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Abstract

Spurred by recent advances in Large Language
Models (LLMs), virtual assistants are poised to
take a leap forward in terms of their dialogue
capabilities. Yet a major bottleneck to achiev-
ing genuinely transformative task-oriented dia-
logue capabilities remains the scarcity of high
quality data. Existing datasets, while impres-
sive in scale, have limited domain coverage
and contain few genuinely challenging conver-
sational phenomena; those which are present
are typically unlabelled, making it difficult to
assess the strengths and weaknesses of mod-
els without time-consuming and costly human
evaluation. Moreover, creating high quality dia-
logue data has until now required considerable
human input, limiting both the scale of these
datasets and the ability to rapidly bootstrap data
for a new target domain. We aim to overcome
these issues with LUCID, a modularised and
highly automated LLM-driven data generation
system that produces realistic, diverse and chal-
lenging dialogues. We use LUCID to generate a
seed dataset of 4,277 conversations across 100
intents to demonstrate its capabilities, with a
human review finding consistently high quality
labels in the generated data'.

1 Introduction

As Al virtual assistants become more sophisti-
cated, there is an increasing need for dialogue
datasets with more challenging conversational phe-
nomena for both fine-tuning and evaluation. Ex-
isting datasets include multi-turn, multi-intent and
multi-domain conversations (Rastogi et al., 2020;
Budzianowski et al., 2018), in addition to multi-
lingual datasets (Goel et al., 2023; FitzGerald et al.,
2023; Hung et al., 2022; Li et al., 2021). However,
in each case, the number of intents covered is rela-
tively small. Moreover, the conversational phenom-
ena included in these datasets are often limited in

“Work undertaken while author was an intern at Apple
'Please see http://github.com/apple/ml-lucid-datagen for
the data and project code
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Conversation extract:

User [ | want to review a film ]

[Sure, I’d be happy to help with that. Can

LUCID you please tell me the name of the film you’d

like to review?

{lt seems like you’re busy at the moment.

|
|

User [Bobby, stop playing with your food

and eat your dinner!

Lucip Let’s continue this conversation after dinner.
U Sorry about that, my son was misbehaving.
S€r | The film | want to review is The Dark Knight
Great, you would like to review “The Dark
Lucio E(night”. Is that correct? ]

Yes, that’s correct. My review is: | found the

User storyline of this movie a bit hard to follow.

E J

Figure 1: An extract of a LUCID conversation contain-
ing a challenging phenomenon. In this case, the second
user response is most likely to be from an overheard con-
versation rather than providing the desired slot value.

scope?. Additionally, current machine-to-machine
data collection methods still involve varying de-
grees of human involvement, with humans para-
phrasing machine generated templates into natural
language, and/or manually crafting plausible se-
quences of intents as dialogue outlines (Shah et al.,
2018; Rastogi et al., 2020).

To overcome these issues, we introduce LU-
CID, LLM-generated Utterances for Complex and
Interesting Dialogues. LUCID is composed of a
pipeline of modularised LLM calls that create real-
istic, accurate and complex data, allowing the data
generation process to scale to more intents, slots
and challenging conversational phenomena. LU-
CID involves automated intent generation, with a
mock back-end? created for each intent. This mock

’The PRESTO dataset (Goel et al., 2023) does explicitly
label specific conversational phenomena, but to the best of our
knowledge it is unique in this respect

3The mock back-end converts intents into Python classes,
which are then instantiated as objects
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back-end then interacts with LLM-based user and
system agents, generating dialogues without the
need for human annotation.

Ensuring data quality is a central challenge for
a machine-to-machine generation process. We ad-
dress this issue by breaking down the generation
process into a pipeline of multiple, simpler LLM
calls, thereby compartmentalising the data gener-
ation task into manageable steps that an LLM can
consistently perform accurately. In addition, we
use multiple LLM-based validators which discard
conversations that might contain an issue. Our if in
doubt, discard philosophy ensures a high quality
standard for the data being created.

We release the data generation code to enable
large scale data generation across different intents
and domains, with the option of adding additional,
complex conversational flows. We also provide
training data, validation data, and two tests sets, a
test set for seen intents, and an additional test set
for unseen intents, allowing for convenient out-of-
distribution evaluation.

2 Related Work

2.1 Task Oriented Dialogue Datasets

The most popular approach for creating dialogue
datasets involves human-to-human interactions,
with user annotators interacting with Wizard of
Oz (WoZ) annotators (Budzianowski et al., 2018;
El Asri et al., 2017; Zhu et al., 2020; Eric et al.,
2017; Wen et al., 2017). While using human anno-
tators can create diverse, large scale datasets, this is
done at a considerable cost, with expert annotators
required for accurate dialogue annotations. User
annotators follow a generated conversation plan
(Budzianowski et al., 2018; El Asri et al., 2017;
Zhu et al., 2020), guiding their interactions with the
WoZ agent. We find that even in a purely machine-
to-machine setup, generating conversation plans for
each dialogue remains an effective way to ensure
conversational variety.

2.2 Automated Data Collection Methods

To reduce the workload of annotators, dataset col-
lection is becoming increasingly automated. A pop-
ular approach is to generate conversation outlines,
which are then converted into natural language by
annotators (Shah et al., 2018; Rastogi et al., 2020;
Lin et al., 2021) or using natural language tem-
plates (Bordes et al., 2017). As these conversation
outlines are simulated based on hard-coded rules,
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this can limit the diversity of the user behaviour.

Human involvement in automated data genera-
tion includes ensuring the quality of the dataset,
paraphrasing user and agent responses (Shah et al.,
2018; Rastogi et al., 2020), providing semantic an-
notations (Goel et al., 2023; Budzianowski et al.,
2018), outlining the sequences of user intents (Ras-
togi et al., 2020), and identifying out of scope or
incoherent examples (Goel et al., 2023). We show
that, with recent advances in language modelling
(OpenAl, 2023; Ouyang et al., 2022), by reducing
the data generation task into manageable steps, and
using our if in doubt, discard validation methodol-
ogy, it is now possible to achieve the same quality
in an almost entirely machine-to-machine gener-
ation process. Parallel work by Liu et al. (2024)
also introduces an automated method for generat-
ing task-oriented dialogue data. While we focus on
the accurate labelling of challenging and diverse
conversations, Liu et al. (2024) consider a variety
of user personas with different styles of system
responses.

