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Abstract

Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the
understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and
multi-head self-attention (MHSA), remains largely unexplored. In this work, we probe LLMs from a human behavioral
perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful
indicators of human reading patterns. Our findings reveal that LLMs exhibit a similar prediction pattern with humans
but distinct from that of Shallow Language Models (SLMs). Moreover, with the escalation of LLM layers from the
middle layers, the correlation coefficients also increase in FFN and MHSA, indicating that the logits within FFN
increasingly encapsulate word semantics suitable for predicting tokens from the vocabulary.
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1. Introduction from a human behavioral perspective.
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Recent advancements in Large Language Models Sentence
(LLMs) (Devlin et al., 2018; Radford et al., 2019;

The film often achieves mesmerizing poetry.

Touvron et al., 2023a,b) have showcased their su- i

perior capabilities in language understanding, gen- Human Fixations i e
eration as well as zero-shot transferring. Despite oo OO0 i+
their remarkable successes, issues such as the ‘ I e sl wl
generation of hallucinated (Rawte et al., 2023) and @ —
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toxic outputs (Leong et al., 2023) have arisen, un-
derscoring the importance of understanding the
internal mechanisms and predictive behaviors of ~ Figure 1: Comparison of Human reading pattern
LLMs to develop models that are both powerfuland ~ and transformer block. The left part shows the
reliable. fixation patterns of a human reader over a given

Research on LLM interpretation has emerged sentence, while the right part demonstrates a trans-
(Zhao et al., 2023; Wang et al., 2023), focusing on former block including FFN layers and multi-head
dissecting the components of Feed-Forward Lay- self-attention. The blue dots mark fixations on the
ers (FFN) and Multi-Head Self-Attention (MHSA,. corresponding wo_rds_above; a wider diameter rep-
(Geva et al., 2022) highlighted the role of FFN in  resents a longer fixation duration.

LLMs, demonstrating how tokens are promoted by

utilizing logits in the late layers for word prediction Specifically, we investigate the internal work-
from a vocabulary. (Bills et al., 2023) explored ings of FFN and MHSA in LLMs, such as the
the activation of self-attention heads under varying ~ GPT-2 model (Radford et al., 2019), by correlating
prompts. Concurrently, cognition and psycholin-  eye-tracking fixations with LLM values. Our find-
guistic studies have documented various measures  ings reveal that LLMs, particularly in their middle
during human reading activities (Hollenstein et al.,  layers, increasingly mirror human attention pat-
2018, 2019; Cop et al., 2017; Luke and Christian-  terns, focusing more on essential words. However,
son, 2018), closely paralleling the processes ob-  in contrast to humans who prioritize crucial content,
served in language models (Hofmann et al., 2022).  the upper layers of LLMs refine context under-
As depicted in Figure 1, the juxtaposition of human  standing, indicating a divergence in focus on less
reading patterns and a transformer block illustrates  critical aspects. This suggests that the outputs of
the similarity in attention allocation—eye-tracking  FFN in the upper layers can facilitate predictions
measurements for humans and FFN/MHSA values  beyond just the final layers, encouraging methods
for LLMs—motivating our approach to probe LLMs  for efficient semantic editing (Wang et al., 2023).
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Furthermore, our comparison of prediction be-
haviors between LLMs and Shallow Language
Models (SLMs) reveals that LLMs more closely re-
semble human predictive patterns, where greater
emphasis on significant words enhances the cer-
tainty of word predictions.

Our contributions are as follows:

» We conduct a detailed analysis of the internal
mechanisms of FFN and MHSA in LLMs from
a human behavioral perspective.

» We juxtapose the word prediction processes of
LLMs and SLMs, reinforcing the evidence that
LLMs more closely align with human attention
patterns, focusing on crucial words to enhance
prediction certainty.

2. Related Work

Human Behavior Measures: Studies in cognition
and psycholinguistics have deployed simultaneous
eye-tracking and electroencephalography during
natural and task-specific reading to comprehend
human reading processes. Noteworthy datasets
in this context include ZuCo 1.0 (Hollenstein et al.,
2018), ZuCo 2.0 (Hollenstein et al., 2019), GECO
(Cop et al., 2017), and Provo (Luke and Christian-
son, 2018). However, to the best of our knowledge,
there is a paucity of work utilizing these datasets
to probe LLMs and their internal mechanisms.
Eye-movement Prediction: A shared task at
ACL 2021 (Hollenstein et al., 2021) involved us-
ing language models for predicting eye-movement
measures. In this shared task, models, including
Boosting, MLP, and RoBERTa, displayed signifi-
cant performance in this task. Besides, linguistic
features proved crucial for achieving superior re-
sults (Bestgen, 2021). In this paper, we focus on
employing eye-movement data for probing LLMs.

