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Abstract

In high-stakes domains like legal question-
answering, the accuracy and trustworthiness
of generative AI systems are of paramount im-
portance. This work presents a comprehen-
sive benchmark of various methods to assess
the groundedness of AI-generated responses,
aiming to significantly enhance their reliability.
Our experiments include similarity-based met-
rics and natural language inference models to
evaluate whether responses are well-founded
in the given contexts. We also explore different
prompting strategies for large language mod-
els to improve the detection of ungrounded
responses. We validated the effectiveness of
these methods using a newly created ground-
ing classification corpus, designed specifically
for legal queries and corresponding responses
from retrieval-augmented prompting, focusing
on their alignment with source material. Our
results indicate potential in groundedness clas-
sification of generated responses, with the best
method achieving a macro-F1 score of 0.8. Ad-
ditionally, we evaluated the methods in terms
of their latency to determine their suitability for
real-world applications, as this step typically
follows the generation process. This capabil-
ity is essential for processes that may trigger
additional manual verification or automated re-
sponse regeneration. In summary, this study
demonstrates the potential of various detection
methods to improve the trustworthiness of gen-
erative AI in legal settings.

1 Introduction

Generative AI systems are increasingly employed
in high-stakes domains such as legal question-
answering, where accuracy and trust are paramount
(Monroy et al., 2009; Vold and Conrad, 2021; Khaz-
aeli et al., 2021; Martinez-Gil, 2023). A significant
challenge in these applications is the detection of
outputs that are not grounded in the input data (con-
text), which can compromise user trust and dimin-
ish the application’s value (Maynez et al., 2020;
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Figure 1: Example query and corresponding LLM re-
sponses with grounded and erroneous spans (Procedu-
ral Errors). The retrieved context used for grounding the
responses was omitted due to its length. The remaining
sentences in both responses are identical and grounded,
but not highlighted to emphasize the differences.

Rawte et al., 2023). This work addresses this chal-
lenge by conducting a comprehensive benchmark-
ing to assess the groundedness of AI-generated
legal responses, thereby enhancing their reliability.

Our methodology investigates diverse ap-
proaches to classify responses based on their foun-
dation in the provided source material (cf. Fig. 1).
We utilize:

1. Similarity-based techniques, employing var-
ious text similarity metrics to quantify the
alignment between the generated text and the
input data at the sentence-level.

2. Natural language inference models to deter-
mine if the generated response sentences are
entailed by or contradict the sentences in the
source material.

3. Diverse prompting strategies for large lan-
guage models (LLMs) to detect ungrounded
responses. (Bubeck et al., 2023).

176



We evaluate these approaches on a new corpus
of legal queries and responses, annotated for their
degree of groundedness.

Experimental results demonstrate the effective-
ness of many methods in the detection of poten-
tially ungrounded answers. We also discuss the
trade-offs between task performance and compu-
tational efficiency, highlighting the capabilities
of particular approaches to operate with minimal
added latency in real-world applications.

Furthermore, we investigated the types of errors
present in the responses, categorizing them into six
distinct classes: Factual Inaccuracies, Contextual
Misinterpretations, Procedural Errors, Reasoning
Errors, Misattributions, and Terminological Errors.
Our analysis reveals that factual inaccuracies are
the most prevalent type of errors. Importantly, we
found that the misclassification rates in the over-
all groundedness assessment task are not uniform
across these error categories, providing valuable
insights for targeted improvements in AI-generated
legal responses.

Our findings underscore the potential of auto-
mated groundedness assessment tools to improve
the reliability and utility of generative AI in legal
settings, ensuring that the generated responses are
consistently accurate and trustworthy. The error
analysis further contributes to a nuanced under-
standing of the challenges in this domain, paving
the way for more refined and effective AI systems
in legal applications.

