dataset for the NLI task consists of a legal
premise (a summary of resolved class-action cases)
and a corresponding hypothesis (an online media
text). The training and test splits of the dataset
consist of 312 and 84 samples. For the initial fine-
tuning, the test and validation subsets of the SNLI
dataset (Bowman et al., 2015) were used consisting
of 20000 samples. The distributions of each of the
training sets and the test set can be seen in Table 1.
The original dataset (Bernsohn et al., 2024) used
had just 312 rows, the aggregation of datasets is
explained in detail in Appendix. The length of the
texts are both mostly 4-7 sentences long in both the
premise and hypothesis.

Train-1 | Train-2 | Test
Entailed 34.0% 327% | 47.6%
Neutral 33.1% 33.9% | 34.5%
Contradict | 32.9% 333% | 17.9%

Table 1: Distributions of each class in each data split

* Train-1 is a subset of SNLI dataset , Train-2 is the NLLP
dataset

3 System Description

Various LLMs were tested with and without ad-
ditional training data or additional training stages.
They were also tested with various alignment ap-
proaches in various configurations. The metrics
obtained on the test set with each of these ap-
proaches/models can be seen in Table 2. The offi-
cial metric used was Macro F1 score [F1]. Addi-
tionally accuracy [A], precision [P] and recall [R]
were also reported.

3.1 Multi-stage Learning

Given the small size of the existing training dataset
(312 samples), we have additionally tested multi-
stage learning by first fine-tuning over a subset of
20000 rows from the SNLI dataset to first let the
models adapt to generic NLI tasks with a lower
learning rate and then further fine-tuned the resul-
tant models on the NLLP training samples with a
higher learning rate. Additionally we have tested
using additional training data from previous works
(more in Appendix). Both of these approaches did
result in better performance. An overview of the
process can be seen in Figure 1.

emnlp-2024-nllp-66e7af534b7e708a36dbo2df

Training Stage 1

SNLI Subset LR
(20,000) 2e-6

Training Stage 2

E NLLP Aggregated Train Set LR
2e-5

(462)

Alignment Techniques

Random Preferred Multiple
Rejection Rejection Rejections

Figure 1: Multi-stage Training Overview

3.2 Alignment approaches used

We have tested using ORPO (Hong et al., 2024) dur-
ing fine-tuning using various LLMs in 3 different
configurations i.e the rejected sample being a) ran-
dom, b) preferred and c¢) multiple rejected samples.
The usage of ORPO did improve the performance
over all of the domains in any of the configurations.

3.2.1 Random Rejection

In this approach, the actual label being the accepted
response would lead to the rejected response being
arandom class form the remaining two. The results
did improve compared to not using ORPO but by a
very slight margin.

3.2.2 Preferred Rejection

In cases where the actual label is Neutral, a ran-
dom label is chosen as the rejected sample among
the other two. We chose *Neutral® as the rejected
response when the actual label is either Entailed
or Contradict. The reason being all of the errors
being one of the other two classes being labelled as
"Neutral or vice versa. This did improve the perfor-
mance significantly by reducing the mis-classified
samples between Neutral and the other classes.

3.2.3 Multiple Rejections

In this approach, while the label class would be
the accepted class, both the other two classes were
added as the rejected samples. Although this was
computationally expensive, the results were close
to those from preferred rejection approach.

4 Error Analysis

We were able to completely avoid Type-1 errors
1.e classification of ’Entailed’ as *Contradict’ and
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LLM Used Trained on | Alignment approach A | R F1
GEMMA-2-27B NLLP* None 0.857 | 0.871 | 0.894 | 0.871
GEMMA-2-27B NLLP None 0.857 | 0.859 | 0.891 | 0.865