3. Preliminary

Large language models (LLMs) predominantly
rely on the Transformer architecture (Vaswani et al.,
2017), composed of Transformer blocks acting as
layers denoted by [ = 1,2..., L. As shown in Fig-
ure 1, each Transformer block primarily consists
of multi-heads self-attention and a feed-forward
network. The motivation for the multi-head self-
attention mechanism lies in its ability to extract
various aspects of the sequence, with its capacity
deepening with the increase of layers. Concur-
rently, the FFN serves to output for the current
layers and makes prediction over a vocabulary.

More specifically, in layer [, the currently pro-
cessed representation is denoted by X!, and the
output for FFN is computed as:

ol = FFN'(x}), (1)

where o! denotes the output for the current FFN.

An updated representation 7., is then achieved
by adding X! and o!. The updated representa-
tion, 7!, subsequently undergoes a self-attention
process. Given the presence of multi-head self-
attention in each layer, all the representations in
each self-attention head are concatenated to serve
as the input for the subsequent FFN layer, as illus-
trated below:

X! = concatenate ( Attention’ (if)) , (2

In this work, we present empirical evidence
understanding the function of multi-head self-
attention and FFN layers by correlating their values
with human behavioral data, eye-tracking measure-
ments.

4. Eye-tracking Measurements

Human behavioral signals, such as eye-tracking,
fMRI, and EEG, have been widely utilized in cogni-
tion and psycholinguistic studies. Among these
signals, eye-tracking offers millisecond-precise
recordings of gaze direction, illuminating the fo-
cus of attention during reading and comprehension.
This process bears resemblance to the operations
within a transformer block, as depicted in Figure 1.
Thus, we employ eye-tracking data to uncover the
internal mechanics of the transformer architecture.

Eye-movement Abbrev. Definition

Measures

The sum of all fixations on the current word in the first-
pass reading before the eye moves out of the word
The sum of all fixation durations on the current word,
including regressions

The duration of the first fixation on the prevailing word

Gaze duration GD
Total reading time TRT

First fixation dura- FFD

tion

Single fixation dura- SFD The duration of the first and only fixation on the current

tion word

Go-past time GPT The sum of all fixations prior to progressing to the right
of the current word, including regressions to previous
words that originated from the current word

Table 1: Definition of Five Eye-tracking Mea-
sures: Gaze Duration (GD), Total Reading Time
(TRT), First Fixation Duration (FFD), Single Fixa-
tion Duration (SFD), and Go-Past Time (GPT).

In our study, we establish correlations between
metrics derived from multi-head self-attention
(MHSA), feed-forward neural (FFN) layers, and
five specific eye-tracking measurements: Gaze
Duration (GD), Total Reading Time (TRT), First
Fixation Duration (FFD), Single Fixation Duration
(SFD), and Go-Past Time (GPT). Each of these
metrics offers unique insights into the human read-
ing process. For instance, Gaze Duration (GD)
refers to the cumulative duration of all fixations on
a given word during initial reading before moving
to the next word, with longer durations indicating
the word’s significance. Similarly, Total Reading
Time (TRT) encompasses all fixation durations on



a word, including regressions, indicating that read-
ers may revisit a word multiple times to refine their
understanding. The detailed meanings of these
eye-tracking measures can be found in Table 1.

By leveraging these interpretable eye-tracking
metrics, we aim to probe LLMs by correlating their
values with those observed in multi-head attention
and FFN layers.