See Appendix A for related work generating data
with LLMs for other tasks.

3 Method

LUCID decomposes the data generation process
into 14 individual LLM calls, described here as
stages, creating manageable steps that LLMs can
perform accurately. Alongside our if in doubt, dis-
card validation, reducing the complexity of each
LLM call helps to ensure the quality of our gener-
ated data. The data generation process consists of
four main components (see Figure 2): the genera-
tion of intents (stages 1-2), a conversational plan-
ner (stages 3-8), turn-by-turn generation of conver-
sations (stages 9-12), and our validation process
(stages 13 and 14). The turn-by-turn data genera-
tion involves a User LLM agent interacting with a
System LLM agent, which in turn interacts with a
mock back-end created for each intent.

3.1 Intent Generation

Schema for each intent are generated by an LLM,
using a short human-authored natural language de-
scription of the intent (stage 1)*. Using these de-
scriptions, LUCID calls an LLM to generate the
intent and slot names, as well as the data type of
each slot and whether it is mandatory or optional.
In total, 100 intents are generated across 13 do-

*Our code also allows intent schema to be created manually
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Figure 2: The stages in the LUCID data generation,
generating intents (stages 1-2), planning conversations
(stages 3-8), generating the conversations (stages 9-12)
and validating the system predictions (stages 13-14).
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mains (see Appendix H for a detailed breakdown
of how transactional and query intents are gener-
ated).

The next stage (stage 2), involves generating
plausible values for each slot. We use these slot
values as a starting point for our conversation plan-
ner, helping to encourage varied conversations.

3.2 Conversation Planner

The conversation planner provides instructions that
guide a user LLM agent down certain types of con-
versational flows. The planner specifies: 1) the se-
quence of intents, 2) the slot values for each intent,
and 3) any complex conversational phenomena that
must be included, specifying when and how these
phenomena should be incorporated. This creates a
plan that the user must adhere to, reducing the com-
plexity of the data generation task, while also en-
suring variety in the generated conversations. This
plan is communicated to the User LLM at each turn
through a series of conversation rules.

The planner also decides the sequence of intents
that will be included in a conversation (stage 3).
Depending on the primary intent used to start the
conversation, the planner then decides which in-
tents are likely to follow this intent, with the aim
of creating both varied and realistic conversations.
See Appendix B for further details about the plan-
ner.
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3.2.1 Generating Slot Values

The slot values chosen by the planner substantially
impact the conversations, and as a result, we have
multiple, separate stages for generating the slot val-
ues (stages 4, 5, 6 & 7). This process involves
updating the slot values to make sure these are
realistic and coherent (stage 4), generating a rea-
son why the user wants to perform any subsequent
intents (stage 5), and generating slot values for
the subsequent intents based on this justification
(stage 6). Finally, an LLM updates the slot values
across every intent in the conversation to ensure
they are consistent and realistic when considered
collectively (stage 7).

We additionally use an LLM to generate realistic
entities to be returned after any queries (stage §8).

3.3 Generating Conversations

Conversations are generated turn-by-turn with a
User LLM interacting with a System LLM, which
in turn interacts (via Pythonic function calls and
variable assignments) with a mock back-end for
each intent. A Response LLM then communicates
natural language responses back to the user. The
user behaviour is governed by the conversational
rules created by our planner, shaping the outcome
of the conversations.

Conversations start with an utterance from the
User LLM (stage 9), which is then interpreted and
labelled by the System LLM (stage 10). Initially,
no string slot values are predicted. These values are
predicted in an additional stage (stage 11), where
an LLM is instructed, where possible, to choose
the string values from spans of the user utterance
(avoiding hallucinations). The predicted seman-
tic labels then interact with a mock back-end for
each intent. The mock back-end then informs the
System LLM about any missing slots or whether
confirmation is required for the intent. Finally, the
Response LLM responds back to the user (stage
12), requesting any additional slots or asking the
user for confirmation.

3.4 LLM-based Validation

We implement an LLM-based validation process
to ensure reliable and consistent labelling in the
conversations, using our principle of if in doubt,
discard. First, based on the observation that the sys-
tem LLM is more uncertain about incorrect predic-
tions, we repeat the system predictions twice (using
a temperature value of 0.7), and abort the conversa-
tion if the three predictions are not identical (stage



13). Additional validation is then performed by
another LLM (stage 14) which also labels the user
requests, except this time with access to the con-
versation rules that the user is following. These
predictions must also exactly match the original
System LLM predictions, otherwise the conversa-
tion is aborted. The validation in stages 13 and 14
is performed before the string slot values are pre-
dicted, avoiding conversations being aborted when
these slot values have slightly different phrasing.
Further validation is described in Appendix E.

3.5 Introducing Additional Conversational
Phenomena

To make interesting, diverse and challenging con-
versations, we introduce a wide range of conversa-
tional phenomena which are labelled automatically
at a turn level (see Figure 4). These phenomena in-
clude sarcastic or irrelevant replies, or cases where
the user is overheard in another conversation. LU-
CID also contains examples where a user corrects
themselves, either within a turn (in-turn correc-
tion) or in a later turn (correction). Alternatively,
a user may cancel an intent (cancellation) or de-
lay confirming the intent until a future turn (delay
confirmation). Our conversational phenomena also
include cases where the virtual assistant requests
a value for one slot, but the user responds about
a different slot (respond different slot). Finally
we also include ASR early end errors (ASR-early
end), where the LLM produces truncated slot val-
ues where the user text is abruptly cut off. See
Table 4 for the full distribution of these phenom-
ena.