2 Related Work

2.1 Grounding of Generated Responses

Grounding and factual consistency in language
model outputs, especially for summarization and
question-answering tasks, have been a focal point
of recent research. Kryściński et al. (2020) intro-
duced a weakly-supervised, model-based approach
to verify factual consistency between source doc-
uments and generated summaries. This method
uniquely combines consistency checks with the ex-
traction of supporting and contradictory spans.

Building on this, Maynez et al. (2020) performed
an extensive human evaluation of neural abstrac-
tive summarization systems. Their results showed a
significant amount of ungrounded content in model-
generated summaries and found that textual entail-
ment measures correlate more strongly with faith-
fulness than standard metrics. This finding closely
relates to our interest in assessing the groundedness

of AI-generated legal responses.
The Chain-of-Knowledge (CoK) framework (Li

et al., 2023) marks a major advance in reducing hal-
lucinations. By dynamically incorporating ground-
ing information from various sources, CoK en-
hances factual accuracy in knowledge-intensive
tasks.

In essence, grounding of LLM-generated re-
sponses aims to ensure that outputs are factually
consistent with input data, thereby enhancing reli-
ability and reducing ungrounded LLM-generated
content.

2.2 Hallucination Detection

Advancements in hallucination detection have been
pivotal in developing more reliable and grounded
LLMs, particularly for question-answering (QA)
systems.

The HaluEval-Wild benchmark (Zhu et al., 2024)
offers a novel approach to evaluating LLM hallu-
cinations in real-world settings. By categorizing
challenging user queries into five distinct types,
this tool provides essential insights for enhancing
LLM reliability in scenarios that mirror real-world
interactions, which is crucial for QA systems.

Wang et al. (2024) contribute with MIGRES, a
method that uses LLMs’ ability to identify missing
information for targeted knowledge retrieval and
extraction. This approach promises to improve the
groundedness of responses by ensuring comprehen-
sive information gathering.

In long-form question answering, Rosenthal
et al. (2024) introduced ClapNQ, a benchmark de-
signed for retrieval-augmented generation (RAG)
systems. Its emphasis on concise, cohesive answers
grounded in source passages makes it particularly
relevant for evaluating QA systems that require
detailed, well-supported responses.

An empirical evaluation of AI-driven legal re-
search tools (Magesh et al., 2024) challenges
claims of "hallucination-free" systems, underscor-
ing the necessity for rigorous evaluation in assess-
ing the groundedness of legal QA systems.

Additionally, Hong et al. (2024) have launched
the Hallucinations Leaderboard, an open initiative
for measuring and comparing hallucinations across
various LLMs and tasks. This resource offers a
valuable opportunity for benchmarking the ground-
edness of QA systems against a diverse range of
models and applications.
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3 Grounding Definition

Grounding in legal question-answering systems
refers to the extent to which an AI-generated re-
sponse is firmly rooted in, supported by, and di-
rectly attributable to the provided legal source ma-
terial. It ensures the model’s output aligns with
and accurately represents the information in the
input data, avoiding fabrication, extraneous details,
or misleading content. A well-grounded response
should adhere closely to the facts, legal principles,
and reasoning presented in the source material,
without introducing unsupported claims or misrep-
resenting the legal context (Chandu et al., 2021).

Several key aspects ensure the reliability of AI-
generated legal responses. Factual alignment and
relevance are crucial, ensuring the content reflects
the source documents and addresses the legal query
accurately. Source attribution allows tracing in-
formation back to specific input texts, while legal
interpretation fidelity ensures conclusions are sub-
stantiated by the provided materials. This involves
not only accurately conveying factual information
but also maintaining the integrity of legal proce-
dures, correctly interpreting the context, and using
appropriate legal terminology. The generated re-
sponses must adhere to the given context, avoiding
unsupported claims or extrapolations, and preserv-
ing the nuances and complexities of legal language
and concepts (Magesh et al., 2024).