5. Experiments

5.1. Experimental Settings

Language Models: For our investigation, we uti-
lized a pre-trained GPT-2 model (base) from Hug-
gingFace, focusing on analyzing the internal mech-
anisms of FFN and multi-head self-attention mech-
anisms due to its simplicity and general applica-
bility. We posit that our probing method is adapt-
able and can be extended to other, more advanced
open-source LLMs such as LLaMA (Touvron et al.,
2023a) and Qwen (Bai et al., 2023), among others.
Additionally, we broaden our analysis to include
Shallow Language Models (SLMs) like N-Gram
language models (Pauls and Klein, 2011), Recur-
rent Neural Networks (RNNs), Gated Recurrent
Units (GRUs), Long Short-Term Memory (LSTM)
networks (Sherstinsky, 2020), and a recently en-
hanced RNN variant, the RWKV-V4 model (Peng
et al., 2023), to conduct a comprehensive compari-
son of prediction probabilities. For the training of
SLMs, we employ the WikiText-103 dataset.

Eye-tracking Data: For human behavioral data,
we utilize the ZuCo 2.0 dataset (Hollenstein et al.,
2019), which contains concurrent eye-tracking
records captured during two types of reading activi-
ties: natural reading (NR) and task-specific reading
(TSR). This dataset is notably comprehensive, com-
prising 730 English sentences, split into 349 sen-
tences read under normal conditions and 390 sen-
tences read under a task-specific paradigm. Eye-
tracking data from 18 participants were recorded
during both NR and TSR activities. We conducted
word prediction experiments using various lan-
guage models on sentences from the ZuCo 2.0
dataset to then analyze the correlation patterns
between human reading behaviors and language
model predictions.

Correlation Metrics and Evaluation: Following
previous studies (Eberle et al., 2022) on analyz-
ing the prediction behavior of LLMs, we also em-
ploy three prevalent correlation metrics: Pearson
(Freedman et al., 2007), Spearman (Caruso and
Cliff, 1997), and Kendall (Abdi, 2007), to investigate
the relationship between values derived from LLMs
and human behavioral measures. Despite minor
differences, we find these correlation metrics yield
similar results. Among them, Spearman exhibits

superior robustness when compared to Pearson
and Kendall. Unless stated otherwise, experimen-
tal results are reported using Spearman analysis.
Given that larger fixations, as indicated by various
eye-tracking measures, signify the importance of
the current word, a stronger correlation implies
that LLMs also allocate more attention to the
processed word.

FFN Logits (GPT-2 Base) Correlated with Eye tracklng Features
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Figure 2: FFN Correlation Values. FFN values
through layers in GPT-2 base Correlated with five
different eye-tracking features in three groups: bot-
tom, middle, and upper. (Significant at p < 0.05)

5.2. FFN Correlation Analysis

We examine the functions of the FFN within GPT-
2. To elucidate our findings, we categorize the 12
layers of GPT-2 (base) into three groups: bottom
(l1 — 14), middle (I5 — [s), and upper (ly — l12).
As illustrated in Figure 2, the bottom most layers
show a direct correlation between the embedding
of input tokens and human reading fixations. This
suggests that humans require more time to com-
prehend critical tokens that are also reflected in
the embeddings of LLMs. This correlation dimin-
ishes as we ascend through the layers, with the
topmost layer of the bottom group (Layer 3) indicat-
ing a divergence in processing tokens from human
behavior; the FFN at this level begins to process
tokens yet in a manner distinct from human reading
patterns.

Progressing to the middle layers, the correla-
tion coefficients initially increase and then stabilize,
peaking at Layer 6. This pattern suggests that the
FFN in these middle layers starts to show simi-
lar human fixation behaviors, indicating that the
logits within FFN increasingly encapsulate word
semantics suitable for predicting tokens from the
vocabulary.

Intriguingly, in the upper layers, we observe a
decline in correlation values. We hypothesize that
at this stage, the LLM begins to incorporate less
critical words within sentences into its considera-
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Results.

tion, diverging from human intuition, which tends
to focus on the most crucial aspects of the context
and disregard less important information.

5.3. Multi-head Self-attention Correlation

Figure 3 presents heatmaps that illustrate the cor-
relation between the values of 12 self-attention
heads across 12 distinct layers and human behav-
ioral data; where lighter and larger values signify
stronger correlations. Similar to our FFN analy-
sis, we categorized the 12 layers into three groups:
bottom, middle, and upper. The bottom group
exhibits a weaker correlation with human fixations,
indicating that while self-attention mechanisms be-
gin to process tokens at this stage, they do so
differently from human behavior.