3.6 Annotation Scheme and our Mock
Back-end

We apply a concise labelling system to track the
states for each intent in a conversation. This la-
belling system follows a Pythonic syntax, with
function calls used to initialise intents and enti-
ties when these are first mentioned, and attribute
assignments used for any subsequent slot filling
operations (see Figure 3). This schema-based, con-
cise form of semantic labelling is highly conve-
nient, and avoids the need for state tracking for
each individual turn.

Our labelling involves four types of turns: 1)
User turns; 2) System turns, labelling user inten-
tions; 3) Signal turns, returned after our mock back-
end processes the system command; and 4) Re-
sponse turns, which are natural language responses
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Example labeled conversation:

User [l need to set a reminder for grocery shoppingj

System [create_reminder(title:“grocery shopping”), index=1 ]
Signal [(Ask for value: date, ref=x1), index=2 ]
System (say(x2), index=3 )
Response

Sure, when would you like me to remind you
about grocery shopping?

)

User (On the 10th of August

System [X7.date:“7 Oth of August”, index=4 ]
Signal [(confirm, ref=x1), index=5]
System [say(xS), index=6]
Response

shopping on the 10th of August.

Alright, | will remind you about grocery
Is that correct?

J

User [Yes, that’s correct.

)

System confirm(x1), index=7
Signal perform(x7), index=8
System say(x8), index=9

Response Okay, your reminder for grocery shopping has
been set. Is there anything else | can help with?

l

Figure 3: A (simplified) example labelled conversa-
tion. Each dialogue contains user, system, signal and
response turns.

back to the user. Further details on our labelling
schema is provided in Appendix F.

4 Analysis

4.1 Diversity of Slots and Intents

The generated LUCID data contains more in-
tents and slots than existing task-oriented dialogue
datasets (Table 1). Specifically, the dataset contains
100 intents, across 13 domains, with 501 different
slots. While the SGD dataset contains more do-
mains than LUCID, these domains are narrower
in scope. For example, SGD includes separate
domains for buses, taxis, flights and trains, while
LUCID has a single transportation domain incor-
porating intents for each of these areas. The larger
number of slots and intents in LUCID illustrates
our ability to create diverse and challenging data
using LUCID, despite generating a smaller dataset
compared to SGD and MultiWOZ (see Table 5).

As the LUCID dataset was generated primarily
to showcase the capabilities of the LUCID data
generation system, others are free to use the LU-
CID system to generate much larger and even more
complex datasets. This extensibility is what most
clearly distinguishes LUCID from these other data
generation efforts.



# Domains # Intents Ints per Dom # Slots # Labelled Unhappy Paths.
PRESTO - 34 - 303t 6
PRESTO-no dup - 34 - 276¢ 6
SGD 20 88 4.4 365 0
SGD-no dup 20 46 23 240 0
MultiwOZ 7 11 1.6 35 0
LUCID 13 100 7.7 501 9

Table 1: Summary statistics of our dataset, displaying the number of domains and intents present, the number of
intents per domain, the number of slots present, and the number of explicitly labelled conversational phenomena
(unhappy paths). For PRESTO, we consider the 303 slots in English intents (}). Unlike Table 5, this table considers
all splits in the dataset. Appendix I describes how duplicate slots and intents are removed for SGD and PRESTO.

4.2 Conversational Phenomena

LUCID contains a greater number of labelled
conversational phenomena than existing dialogue
datasets (Table 1). The recently released PRESTO
dataset also contains turn-level annotated phenom-
ena, labelling six types of unhappy paths (Goel
et al., 2023). These unhappy paths include in-turn
corrections, correcting actions, correcting slot val-
ues, code-mixing, disfluencies and cancellations.
While half of these phenomena relate to correc-
tions, this is the case for only two of our labelled
phenomena, correcting slot values either in-turn or
across turns. Instead, we focus on distinguishing
between relevant, sensible user replies from cases
where a virtual assistant should ask for clarification
(rather than using the initial response to populate
slot values).

4.3 Qualitative and Quantitative Analysis

We perform a qualitative analysis on the generated
dataset (conducted by one of the paper authors)
to thoroughly investigate the dataset quality and
identify any issues. This included a manual review
of 200 conversations in our dev set, which only
highlighted two labelling errors (impacting only
1% of conversations). In comparison, Eric et al.
(2020) identify annotation errors in 40% of turns
in MultiWoz 2.0, demonstrating the relative quality
of the LUCID system labels.

The two labelling errors identified in this review
involved: 1) A user mentioning there will be no
spoilers in a review, where LUCID correctly as-
signs the spoiler alert slot value as False, but addi-
tionally includes the text ‘no spoilers in my review’
as part of the review itself. 2) LUCID not recognis-
ing an in-turn correction by the user, mistakenly in-
cluding all of the user text (including the correction

Intent acc. JGA
Test (seen):
T5-Small 94.7 57.1
T5-Base 97.9 67.5
T5-Large 98.7 69.0
Test-OOD (unseen):
T5-Small 95.3 22.0
T5-Base 97.6 42.2
T5-Large 98.8 45.7

Table 2: Results of our baseline model (with retrieval).
Full results and evaluation metric descriptions are pro-
vided in Appendix G.

itself) as part of a slot value. See Appendix C for
further details. We additionally share a qualitative
analysis of our data in Appendix D, highlighting
specific areas where our method could be further
improved. We include this analysis to further raise
the bar for future LLM data generation efforts.

5 Baseline Results

We train T5 (Raffel et al., 2020) and Flan-T5
(Chung et al., 2022) baseline models on LU-
CID, evaluating on both our in-distribution and
out-of-distribution test sets. When retrieving in-
tent schemas, a Sentence-BERT (Reimers and
Gurevych, 2019) model is used to encode the tool
name and the last user utterance, choosing the tool
with the highest cosine similarity.