The assessment of grounding in legal AI re-
sponses involves a comprehensive evaluation of
how faithfully the generated content aligns with
the retrieved legal context. This evaluation consid-
ers various aspects of the response, including its
factual accuracy, the appropriateness of legal inter-
pretations, the coherence of legal reasoning, and
the proper use of legal terminology. Grounding is
vital in legal applications to maintain the integrity
of legal advice, ensure compliance with laws and
precedents, and prevent misinformation. By en-
suring strong grounding, legal question-answering
systems can provide more reliable, trustworthy,
and legally sound responses, which is crucial in
the high-stakes environment of legal practice and
decision-making.

4 Dataset Creation

In this section, we will describe and list all the steps
involved in creating the Groundedness Classifica-
tion dataset used in our benchmarking.

4.1 Data Source

The dataset originates from proprietary data in the
Casetext Legal Research Skill1. We limited the
data selection to the internal users only, primarily
consisting of diverse sales demonstrations as well
as domain experts and engineering-related testing
sessions. All queries, however, are realistic repre-
sentations of everyday research in the legal domain.
Additionally, we performed a deduplication pro-
cess on the input queries.

The dataset comprises input queries (e.g., ques-
tions about particular legal use cases) accompanied
by LLM-generated responses and retrieved context
data. During development, legal professionals veri-
fied these responses to ensure they were grounded
in the context provided to the LLM (as part of the
prompt). The context data is derived from a re-
trieval system with access to the Casetext database
for legal research, which includes case law, statutes,
regulations, and legal texts authored by internal le-
gal experts and lawyers.

The ground truth responses (LLM-based an-
swers) were generated using custom instructions
in a prompt to GPT-4 in the current production
environment. At this stage of the dataset creation
process, we had compiled a selection of legal user
queries, gold responses, and their corresponding
contexts.

4.2 Synthetic Adaptation

The next step in our dataset creation process in-
volved generating evoked ungrounded responses to
evaluate both grounded and ungrounded outputs.
We instructed GPT-4o to make subtle and unintru-
sive variations to the original grounded responses,
preserving most of the meaning while introducing
minor deviations from the provided context. In the
prompt, we included the original query and context
alongside the gold response and these instructions.

These adapted responses, which we consider par-
tially ungrounded2, complement our final dataset.
The inclusion of both grounded and ungrounded
responses allows for a more comprehensive evalua-
tion of response quality and adherence to provided
context. An example of this subtle deviation from
the source material in the generated response was
depicted in the leading example in Fig. 1.

1https://casetext.com/cocounsel/
2Only some sentences ended up with slight modifications,

while most were kept as the original sentences.
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Split #Queries #Responses #Response Sentences
Training 400 1080 5671
Development 58 162 797
Testing 115 316 1516
Total 573 1558 7984

Table 1: Data Set Statistics

4.3 Data Splits

We divided the dataset into training, development,
and test sets using a ratio of 70 : 10 : 20, respec-
tively. This split ensures a representative distribu-
tion across all subsets while maintaining a suffi-
ciently large test set for robust evaluation.

The resulting counts for each split are presented
in Table 1. It is noteworthy that the number
of responses is not exactly twice the number of
queries. This discrepancy arises from our dataset
creation process, where we retained multiple signif-
icant variations of generated responses for certain
queries to enhance the diversity and coverage of
our dataset.

To maintain the integrity of our evaluation, we
ensured that all responses corresponding to a par-
ticular query were assigned to the same split. This
approach prevents potential leakage between the
training and evaluation sets, thereby providing a
more accurate assessment of model performance
on unseen data.

5 Benchmarking Methodologies

This section overviews the diverse methodologies
employed in our benchmark study for quantify-
ing response grounding, systematically evaluating
approaches that assess adherence of generated re-
sponses to provided context.

5.1 Similarity-based Approaches

Similarity-based approaches compare each re-
sponse sentence against all context sentences, al-
lowing for detailed grounding assessment. We ag-
gregate these sentence-level estimations for the fi-
nal response-level prediction.