As we ascend through the middle and upper
groups, we observe an increase in correlation
across different layers and attention heads with
human fixations. This pattern suggests that, in
these layers, LLMs begin to align more closely with
human patterns, especially in focusing on impor-
tant contextual tokens. Notably, unlike in the FFN
analysis, we did not observe a decrease in multi-
head attention correlation values in the upper lay-
ers. This difference implies that the comprehension
capabilities of LLMs are progressively refined up
to the final layer, enabling more diverse and accu-

signify stronger correlations.

rate word predictions compared to human reading
patterns.

Furthermore, among the five eye-tracking mea-
sures analyzed, Gaze Duration (GD), Total Read-
ing Time (TRT), First Fixation Duration (FFD), and
Go-Past Time (GPT) demonstrate stronger corre-
lations, whereas Single Fixation Duration (SFD)
shows a weaker correlation. Given that SFD rep-
resents the first and only fixation on a current
word—suggesting lesser importance—while GD,
TRT, FFD, and GPT include regressions on signif-
icant words, this discrepancy explains why LLMs
also prioritize these important words.

5.4. Prediction Probability Correlation

We further analyze word prediction probability be-
haviorals in LLMs and our investigation into the
correlation of word prediction probabilities reveals
distinct behaviors between Large Language Mod-
els (LLMs) and Shallow Language Models (SLMs).
For this analysis, we employed two reading tasks:
task-specific reading (TSR) and natural reading
(NR). The TSR task encompassed 5335 words
for prediction analysis, while the NR task included
5329 words. Our findings, detailed in Table 2, are
divided into two parts: the upper section presents
the correlation outcomes for the TSR task, and the
lower section for the NR task.



Overall, SLMs exhibit a notable and consistent
negative correlation in both the TSR and NR
tasks. This trend suggests that SLMs tend to as-
sign higher prediction probabilities with fewer fixa-
tions on critical words, thereby increasing the un-
certainty of word predictions. In contrast, LLMs, ex-
emplified by GPT-2, demonstrate a significant and
positive correlation in both tasks. This positive
correlation indicates that LLMs exhibit a prediction
pattern akin to human behavior, where increased
attention to crucial words leads to more confident
predictions.

Though the aforementioned conclusions are con-
sistent for both the TSR and NR tasks, it is note-
worthy that the correlation values for the NR task
are consistently higher than those for the TSR task.
We hypothesize that during task-specific readings,
humans are guided by specific clues to identify and
concentrate on words that are pertinent to the task
at hand. Consequently, our word prediction anal-
ysis across different LMs aligns more closely with
the process in NR.

Model Eye-tracking Measures

GD TRT FFD SFD GPT
Task-specific Reading
N-Gram —0.26 —-0.25 —0.23 —0.15 —0.23
RNN —0.44 —0.43 —0.41 —0.28 —0.40
GRU -0.46 -0.45 -0.43 -0.30 -0.43
LSTM —0.42 —0.41 —0.39 —0.26 —-0.39
RWKV —0.39 —0.40 —0.40 —-0.27 —0.33
GPT-2 0.23 0.21 0.20 0.12 0.28
Natural Reading

N-Gram —0.33 —0.33 —0.31 —0.15 —0.29
RNN —0.52 —0.51 —0.50 —0.26 —0.46
GRU -0.54 -0.53 -0.52 -0.29 -0.48
LSTM —0.52 —0.50 —0.49 —0.26 —0.46
RWKV —0.39 —0.39 —0.38 —0.19 —0.28
GPT-2 0.33 0.30 0.30 0.14 0.37

Table 2: Prediction Probability Correlation Re-
sults using Spearman correlation metric. The num-
bers in blue mean the significant negative correla-
tion, while the red represent the positive correlation.
(Significant at p < 0.05)

6. Conclusion

In this work, we probe LLMs through human behav-
ior, specifically employing eye-tracking measure-
ments to dissect the internal workings of LLMs,
including the feed-forward layers and multi-head
attention. Our findings reveal a similarity between
LLMs and humans on word prediction: both ex-
hibit a tendency where heightened attention to piv-
otal words results in more confident predictions.
Our analysis further delineates that feed-forward
networks begin to align with human fixation pat-
terns starting from the middle layers, leveraging
upper layers to broaden the contextual understand-
ing. Our probing approach stands out for its in-
terpretability from human reading indicators and
paves the way for the development of LLMs that

are not only reliable but also imbued with a greater
degree of trustworthiness.
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