As expected, the joint goal accuracy is consider-
ably higher when evaluating on the seen test set
compared to the unseen test set, with accuracy
scores of 67.5% and 42.2% respectively for a T5-
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base model (see Table 6). We also isolate the im-
pact of the retrieval model, comparing three sce-
narios: 1) using our tool retrieval, 2) using an ora-
cle tool retrieval, and 3) including no tools in the
prompt. We find that the tool retrieval is not a ma-
jor weakness of our baseline model (see Table 7).
Finally, we evaluate our Flan-T5-base model on
each different conversational phenomena (see Sec-
tion 3.5), highlighting sarcasm, ASR-early end ex-
amples, and answering about a different slot as the
most challenging phenomena. Full experimenta-
tion details and results can be found in Appendix G.

6 Conclusion

We introduce LUCID, a pipeline of LLM calls
which is designed to create high quality and lin-
guistically sophisticated dialogue data. LUCID
involves an extensive validation process, including
three validator LLMs that discard conversations
where there is any disagreement. To demonstrate
the quality of the data produced, we generate a seed
dataset of 4,277 dialogues, consisting of 92,699
turns, with a wide variety of challenging conversa-
tional phenomena. The generated system labels in
LUCID prove to be highly accurate, with only 1%
of conversations containing a labelling error. We
make our code available to facilitate larger scale,
high quality data generation.

Limitations

The main limitation of our approach is the cost
of using a closed-source LLM. This prevented us
from generating a larger number of dialogues or
performing more ablation studies to isolate the im-
provements from specific stages. This cost was
driven by our if in doubt, discard approach to vali-
dation, which prioritised the accuracy and quality
of the data produced, at the expense of the com-
putational time and cost involved. While there are
also substantial costs associated with high quality
manual annotation, in this work we aim to show
that an LLM-driven approach to generating high
quality data is possible and feasible. We also aim to
produce a seed dataset of the highest quality which
can be used by practitioners on an on-going basis.
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A Related work - Data Generation with
LLMs

Wau et al. (2023) recently introduce a framework al-
lowing the interaction of multiple, different LL.Ms,
based on the idea that LLMs can solve highly chal-
lenging tasks if these tasks are broken into smaller
steps. While Wu et al. (2023) are successful in
generating dialogues for a group chat scenario,
this does not require the intent and slot labelling
needed for task-oriented dialogue. For other NLP
tasks, to avoid labelling errors or poor quality data,
generating data with LLMs can involve human an-
notators reviewing the generated utterances (Liu
et al., 2022; Wiegreffe et al., 2022), or using the
generated data as unlabelled data to be used with
knowledge distillation (Meng et al., 2022; He et al.,
2022; Stacey and Rei, 2023). Labelled data gener-
ation has been successful for other tasks without
human input (Honovich et al., 2023; Ye et al., 2022;
Schick and Schiitze, 2021; West et al., 2022; Wu
et al., 2022), however noise may be an issue for a
large proportion of the data (Honovich et al., 2023;
Schick and Schiitze, 2021).

B Conversation Planner Details

To ensure variety in the generated conversations,
the planner makes extensive use of sampling,
choosing how many intents should be provided
in the conversation, which optional slots should
be discussed, the conversational phenomena (both
happy and unhappy paths) that should be included,
and which slots and intents any conversational phe-
nomena should be applied to.

Sampling is also involved in choosing the path
of intents that are included in the conversation. The
planner is provided with a sample of intents across
all domains, before an LLM generates a plausible
sequence of intents from this sample (stage 3).

We also provide more detail below to describe
exactly how the conversation planner creates slot
values for the conversation, involving a range of
different stages:

The slot values for the first intent are initially
sampled based on the plausible slot values gener-
ated for each intent (see stage 2), preventing LLMs
generating repetitive conversations. An LLM is
then asked to make the slots for each intent more
realistic and coherent (stage 4). This prevents con-
tradictory slot values, for example when a hotel
check-out date is before the check-in date. This
stage also prevents highly unlikely slot values being
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over represented, while introducing further variety
into the slot values being provided.

For all other intents in the conversation (after the
first intent), an LLM generates a plausible reason
why the user would want to complete this intent
given what has already occurred in the conversation
(stage 5). Likely slot values are then generated
(stage 6) based on this context. Stage 4 is then
repeated, increasingly the likelihood that the slot
values selected are realistic and coherent for the
intent. An LLM is then asked to update the slot
values across every intent in the conversation so
that these intents are related and consistent (stage
7), encouraging more natural conversations that
align more closely with human to virtual assistant
interactions.

C Quantitative Analysis Findings

Table 3 provides the full results from our quantita-
tive analysis of 200 dev examples. This analysis
identified two labelling issues within the 200 con-
versations that were reviewed (conducted by one
of the paper authors).

In the first instance, the user says “I want to
review the film the godfather. I give it a 9 out of
10 and my review is an absolute classic! Great
performances and storytelling.. No spoilers in my
review.” The system interprets this as giving the
film name (the godfather), the rating (9), the spoiler
alert (False), and the review text. However, the
system also predicts the text ‘No spoilers in my
review’ as part of the review text, when this may
not be the case.

In the second instance, the user performs an in-
turn correction, changing the value of the additional
notes slot for a new hair appointment intent. How-
ever, the system predicts this correction as part of
the note itself, giving the slot value: ‘I need a quick
haircut, actually make that I'm getting ready for a
family reunion photoshoot and want a new haircut.’

Table 3 also measures some of the issues re-
ported in the qualitative analysis, including: 1)
how many times the natural language generated
response (NLG) indicates an intent was performed
before confirmation was given, 2) when the NLG
does not follow the system predictions, 3) unrealis-
tic slot values, 4) unrealistic combination of slots
mentioned for an intent, 5) when the first choice
string span was not selected by LUCID, and 6)
when the user or NLG does not fully understand
the purpose of the intent. While previous work



Irrelevant:

LUCID

User | wonder if they’ll have Sushi on the cruise.

Overheard conversation:

LUCID

User No, Max! Don’t cheat on that!