Semantic Similarity We embedded sentences
using the nlpaueb/legal-bert-base-uncased model
with the Sentence-Transformers library. Matching
pairs were identified using cosine similarity, with
an optimized threshold determined on the develop-
ment set for final grounding prediction.

Quoted Information Precision Adapting the
QuIP-score (Weller et al., 2024), we examined char-
acter n-gram overlap between LLM responses and
context sentences. We optimized both the n-gram
size (21 in our setup) and similarity threshold on
the development set for grounding determination
in the final evaluation.

5.2 Natural Language Inference

FactKB Evaluating factual consistency in natural
language generation is crucial, especially for com-
plex domains. We employed FactKB3, an approach
leveraging pre-training with facts from external
knowledge bases, to address challenges in entity
and relation errors (Feng et al., 2023).

FactKB has shown state-of-the-art performance
in factual consistency evaluation across various do-
mains. We used it to compute factuality scores of
generated response sentences against source con-
text sentences.

Our grounding determination process involved
identifying the highest-scoring source sentence for
each target sentence based on FactKB scores, then
applying an optimized threshold to classify ground-
ing sufficiency. This threshold, determined using
our development set, balanced precision and recall
in grounding classification, adapting FactKB to our
specific task of response grounding quantification.

Hallucination Evaluation Models The Hallu-
cination Evaluation Model (HEM), developed by
Vectara (Hughes et al., 2023), is designed to detect
hallucinations in LLM-generated responses. HEM
is available in two versions: V1, a fine-tuned model
based on cross-encoder/nli-deberta-v3-base, and
V2, an improved version using flan-t5-base.

Built on research in factual consistency for sum-
marization, HEM classifies whether a summary is
factually consistent with its source. The model was
fine-tuned on diverse documents to ensure robust-
ness across content types and is publicly available
on Hugging Face under the Apache 2 license.

3https://hf.co/bunsenfeng/FactKB
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HEM evaluates LLM responses by comparing
them to source documents, classifying summaries
as consistent or inconsistent. For our study, we im-
plemented a fine-grained approach, scoring individ-
ual sentences against corresponding contexts. This
granular analysis provides a nuanced assessment of
hallucinations at the sentence level, offering deeper
insights into model performance.

5.3 Prompting Approaches

Direct Prompting One straight-forward ap-
proach for groundedness classification via prompt-
ing is asking either the same or another LLM
whether a particular response for a query is
grounded in a context or not (Trautmann et al.,
2022). Therefore, we utilized several LLMs with
a custom prompt and collected the binary classi-
fication as the prompt-based baselines. We used
the specialized open access model Lynx-v1.1 (Ravi
et al., 2024) and the general purpose public LLMs
GPT-4o and Claude Sonnet 3.5. All three LLMs
were evaluated with the same prompt from Ravi
et al. (2024).

In principle, this approach has similarities with
Reflexion by Shinn et al. (2024), where a Self-
Reflection LLM should reflect on a previous an-
swer and if necessary to update its prediction. The
authors showed that this was helpful, especially for
more complex tasks.

Amazon RefChecker RefChecker (Hu et al.,
2024) introduces a framework for hallucination
detection using knowledge triplets to capture fine-
grained assertions. The process involves three
steps: claim extraction, hallucination checking, and
aggregation. This decoupled process is also known
as prompt chaining (Trautmann, 2023).

An LLM identifies knowledge triplets from the
response to the original query. Zero-shot checkers
then predict hallucination labels for each triplet (en-
tailment, contradiction, or neutral). Finally, these
labels are integrated to compute an overall halluci-
nation score for the response.

RefChecker’s computational demands are no-
table: for n triplets extracted, the LLM is prompted
with the entire original context n times, signifi-
cantly impacting processing time and resource con-
sumption. This approach balances granular analy-
sis with computational intensity, offering a detailed
but resource-intensive method for hallucination de-
tection.

SelfCheckGPT We adapt the approach of Man-
akul et al. (2023), which assesses hallucination like-
lihood in LLM-generated sentences by evaluating
their consistency with multiple answers from the
same query. SelfCheckGPT assumes that grounded
sentences should be consistent with other sampled
answers.