Mistral-8x7B NLLP* None 0.869 | 0.877 | 0.902 | 0.881
QWEN-2-7B NLLP* None 0.833 | 0.828 | 0.868 | 0.839
QWEN-2-7B NLLP None 0.821 | 0.852 | 0.869 | 0.842
Phi-3-Medium NLLP* None 0.821 | 0.853 | 0.813 | 0.820
OpenHermes-13B NLLP* None 0.774 | 0.820 | 0.832 | 0.803
GEMMA-2-27B | SNLI, NLLP* None 0.869 | 0.866 | 0.899 | 0.874
GEMMA-2-27B | SNLI, NLLP None 0.821 | 0.828 | 0.862 | 0.831
GEMMA-2-27B | SNLI, NLLP* ORPO Random 0.845 | 0.852 | 0.882 | 0.855
GEMMA-2-27B NLLP* ORPO Multiple 0.833 | 0.842 | 0.860 | 0.840
GEMMA-2-27B | SNLI, NLLP* ORPO Preferred 0.869 | 0.885 | 0.902 | 0.887
Mistral-NEMO NLLP* ORPO Multiple 0.869 | 0.867 | 0.890 | 0.877
Phi-3-Medium NLLP* ORPO Multiple 0.845 | 0.872 | 0.833 | 0.838
Zephyr-7B NLLP* ORPO Multiple 0.810 | 0.838 | 0.858 | 0.832
Phi-3-Medium* NLLP* ORPO Multiple‘ 0.845° | 0.884° | 0.844° | 0.853°
baseline - - - - - 0.807

Table 2: Metrics on the test set with some of the approaches/models tested

* Indicated aggregated train set of NLLP (more in appendix)

¢ indicates official submission

vice versa, limiting the error cases to Type-2 errors
i.e classification of "Neutral’ as another and vice
versa. Confusion matrix of our models’ predictions
on the test set can be seen in Figure 2 and Figure 3.

It can be observed from both Figure 2 and Fig-
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Figure 2: Confusion Matrix : Our system’s (best) pre-
dictions over the test set
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15
31

Actual Class
Entailed

Neutral

Contradict
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ure 3 that most common case of errors was those
being mis-classified among Neutral and Entailed.
We found these to be cases where the hypothesis
consisted of multiple sentences which entail the
premise followed by a vague / unrelated statement,

Confusion Matrix: Overall

Contradict

Actual Labels
Entailed

Neutr:

Contradict Entailed Neutral

Predicted Labels

Figure 3: Confusion Matrix : Our system’s (submission)
predictions over the test set

while some are to be labelled as ’Entailed’ and rest
as ’Neutral’ based on the perceived tone/feeling
of the user, it would be likely that there might not
be consensus among human annotators as well in
many such cases. It is worth looking into the per-
formance of models trained on not just the labels,
but also the reasoning of the annotators on why a
certain label was chosen, as it might help the model
learn better.
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Legal act in Train set Domain in Test set | A | R F1
Privacy 229 BIPA 22 0.73 |1 0.80 | 0.86 | 0.77
Data-Breach 20 0951096 | 095 | 0.95
VPPA 6 1.00 | 1.00 | 1.00 | 1.00
TCPA 111 TCPA 9 0.89 | 0.89 | 0.93 | 0.90
Consumer 102 Consumer 8 0.88 1 092 | 092 | 0.90
WAGE 20 WAGE 19 0.89 | 0.80 | 0.92 | 0.83
Overall(best) - - - 0.87 | 0.89 | 0.90 | 0.89
Overall(submission) - - - 0.85 | 0.89 | 0.84 | 0.85

Table 3: Performance of our models on the test set : Domain wise

4.1 Performance on each Domain

The performance of our system on each domain
in the test set can be seen in Table 3. The met-
rics obtained on most of the domains were signifi-
cantly higher than that of the baseline. The system
worked well on all domains, however compara-
tively weaker on BIPA which was imbalanced in
the training set.

S Scope For Improvement

As seen in Table 3 the performance across each
domain varied by a significant margin. How-
ever, the domains over which some models under-
performed, some other performed well. It is likely
that using ensembles can improve the performance
by a considerable margin.

5.1 Low training data

Some cases did get misclassified too often espe-
cially those whose domain data was less repre-
sented in the training dataset. From what was
observed from comparison of performance over
original and aggregated datasets and the models
with and without SNLI fine-tuning step involved,
It can be determined that more training data would
improve the performance considerably especially
the domains with less data.