Correction:

LUCID

Change the date to the 15th March for

User the reminder

Answer about the wrong slot:

LUCID

User We will be 6 guests.

Delay confirmation:

LUCID

User Actually, | need to check my schedule first.

ASR early finish:
LUCID

User We are planning to start from

Sarcasm:

LUCID

Oh, it took me an entire decade to
complete it!

User

In-turn correction:

It's my electricity bill, no wait, it'’s my
Internet bill.

LUCID

User

Figure 4: Examples for eight of the nine challenging conversational phenomena included in the LUCID dataset.
We also included ‘cancellation’ examples which are similar to ‘delay confirmation’, resulting in the system not

confirming a given intent.

Example conversation 1:

User Q’d like to log an exercise i did today. ]

LUCID

User |l did dancing.

LuUcCID

User |For 60 minutes.

LucCID

—

User |l burned 300 calories. ]

LUCID

User [Yes, that’s correct. ]

LUCID

Figure 5: An example conversation from LUCID (Ex-
ample #1). As described in Appendix J, we show the
first three LUCID conversations to provide an unbiased
sample of our generated data.
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does not report similar metrics, we publish these
figures with the aim of raising the bar for future
data generation efforts.

In the case of point 5) considering when the
first choice string span was not selected, we find
that only 8.5% of conversations have a string slot
value that does not match the reviewer’s first choice.
However, these differences are subjective and sub-
tle, with over half of the cases concerning whether
to include ‘the’ before a date (e.g. ‘the Sth of
March’ vs ‘5th of March’).

D Qualitative Analysis

We perform a qualitative analysis on our dev set,
understanding potential limitations of our data, and
suggesting ways these could be mitigated for future
generation efforts.

Finding 1) The natural language responses
from the model do not always reflect the system
labels that have been predicted. We observed
that a correct system label can be accompanied by
a natural language response that does not reflect
the correct system prediction. We noticed this for
sarcastic responses, where only the system label
and not the natural language response reflected the
user’s sarcasm. We choose to manually review
the turns labelled as sarcastic, filtering out 4 dia-
logues. However, our quantitative analysis on the



Issue name Prevalence
NLG indicates intent performed before confirmation 4.5%
NLG does not follow system prediction 1%
Unrealistic slot values 6%
Unrealistic combination of slots mentioned for an intent 3.5%
First choice string span not selected 8.5%
User or NLG does not fully understand purpose of the intent 6.5%

Table 3: Quantitative analysis from 200 dialogues in our development set. We report these six metrics in addition to
the system label accuracy figure of 1% provided in Section 4.3.

dev set highlights this as an issue beyond sarcastic
turns, with natural language responses not faith-
fully following the system label predictions in 1%
of conversations.

As arelated issue, the natural language response
can also suggest that an intent has been performed
before confirmation is given by the user. Informed
by this finding, we filter out conversations when
an intent was not performed, unless there was a
cancellation signal provided by the user (removing
79 conversations). After this filtering, our quan-
titative analysis finds that 4.5% of conversations
include responses that suggest an intent has been
performed before confirmation is given. However,
in each case there was no impact on the conversa-
tion beyond the phrasing of the natural language
response. As LUCID prioritises validating the sys-
tem labels, we do not implement validation checks
on the natural language response. Introducing addi-
tional validation for the natural language responses
is likely to also improve their quality.

Finding 2) The planner’s choice of slots and
their corresponding values can sometimes be un-
realistic. While a strength of LUCID is the realistic
and varied slot values used in conversations, this is
not always the case. We also notice that the choice
of slots included in a conversation is not always
realistic. For example, you would not usually give
the start time, end time in addition to specifying the
duration of a swimming lesson. Our quantitative
analysis identifies that 6% of conversations contain
at least one unrealistic slot value, while 3.5% of
conversations include an unrealistic combination
of slots. The unrealistic slot combinations demon-
strate a limitation to our sampling approach, where
we randomly sample which optional slots should
be included in each conversation. This issue could
be overcome with an additional LLM stage respon-
sible for deciding if the slot combination provided
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is realistic or not.

Finding 3) The user does not always under-
stand the purpose of the intent. For example
the user may ask ‘can you find my favorites from
yesterday?’, when it is not clear if the user under-
stands what a ‘favorite’ is. This is a consequence
of our conversation plans telling users which in-
tent should be performed, without also providing
a description. The quantitative analysis finds that
in 6.5% of conversations, either the user or the nat-
ural language response does not fully understand
an intent, suggesting that descriptions should be
included for future data generation work.

Finding 4) The system command labelling is
consistently high quality, with few labelling mis-
takes. We quantify this finding with our quantita-
tive analysis of 200 conversations in the develop-
ment set, which finds only 1% of examples when
the system label is not correct. More detail on the
two system labelling errors identified are provided
in Appendix C.

E Validation and Post-Processing

We introduce additional validation, ensuring turns
that include our challenging conversational phe-
nomena are correctly predicted by our LLMs.
When the conversation rules instruct a user to in-
troduce a specific conversational phenomenon for
a certain slot value, the user is instructed to also
provide a signal (in the form of a special token)
to show that this unhappy path is being performed.
We then use this signal for validation purposes, en-
suring that the following system command matches
the expected response for this phenomenon. How-
ever, we do not provide these special tokens to the
system which interprets and labels the user request;
these would not be available to a real virtual assis-
tant and we find that including them during data
generation can result in unrealistic target labels



(e.g. if a user’s ‘irrelevant’ response accidentally
constitutes a plausible slot value).

A range of post-processing rules are also intro-
duced after our qualitative analysis. We filter con-
versations where a slot is corrected during the con-
versation, but where there is no correctional signal
provided by the user (as described above, a signal
is provided by the user for each complex conver-
sational phenomena which is used purely for val-
idation purposes). This filtering process removes
instances where a slot was first mentioned by the
user without giving a value, with the system incor-
rectly assigning a slot value from this turn (filtering
123 conversations). We perform additional filtering
to remove empty string slot values (removing 27
conversations), and any instances where the system
turn predicts a hint, as hints should only occur in
Signal turns. There were 172 occurrences when
a hint was predicted by the system, although in
almost all cases these conversations were already
filtered by another post-processing filter.