The method generates new responses using the
initial prompt with increased temperature. It then
calculates a hallucination score for each sentence
as the average of contradiction probabilities with
these new samples. The response-level score is
the maximum of sentence-level scores, with the
threshold optimized on the training set.

We enhance this approach with a novel
context-based evaluation (ContextNLI) using the
potsawee/deberta-v3-large-mnli model. This com-
pares each answer sentence against context sen-
tences, identifying the minimum contradiction
score as the hallucination probability. The max-
imum score across all sentences represents the an-
swer’s overall hallucination likelihood.

We implement two variants of this approach:
Multi-Gen, which follows the original consistency
checks, and our novel ContextNLI, which incorpo-
rates the context-based evaluation, thus providing
complementary methods for assessing the ground-
edness of LLM-generated content.

DeepEval: Claims Extraction and Verification
We adapt the Faithfulness metrics from Ip (2023)
to detect contradictions between source documents
and generated answers. This approach divides the
task into two subtasks: claims extraction and claim
verification (prompt chains, Trautmann (2023)).

First, we use an LLM to extract claims indepen-
dently from both source documents and generated
answers using a custom prompt. Then, a second
LLM call with another custom prompt identifies
claims from the generated answer not factually sup-
ported by the source document claims. If any gener-
ated claim contradicts a source claim, we consider
the answer inaccurate.

This method requires three LLM calls in total:
two for claims extraction and one for comparison.
We utilize Claude Sonnet 3.5 for all these calls,
balancing task complexity reduction with compre-
hensive analysis.

5.4 Fine-Tuning

In addition to our primary methods, we fine-tuned a
Cross-Encoder classifier (DeBERTa v3 as the base
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model) specifically tailored to our dataset. To en-
sure the integrity of our evaluation, we meticu-
lously prepared a specialized training and evalua-
tion corpus based on the initial data splits, thereby
avoiding any potential contamination between sets.

Our fine-tuning approach focused on the nu-
anced differences between grounded and un-
grounded responses. For each pair of such re-
sponses, we isolated the sentences that differed
between them. This selective process allowed us to
concentrate on the most informative elements for
distinguishing between grounded and ungrounded
content.

To establish ground truth for the grounded re-
sponses, we employed a semantic similarity mea-
sure (as described in Section 5.1). For each sen-
tence in the grounded response, we identified the
most semantically similar sentence from the con-
text and assigned it the corresponding cosine simi-
larity score. These scores typically ranged from 0.8
to 0.99, indicating high levels of semantic align-
ment.

Conversely, for the ungrounded responses, we
paired each sentence with the same context sen-
tence used for its grounded counterpart. However,
we assigned these pairs a score of 1 minus the
cosine similarity, effectively inverting the ground-
ing measure. This approach provided a balanced
representation of both grounded and ungrounded
examples in our training data.

Through this methodology, we compiled a bal-
anced dataset comprising 558 samples for train-
ing and 75 for development. This carefully cu-
rated dataset served as the foundation for our fine-
tuning process, enabling the Cross-Encoder to learn
the subtle distinctions between grounded and un-
grounded content within our specific corpus.

The outcomes of our fine-tuning efforts (af-
ter hyper-parameter optimization), are comprehen-
sively presented (macro averaged) in Tab. 2.

Model Name M-Prec M-Rec M-F1 Acc

deberta-v3-base 0.459 0.466 0.450 0.493
deberta-v3-large 0.736 0.739 0.733 0.733

Table 2: DEV set metrics for DeBERTa models

Following the fine-tuning stage, we integrated
this grounding classification (GC) model into our
benchmark, employing a methodology analogous
to that used for the NLI approaches described in
Section 5.2.

6 Experimental Set-Up

Our benchmarking study aimed to evaluate var-
ious methods for classifying LLM responses as
grounded or ungrounded relative to a given context
and query.