5.2 Individual Annotations availability

In models built using Preferred Rejection, cases
with Neutral as the label had used a random label
from the other two as the rejected sample. How-
ever availability of individual annotations might
provide more info on what choice of rejected label
might lead to better results compared to choosing a
rejected label at random.
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6 Conclusion

Compared to the well known SNLI dataset which
consist of premise and hypothesis pair which are
usually one or two sentences long, the current
dataset has texts (both premise and hypothesis)
which are roughly four times longer leading to
more complexity. Since, the SNLI dataset has a
98% consensus and 58% unanimous annotation
among 5 annotators, it can be expected that a hu-
man annotation on the current dataset can lead to
even less proportion of texts where a consensus or
unanimous vote can be reached. Yet, our models
were able to provide a reliable performance com-
pletely avoiding Type-1 errors, performing better
than human annotations expected from those with
domain knowledge, hinting at a potential of practi-
cal applicability.

Limitations

Due to computational resource limitations, the
base models of LLMs were initially loaded in 4-
bit precision, It is likely that a larger model used
in full-precision might perform better. Since the
test dataset used in the task is relatively small,
the LLMs/approaches that might perform better
in practical scenarios may vary from those found
to be better on the current dataset.

Ethics Statement

Automating the identification of legal violations
may inadvertently generate false positives or neg-
atives, potentially impacting individual rights and
the integrity of the legal system. Therefore, we
emphasize that our models are intended to comple-
ment, not replace, legal professionals. It is critical
that any use of our models is approached with cau-
tion, recognizing the inherent limitations and biases
that automated systems may present.
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A Training Data Aggregation

Due to training dataset provided being not large enough, we have used additional training data which
include the dataset from the LegalLens paper. The aggregated training dataset used is what was obtained
by merging both the datasets, upon removal of duplicates.

* Current Dataset huggingface.co/datasets/darrow-ai/LegalLensNLI-SharedTask : 312 training samples
» Additional Dataset huggingface.co/datasets/darrow-ai/LegallLensNLI : 312 training samples

» Aggregated Dataset huggingface.co/datasets/1-800-SHARED-TASKS/EMNLP-2024-NLLP : 462
training samples

B System Replication

We have used each of the LLMs tested by loading them in 4bit precision before fine-tuning on each dataset
in both the training stages using LoRA. The hyper parameters used in each of the training stages can be
seen in Table 4. The hyper parameters not specified below were used with their default values in both
stages. The code used can be found here : github.com/1-800-SHARED-TASKS/EMNLP-2024-NLLP.

parameter Stage-1 (SNLI) | Stage-2 (NLLP)

Learning Rate 2e-6 2e-5

Max Length (tokens) 1024 2048
LoRA alpha 32 16
LoRA dropout 0 0
beta 0.1 0.1

random state 1024 1024
number of epochs 1 3

loaded prev. model as fp4 fp32

Table 4: Hyperparameters used in each training stage

C Models used / SNLI version of LLMs

The models used in the paper including the best performing model and the one used in the official
submission can be found here :

* Best performing model : huggingface.co/1-800-SHARED-TASKS/EMNLP-NLLP-NLI-GEMMAZ2-
27B-withSNLI-withORPO

* Model used for submission : huggingface.co/1-800-SHARED-TASKS/EMNLP-NLLP-NLI-PHI3-
medium-withoutSNLI-withORPO

Additionally the models obtained after fine-tuning LLMs used on the SNLI dataset can be found here :
* GEMMA NLI : huggingface.co/1-800-SHARED-TASKS/GEMMA2-27B-NLI-16bit
» PHI3 NLI : huggingface.co/1-800-SHARED-TASKS/PHI3-Medium-NLI-16bit

D Performance of both models : domain wise

The performance of our best performing model (GEMMA-2-27B-SNLI) can be seen below followed by
those from our submission model (PHI-3-SNLI).
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