In total, 56% of conversations pass all of our
validation checks. To avoid wasting valuable con-
versational data, we salvage the prefix of an aborted
conversation up to the point where the validation
error was identified’. In these cases, we truncate
the conversation, sampling LLM generated natu-
ral language responses that justify interrupting the
conversation.

F Annotation Schema Detail

An important part of our annotation schema is the
order of the turns, and how system turns trigger the
natural language responses. This section provides
more detail on these points.

System turns always follow user turns. In most
cases, the first system turn is followed by a signal
turn, except when the system decides to immedi-
ately call a response with ‘say()’, for example if
the user response is irrelevant. Signal turns are
then followed by a system turn, which triggers the
natural language response turn. The system turns
therefore decide when to pass information to the
mock back-end, and when to trigger the natural
language response. We use the system turns as the
targets in this dataset.

LUCID automatically creates the mock back-end
for each intent using the schema generated in steps

>To avoid overly short conversations, we do this only if at
least one intent has been performed already or at least 10 turns
have occurred
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1 and 2. This involves generating a Python class
to represent the intent in question, which is then
instantiated as an object and interacts with the sys-
tem commands to indicate when mandatory slots
have not yet been provided, or when confirmation
is still required before the intent can be performed.
The outputs of the mock back-end are represented
by the signal turns described above.

G Baseline Results

We train six different baseline models on the LU-
CID training data (T5-small, T5-base, T5-large,
Flan-T5-small, Flan-T5-base and Flan-T5-large
models). Each model is evaluated on the test set
for seen intents and the OOD test set for unseen
intents (see Table 6). We additionally experiment
with training our Flan-T5-base baseline on vary-
ing amounts of training data (see Table 8). Details
about about the choice of hyper-parameters can be
found in Appendix K.

To measure performance on our generated LU-
CID data, we consider five performance metrics:
joint goal accuracy, intent accuracy, fuzzy slot ac-
curacy, exact match accuracy (between user turns),
and exact match accuracy for an entire dialogue.

For joint goal accuracy, we consider a fuzzy
matching score for string slot values. As many
system turns involve a say command, a joint goal
accuracy figure is only calculated for turns where
a value is predicted (or contained in the system
labels). Additionally, we consider the goal state of
all intents in the conversation, rather than consider-
ing different states for different intents or domains
separately.

We also use fuzzy matching for our slot accu-
racy measure, which is a joint accuracy measure
across all the slot values provided in a single sys-
tem turn (when any slot values are predicted, or
when they are included in the labels). We addition-
ally introduce exact match metrics that consider the
accuracy of all system commands, not just those
that refer to intent and slot values (for example,
including ‘say’ commands). We introduce two ex-
act match metrics - exact match (turn) considers
whether all predicted system commands between
two user turns exactly match their labels, while
exact match (conversation) considers whether ev-
ery predicted system command in a conversation
matches with the system labels.

The exact match between user turns is measured
for a Flan-T5-base model for each conversational



phenomena, both in the seen and unseen (OOD)
test sets (see Table 4). We use this metric because
some conversational phenomena involve an assign-
ment, which is then followed by a ‘say’ command.
As predicting a ‘say’ command following an assign-
ment is not challenging for the model, we find that
using the exact match between user turns metric
provides the fairest comparison. The most chal-
lenging phenomena for our Flan-T5-base model
are ASR-early end, sarcasm and answering about
another slot phenomena (see Table 4), although pre-
dictions for ASR-early end are substantially worse
for the seen intents. A number of phenomena ap-
pear to be less challenging than examples with no
unhappy paths (see ‘None’ in Table 4), particularly
for the OOD test set. This occurs because many
phenomena do not involve any slot assignment,
which becomes more challenging in the OOD test
set.

For the tool retrieval, as gold system labels for
previous turns are seen in the prompt conversation
history, we retrieve all tools that have been men-
tioned in an oracle history up to that point.

Our baseline models are fine-tuned using the
following prompt: “You are a smart Al assistant
who is responsible for writing system commands
to describe what the user has asked for. Your job
is to write the next system command based on the
latest user turn, considering the conversation so
far”” When using tool retrieval, the following text
is added “Information about the following tools
may help:”, before providing the retrieved intent
alongside intents from the conversation history. Fi-
nally, a single in-context example is provided to
the model (see our code for further details).

H Intent Generation

In total, 54 intent descriptions were provided, with
a single intent removed for data quality reasons.
The removed intent involved the user asking the
virtual assistant to start watching a television chan-
nel, giving specific start and end times for when
they want to start watching the channel. As this is
an unrealistic scenario (a user would want to start
watching a television channel straight away), the
intent was removed.

A transactional intent was created for each of
the remaining 53 descriptions. LUCID then creates
a query intent corresponding to each transactional
intent. The query intent returns entities that would
be created using the corresponding transactional
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intent.

Some query intents were merged together (this
happens when the corresponding transactional
intents had the same entity names - one of
the intent properties generated by the LLM).
As a result, there are 6 fewer query intents
than transactional intents, resulting in a total
of 100 intents. Each of the following pairs of
transactional intents returned the same entity
names, and so their corresponding query intents
were combined: add_tv_program_to_favorites
and add_artist_to_favorites (both of which
return ‘favorites’ entities), setr_timer and
set_alarm (both of which return ‘alarm’
entities), book_nails_appointment and
book_spa_appointment (both of which re-
turn ‘appointments’), order_supermarket_shop
and order_takeaway (both of which return
‘orders’), add_song_to_favorites and play_song
(both of which return ‘songs’), and review_film
and review_restaurant (both of which return
‘reviews’).