Methodology Despite the varied granularity of
approaches (response-level vs. sentence-level), we
standardized outputs to binary classifications for
consistent comparison. We developed each method
on the training set, optimized parameters on the
development set, and conducted final evaluations
on the test set.

Performance Metrics We assessed classification
accuracy (including macro-averaged f1, precision,
and recall) and computational efficiency through la-
tency measurements. Latency was computed as the
average processing time across all samples in the
development set. These metrics provide insights
into each approach’s practical applicability.

Computational Resources Local approaches
utilized Amazon EC2 G5 Instances (8xlarge)4.
Prompting-based methods were executed via Azure
OpenAI Services5, AWS Bedrock (Anthropic’s
Claude)6, and Anthropic’s API directly, ensuring
diverse and robust evaluation environments.

7 Groundedness Classification Results

Our benchmark evaluation of groundedness classifi-
cation approaches revealed insightful performance
trade-offs, as shown in Tab. 3. The metrics include
classification precision, recall, F1-score, and ac-
curacy, providing a comprehensive view of each
method’s applicability.

The multi-stage prompt chaining approach,
DeepEval Claims Verify, achieved top classifica-
tion metrics, but with high latency (26.1 seconds
per request). In contrast, direct prompting with
GPT-4o achieved the second-highest scores with
significantly lower latency (2.2 seconds), as illus-
trated in Fig. 2.

A clear speed-performance trade-off emerged
across methods. Similarity-based approaches
(COS_SIM and QUIP) were fastest but struggled
with ungrounded response identification. NLI
methods showed improved performance at the cost

4https://aws.amazon.com/ec2/instance-types/
g5/

5https://azure.microsoft.com/en-us/products/
ai-services/openai-service

6https://aws.amazon.com/bedrock/claude/
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# Model Name
Development Set Test Set

Precision Recall Macro-F1 Accuracy Precision Recall Macro-F1 Accuracy
1 COS_SIM 0.525 0.520 0.494 0.520 0.497 0.497 0.493 0.497
2 QUIP 0.648 0.533 0.421 0.533 0.560 0.509 0.379 0.509
3 HEM V1 0.640 0.640 0.640 0.640 0.598 0.595 0.592 0.595
4 HEM V2 0.580 0.580 0.580 0.580 0.564 0.563 0.562 0.563
5 FACT_KB 0.527 0.527 0.526 0.527 0.510 0.510 0.508 0.510
6 GC-large 0.694 0.667 0.655 0.667 0.628 0.620 0.615 0.620
7 LYNX v1.1 0.764 0.460 0.571 0.460 0.792 0.503 0.597 0.503
8 Sonnet 3.5 0.728 0.727 0.726 0.727 0.724 0.715 0.712 0.715
9 GPT-4o 0.783 0.773 0.771 0.773 0.802 0.763 0.755 0.763

10 RefChecker (Haiku) 0.511 0.506 0.450 0.506 0.514 0.507 0.435 0.508
11 RefChecker (Sonnet 3) 0.500 0.500 0.366 0.500 0.500 0.500 0.386 0.500
12 DeepEval Claims Verify 0.801 0.800 0.800 0.800 0.779 0.774 0.774 0.775
13 SCGPT (Multi-Gen) 0.627 0.627 0.627 0.627 0.679 0.667 0.661 0.667
14 SCGPT (ContextNLI) 0.620 0.620 0.620 0.620 0.610 0.604 0.600 0.604

Table 3: Performance comparison of different models on Development and Test sets
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Figure 2: Development set results for our benchmark. We report the F1-scores (y-axis) for each method and the
corresponding latency (x-axis) in seconds per response. Approach names denoted with * were run on an AWS
ml.8xlarge instance.

of increased latency. Within NLI, HEM V1 out-
performed HEM V2, and fine-tuning on our corpus
further improving results.

Unexpectedly, complex prompt chaining ap-
proaches like RefChecker and SelfCheckGPT un-
derperformed, highlighting challenges in develop-
ing universally effective methods across diverse
contexts.

These findings emphasize the importance of bal-
ancing task performance and computational effi-
ciency when selecting a groundedness classifica-
tion approach, with optimal choices depending on
specific application requirements and resource con-
straints.

8 Error Analysis

We conducted a detailed investigation into the types
of response errors present in our benchmark dataset
to gain deeper insights into ungrounded content.

Through examination of error spans in the train-
ing set, we identified six distinct error types. The
models were instructed to select from our prede-
fined error types (Tab. 5, App. A.2).

Focusing on the development set, our analysis
revealed interesting patterns. The LLMs achieved
exact agreement on the hallucination type in 29%
of cases, with at least one overlapping error type
for each response. GPT-4o typically predicted a
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Figure 3: Counts of unique error types in the development set. Some responses contained up to three different error
types. The frequency axis is in log-scale.

Error Type Misclassified Total Percentage
Terminological Errors 2 3 66.7%
Factual Inaccuracies 12 59 20.3%
Procedural Errors 1 5 20.0%
Reasoning Errors 2 15 13.3%
Contextual Misinterpretations 1 9 11.1%
Misattributions 0 1 0.0%

Table 4: Development set misclassification of the best performing model by error types.

single error type, while Claude-3.5-Sonnet often
suggested multiple types per response.

We aggregated predictions where both LLMs
agreed. The distribution of unique error types is
visualized in Fig. 3, with per-response occurrences
in Fig. 4 (App. A.1). Factual Inaccuracies were
most common, followed by Reasoning Errors. All
initially defined error types were represented, vali-
dating our classification scheme.

This analysis provides valuable insights into re-
sponse error types and ungrounded content in lan-
guage model outputs, crucial for developing tar-
geted strategies to improve response generation.

Misclassification Analysis We conducted a mis-
classification analysis on our best-performing
model, DeepEval Claims Verify, to gain deeper
insights into its performance across different error
types. As summarized in Tab. 4, Terminological
Errors showed the highest misclassification rate
(67%), despite their low frequency, followed by
Factual Inaccuracies (20%) and Procedural Er-
rors (20%). These findings reveal the varying chal-
lenges posed by different error categories and high-
light areas for potential improvement in grounded-
ness classification models, particularly in handling
less common but difficult-to-classify error types.

9 Conclusion

Our comprehensive benchmark study on ground-
edness classification of legal question-answering
systems has revealed significant insights into per-
formance and efficiency trade-offs. The multi-stage
prompt chaining approach, DeepEval Claims Ver-
ify, emerged as the top performer with an F1 score
of 0.80, closely followed by direct prompting using
GPT-4o at 0.77, which demonstrated lower latency.
These results highlight the potential of advanced
prompting techniques in achieving high accuracy.

Similarity-based and natural language inference
methods, while less accurate, offered fast process-
ing times. Our response error type classification
identified Factual Inaccuracies and Reasoning Er-
rors as the most prevalent types of ungrounded con-
tent, providing direction for future improvements.

The study underscores the critical balance
between task performance, computational effi-
ciency, and ease of implementation when selecting
groundedness classification methods. With top-
performing methods achieving F1 scores of 0.80,
this benchmark represents a significant advance-
ment in the reliable assessment of AI-generated
content across diverse applications.
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Limitations

While our study offers valuable insights into the
performance of various groundedness classification
approaches, it is essential to acknowledge several
limitations inherent in our experimental setup and
the methods we evaluated.

Firstly, our dataset, though carefully curated, is
limited in size and domain scope. The responses
were generated using specific language models and
may not fully represent the diverse range of hallu-
cinations or ungrounded content that could occur
across different models or domains. This limita-
tion potentially affects the generalizability of our
findings to broader contexts or more specialized
applications.