Each of the 100 intents used for our data gen-
eration are listed in Table 9 and Table 10. These
tables list each transactional intent, along with its
corresponding query intent. We also provide the
human authored descriptions for each intent that
were initially provided to LUCID.

I Slot Duplication within PRESTO and
SGD

SGD report 214 slots in their training data (Rastogi
et al., 2020), corresponding to 365 slots across
all dataset splits (see Table 1). This counts slots
with exactly the same names in the same domains
within different services, which we consider to be
duplicated slots (although the allowed slot values
may change in each case). As a result, we provide
a more direct comparison to SGD without this slot
and intent duplication across services (see ‘SGD-no
dup’ in Table 1).

For PRESTO, we consider the 303 slots present
in the English split of the dataset (Goel et al., 2023).
However, as the semantic annotations in PRESTO
are represented in parse-trees, slots are counted
multiple times if their paths are different. We find
the number of English slots in PRESTO reduces to
276 without this duplication.

When considering the total number of slots in
PRESTO, the same slot can be counted multiple
times depending on its position in the labelled parse



Conv. phenomena Total Train Dev Test Test-OOD Test Test-OOD
# # # # # Acc. Acc.
Cancellation 12 5 2 3 2 100 100
ASR-early end 58 41 7 7 3 43 100
Sarcasm 63 46 3 8 6 75 67
Delay confirmation 76 53 7 4 12 100 100
Answer about another slot 113 75 13 11 14 64 43
Irrelevant answer 163 116 18 15 14 93 93
Overheard answer 203 153 17 23 10 100 100
In-turn correction 215 145 27 25 18 80 72
Correction 250 166 28 31 25 90 81
None 3,200 2,279 307 252 362 82 56
Conv. w/ 14 unhappy path 1,077 754 108 119 96 - -
Total conversations 4,277 3,033 415 371 458 - -
% Conversations unhappy 252% 249% 26.0% 32.1% 21.0% - -

Table 4: Total number of each conversational phenomenon within each split of our dataset. While there are few
conversations for cancellation, this behaves similarly to the ‘delay confirmation’ phenomenon. We also show the
exact match (Turn) metric for each conversational phenomena from a T5-Flan-base baseline model (details of the

metric are provided in section Appendix G).

trees. For example, the Send_digital_object intent
includes bcce and cc slots. Both of these slots can
be a Personal_contact entity, which contains a per-
son slot. In this case, the person slot within Per-
sonal_contact would be counted twice if it was
contained within either the bcc or cc slots. Re-
moving this slot duplication reduces the number of
English slots in PRESTO from 303 to 276.

Note, we consider the v.2.2 of MultiWwOZ for
our comparison, as this version explicitly states the
intents present in the dataset.

J Example Dialogues

In addition to the examples provided in Figure 1
and Figure 3, we provide three additional examples
of the LUCID generated conversations. To provide
an unbiased sample of our conversations, we show
the first three dialogues in the dataset (see Figure 5,
Figure 6 and Figure 7). We also show examples of
each of the unhappy paths used in our dataset (see
Figure 4).

K Modelling Setup, Parameters,
Computing Setup

For each baseline experiment, we train for 3 epochs.

This was selected as a hyper-parameter based on
the development set loss after training for 1-10
epochs for our Flan-T5-base baseline. We use a

69

learning rate of 5x10~°, with a linear learning
schedule, a batch size of 2 with 8 gradient accumu-
lation steps. For experiments with reduced training
data, we train for more epochs as the training data
is increased (with epochs inversely proportional to
the size of the training data, allowing for a fair com-
parison). For each LLM call, we use a temperature
value of 0.7.

Our baseline models have the following number
of parameters: T5-small and Flan-T5-small (60 mil-
lion parameters), TS5-base and Flan-T5-base (220
million parameters), T5-large and Flan-T5-large
(770 million parameters). We train our models with
V100 GPUs, with our combined baseline experi-
ments training for approximately 80 GPU hours.



Example conversation 2:

User Ewant to book a hotel room in seattle. ] User E/Ve would like a standard room.
LUCID

LUCID
User @'he check in date is 2022-08-20. ]

LUCID

User [There will be 3 guests. ]

LUCID

User Ejust one room is needed. ]

LUCID

Figure 6: An example conversation from LUCID (Example #2). As described in Appendix J, we show the first three
examples to provide an unbiased sample from our generated data.

Example conversation 3:

User I want to find some songs in my playlist called
gym jams.

LUCID
LUCID
User Efes, that’s the song i want to play. ]

LUCID

User E’lay the song eye of the tiger. ]

No i want to play a specific song from the
album workout hits.

o _

User [thmk i need to charge my phone soon.

Figure 7: An example conversation from LUCID (Example #3). As described in Appendix J, we show the first three
examples to provide an unbiased sample from our generated data.

User




DSTC2 WO0Z2.0 FRAMES M2M MultiwOZ SGD LUCID
# domains 1 1 3 2 7 16 12
# dialogues 1,612 600 1,369 1,500 8,438 16,142 3,033
#turns 23,254 4,472 19,986 14,796 113,556 329,964 65,217
Turns per dialogue  14.49 7.45 14.60 9.86 13.46 20.44 21.50
No. of slots 8 4 61 13 24 214 432
No. of slot values 212 99 3,871 138 4,510 14,139 4,701
Values per turn ~ 0.009 0.02 0.2 0.009 0.04 0.04 0.07

Table 5: Reported statistics for LUCID, and related datasets for task-oriented dialogue. All statistics refer to the
training split of the datasets, except for Frames which reports figures for all splits. Compared to previous dialogue
datasets, LUCID has considerably more slots, and more turns per dialogue. There are also more possible slot values
per turn than either MultiWoZ or SGD. The number of turns in LUCID refer to User, System, Signal and Response

turns.

Intent acc. Joint goal acc. Slot acc. Match (turn) Match (conv.)

Test (seen):
T5-Small 94.7 57.1 69.8 74.5 30.5
T5-Base 97.9 67.5 76.6 82.1 44.2
Flan-T5-Base 97.9 69.7 77.6 82.6 45.8
T5-Large 98.7 69.0 77.9 83.2 46.9
Flan-T5-Large 98.5 69.7 78.5 83.5 47.4

Test-OOD (unseen):
T5-Small 95.3 22.0 38.0 46.2 6.3
T5-Base 97.6 422 61.4 58.5 10.3
Flan-T5-Base 97.6 41.3 61.2 57.0 7.6
T5-Large 98.8 45.7 64.1 60.2 114
Flan-T5-Large 98.6 53.2 66.6 59.9 10.3

Table 6: Results of our baseline model trained for 3 epochs, using a SentenceBERT retrieval model. Each evaluation
metric is described in more detail in Appendix G. Results are from a single seed in each case.

Intent acc. Joint goal acc. Slot acc. Match (turn) Match (conv.)

Test (seen):

No tools 97.4 66.1 75.9 81.6 43.7

w/ retrieval 97.9 69.7 77.6 82.6 45.8

Oracle tools 99.1 69.3 78.1 83.1 45.8
Test-OOD (unseen):

No tools 87.1 32.8 55.7 53.2 8.3

w/ retrieval 97.6 41.3 61.2 57.0 7.6

Oracle tools 99.4 40.8 61.3 57.4 6.6

Table 7: Results of a T5-Flan-base model with our tool retrieval, using oracle tools, and with no tools provided in
the prompt. Each evaluation metric is described in more detail in Appendix G. Results are from a single seed in

each case.
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# Training ex. Intent acc. Joint goal acc. Slot acc. Match (turn) Match (conv.)

Test (seen):

125 88.8 29.3 49.1 57.1 10.2
250 91.0 37.5 57.7 65.2 15.6
500 91.9 51.2 64.9 70.6 22.6

1k 94.3 58.9 70.5 75.2 29.1
2k 96.4 62.6 73.8 78.5 37.2
4k 96.7 65.0 75.0 80.3 40.4

8k 97.3 66.8 76.2 81.1 42.3
16k 97.6 66.4 76.5 81.9 43.9

Full (24,786) 97.9 69.7 77.6 82.6 45.8

Test-OOD (unseen):

125 92.7 16.7 32.3 34.9 4.1

250 93.5 20.5 439 44.6 4.8

500 95.5 26.3 49.7 48.5 6.1

1k 96.7 343 56.4 54.2 9.6

2k 96.9 32.0 56.5 53.9 5.9

4k 97.0 37.0 59.5 57.0 6.8

8k 97.2 35.5 58.6 56.5 8.5

16k 97.4 32.7 57.2 55.9 7.0

Full (24,786) 97.6 41.3 61.2 57.0 7.6

Table 8: Results of a T5-Flan-base model trained with varying amounts of training data (count of the system turns
provided). Each evaluation metric is described in more detail in Appendix G.
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Transactional intents (1-30)

Corresponding query

Intent description

add_artist_to_favorites
add_event
add_payment_card

add_restaurant_to_favorites

add_song_to_favorites
add_to_favourites

add_tv_program_to_favorites

add_user

block_sender
book_bus_ticket
book_city_tour
book_cruise
book_flight

book_guide
book_hair_appointment
book_hotel_room
book_massage
book_nails_appointment
book_pedicure
book_spa_appointment
book_swimming_lesson
book_taxi
book_train_journey
book_triathlon
buy_film_tickets
create_direct_debit
create_playlist
create_reminder
create_workout_regime
log_exercise

find_favorites
find_events
find_payment_cards
find_favorite_restaurants
find_songs
find_favourite_pages
find_favorites
find_users
find_blocked_senders
find_bus_tickets
find_city_tours
find_cruises
find_flights
find_guides
find_hair_appointments
find_hotel_rooms
find_massages
find_appointments
find_pedicures
find_appointments
find_lessons
find_taxis
find_train_journeys
find_triathlons
find_film_tickets
find_direct_debits
find_playlists
find_reminders
find_workouts
find_exercises

Add artist to favourites

Add event

Add payment card

Add restaurant to favourites
Add song to favourites

Add a page to favourites

Add a TV program to favourites
Add user with access to calendar
Block sender

Book a bus ticket

Book a city tour

Book cruise

Book a flight

Book a guide

Book hair appointment

Book a hotel room

Book a massage

Book appointment to do nails
Book a pedicure

Book a spa appointment
Book swimming lesson
Book a taxi

Book a train journey

Book triathlon

Buy film tickets

Create direct debit

Create playlist

Create a reminder

Create workout regime

Log exercise

Table 9: Each transactional intent (1-30), alongside its respective query intent, and the description provided to
LUCID that was used to generate the intent.
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Transactional intents (31+)

Corresponding query

Intent description

make_song_recommendation
open_web_page
order_coffee
order_supermarket_shop
order_takeaway
pay_bill
play_audiobook
play_film
play_podcast_episode
play_song
rent_accommodation
rent_car

reserve_table
review_film
review_restaurant
send_email
send_invoice
send_message
set_alarm

set_timer

set_volume
transfer_money
write_note

find_recommendations
find_web_pages
find_coffee_orders
find_orders
find_orders

find_bills
find_audiobooks
find_films
find_podcast_episodes
find_songs
find_accommodations
find_cars
find_reservations
find_reviews
find_reviews
find_emails
find_invoices
find_messages
find_alarms
find_alarms
find_volume
find_transactions
find_notes

Make song recommendation
Open an internet page in a web browser
Order coffee

Order supermarket shop
Order takeaway

Pay bill

Play audiobook

Play film on streaming service
Play a podcast episode

Play a song

Rent accommodation

Rent a car

Reserve a table

Review film

Review a restaurant

Send an email

Send invoice

Send a message

Set an alarm

Set a timer

Set the volume

Transfer money

Write a note

Table 10: Each transactional intent (31+), alongside its respective query intent, and the description provided to
LUCID that was used to generate the intent.
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