Secondly, the binary classification of responses
as either grounded or ungrounded may oversim-
plify the nuanced nature of language model out-
puts. In reality, responses often contain a mix of
grounded and ungrounded elements, and a more
granular assessment might provide deeper insights
into model behavior.

Our evaluation metrics, while standard in the
field, may not capture all aspects of response qual-
ity or usefulness. For instance, a response that is
technically grounded but irrelevant or poorly struc-
tured might still receive a high rating within our
current framework.

The computational resources required for some
of the more complex approaches, particularly those
involving multiple API calls or large language mod-
els, pose scalability challenges. This limitation may
restrict the practical applicability of these methods
in real-time or resource-constrained environments.

Additionally, our error type classification, while
informative, relies on the agreement between two
specific language models. This approach may in-
troduce biases or limitations based on the particular
characteristics of these models.

Lastly, the rapid pace of development in lan-
guage model technology means that our findings
may quickly become outdated as new models and
techniques emerge. The performance gaps we ob-
served between different approaches may shift with
the introduction of more advanced models or re-
fined methodologies.

Future work should address these limitations by
expanding the dataset to include a broader range
of domains and increasing its size. Developing
more nuanced classification frameworks that can
capture the complexity of language model outputs

would also be beneficial. Furthermore, exploring
scalable methods that can be applied in real-time
or resource-constrained environments, as well as
continuously updating the evaluation framework to
reflect the latest advancements in language model
technology, will be crucial for the ongoing rele-
vance of this research.

Ethics Statement

This study on groundedness classification methods
aims to improve the reliability and trustworthiness
of AI-generated content, which has significant eth-
ical implications. By developing more accurate
methods to detect ungrounded or hallucinated in-
formation, we contribute to the broader goal of mit-
igating the spread of misinformation and enhancing
the integrity of AI-assisted communication. Our
work aligns with the principles of beneficence and
non-maleficence, as it seeks to maximize the bene-
fits of language models while minimizing potential
harms associated with inaccurate or misleading in-
formation.

We acknowledge that the development and de-
ployment of these classification methods may have
broader societal impacts. We emphasize the impor-
tance of transparent and responsible use of these
methods, respecting principles of fairness and pri-
vacy. Furthermore, we encourage ongoing dialogue
and collaboration within the NLP community to
address the ethical challenges associated with AI-
generated content and its evaluation.
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A Response Error Types

A.1 Dev Set Error Types
A.2 Description and Examples
See the table 5 for our six response error types with
their descriptions and examples.
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Figure 4: Counts of response error types in the development set. The frequency axis is in log-scale.

Error Type Short Description Examples
Factual Inaccuracies Misrepresentation of estab-

lished facts, dates, or details
1. Brown v. Board of Education was de-
cided in 1964.
2. The First Amendment protects only
written speech.

Contextual Misinter-
pretations

Misapplication of legal princi-
ples or inappropriate analogies

1. Applying Miranda rights to a civil tax
dispute.
2. Using Roe v. Wade precedent in a Sec-
ond Amendment case.

Procedural Errors Mistakes in describing legal
procedures or processes

1. A case goes directly from district court
to the Supreme Court, skipping the appel-
late court.
2. Claiming that jury selection occurs after
opening statements in a trial.

Reasoning Errors Flawed arguments or unsup-
ported legal conclusions

1. Since the Fourth Amendment protects
against unreasonable searches, all warrant-
less searches are unconstitutional.
2. Because the Supreme Court ruled on
abortion in Roe v. Wade, states cannot
pass any abortion laws.

Misattributions Incorrect assignment of opin-
ions, quotes, or actions

1. Justice Scalia wrote the majority opin-
ion in Obergefell v. Hodges.
2. The phrase "separate but equal" origi-
nated from Brown v. Board of Education.

Terminological
Errors

Misuse or misinterpretation of
legal terms or concepts

1. "Habeas corpus" refers to the right to a
speedy trial.
2. "Strict scrutiny" means that a law is
automatically unconstitutional.

Table 5: Response error types with a description and examples
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