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Abstract

In the pursuit of supporting more languages
around the world, tools that characterize prop-
erties of languages play a key role in expand-
ing the existing multilingual NLP research. In
this study, we focus on a widely used typo-
logical knowledge base, URIEL, which aggre-
gates linguistic information into numeric vec-
tors. Specifically, we delve into the soundness
and reproducibility of the approach taken by
URIEL in quantifying language similarity. Our
analysis reveals URIEL’s ambiguity in calculat-
ing language distances and in handling missing
values. Moreover, we find that URIEL does
not provide any information about typological
features for 31% of the languages it represents,
undermining the reliabilility of the database,
particularly on low-resource languages. Our
literature review suggests URIEL and lang2vec
are used in papers on diverse NLP tasks, which
motivates us to rigorously verify the database
as the effectiveness of these works depends on
the reliability of the information the tool pro-
vides.

1 Introduction

Categorizing and quantifying variations and sim-
ilarities between languages is critical for applica-
tions such as building multilingual large language
models (Xia et al., 2020; Nllb team, 2022), ex-
amining the effects of cross-lingual transfer (Lin
et al., 2019b), understanding code-switching be-
tween languages (Doğruöz et al., 2021; Doğruöz
and Sitaram, 2022), selecting pivot languages when
translating from one language to another (Wu and
Wang, 2007), or sharing language tools (Strassel
and Tracey, 2016). However, there is no consen-
sus on how to measure the similarity between lan-
guages due to the difficulty and subjectivity in-
volved in assessing various aspects of languages.
This challenge becomes even more pronounced
when dealing with low-resource languages (Joshi

et al., 2020), where limited linguistic knowledge is
available to researchers.

Figure 1: URIEL Feature Hierarchy and Data Sources.

URIEL is a knowledge base that aggregates lin-
guistic information for 4,005 languages from vari-
ous data sources (Figure 1) and computes distances
based on this information. The lang2vec tool pro-
vides an interface for querying URIEL (Littell et al.,
2017). In many of the 198 citations of URIEL and
lang2vec, the distance values and feature vectors
provided by URIEL have been used to quantify lan-
guage similarity and categorize language features.

In this study, we analyze the URIEL database
to assess its capacity as a resource for quantifying
language similarity. We evaluate the reproducibil-
ity and validity of the methodology employed in
calculating language similarity measurements. We
also examine the language and feature coverage of
URIEL, which affects the meaningfulness of the
vectors and distance values.

In addition, we conducted a literature review of
papers that cite URIEL to gain a better understand-
ing of the influence of URIEL in these works.

2 Methodology for Reproducibility

2.1 Description of URIEL
For a pair of languages, URIEL computes the dis-
tance of the corresponding features through the
following steps:
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1. Collect information from various sources for
a specific feature.

2. Take an aggregate of the different sources for
a single feature.

3. Compute the distance of the feature vectors of
the two languages.

URIEL knowledge base URIEL unifies informa-
tion from various sources (Figure 1), such as WALS
(Dryer and Haspelmath, 2013), SSWL (Koopman,
2009), PHOIBLE (Moran and McCloy, 2019), Eth-
nologue (Eberhard and Fennig, 2023), and Glot-
tolog (Hammarström et al., 2023). The features of
a language are broken down into three types:

1. Typological features syntax, phonology and
inventory, which describe the corresponding
linguistic characteristics of the language.

2. Phylogenetic feature family, which specifies
the language families to which the language
belongs.

3. Geographical feature geography for the ap-
proximate location where the language is most
commonly spoken in the world.

All features are described using binary (0 or 1)
vectors to represent language facts. Missing values
are marked by “--”.

For each feature, different vectors are provided
depending on the source. For instance, URIEL pro-
vides syntax vectors sourced from each of WALS,
SSWL, and Ethnologue. Similarly, other feature
vectors are derived from multiple sources.

Aggregating sources Since the information for
each feature can be taken from several sources,
URIEL uses three aggregation methods to consol-
idate feature information: union, average, or k-
nearest neighbours (kNN).

For the union aggregation, denoted using the
union operator “|”, each feature is set to 1 if any of
the sources for that feature has a value of 1. If the
feature value is 0 in all sources, the feature is set to
0. If the feature value is missing in all sources, the
union result has a missing entry, denoted by “--”.

For the average aggregation, each entry is the
mean across all sources in which it appears. This
result is a value between 0 and 1, with a non-binary
value if there are disagreements among the sources.
The feature is missing, denoted “--”, if the value
is missing in all sources.

Lastly, for the kNN aggregation, the missing
values are predicted based on languages similar in
terms of genetic, geographic and featural distances.
It is unclear how aggregation is done for kNN, as
the details are omitted from the URIEL paper. Lit-
tell et al. (2017) writes: “We will describe these
procedures, the exact notions of distance involved,
alternative prediction methods that we also inves-
tigated, and their results in more detail in a future
article.”

Computing language distances For each lan-
guage pair, URIEL provides pre-calculated dis-
tance values based on the aggregated feature vec-
tors. While the exact methodology for distance
calculations is not specified in the URIEL paper
(Littell et al., 2017), additional documentation for
URIEL and lang2vec provides two different dis-
tance calculation methods.

The lang2vec documentation1 uses cosine dis-
tance to compute distances between feature vectors.
The cosine distance DC between two vectors u and
v is defined as

DC(u, v) := 1− SC(u, v) (1)

where SC is cosine similarity defined by

SC(u, v) :=
u · v

∥u∥∥v∥ . (2)

On the other hand, the URIEL documentation2

defines a distance equivalent to angular distance.
The angular distance Dθ between two vectors u
and v is defined as

Dθ(u, v) :=
1

π
arccos(SC(u, v)) (3)

where SC is the same cosine similarity defined in
(2).

Note that the value of Dθ(u, v) can range be-
tween 0 and 0.5 because all feature values are posi-
tive. However, distances in URIEL range between
0 and 1, with “0 representing identity and 1 being
as far apart as two languages can be” based on the
URIEL documentation. Therefore, it is reasonable
to assume that this distance metric is regularized to
2Dθ(u, v).

1lang2vec is the Python tool developed by the authors for
querying URIEL. https://github.com/antonisa/lang2vec

2http://www.cs.cmu.edu/~dmortens/projects/7_project/
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Aggregate
Vector

Distance
Metric

All Languages Languages with Non-Empty Feature Vectors
syntactic phonological inventory syntactic phonological inventory

union cosine 23.90% 61.62% 40.04% 14.24% 34.28% 0.07%
union angular 93.36% 95.42% 99.45% 95.89% 87.76% 98.52%
average cosine 23.95% 61.62% 40.04% 14.38% 34.28% 0.07%
average angular 89.82% 95.21% 90.53% 88.92% 86.90% 71.23%
knn cosine 0.39% 1.45% 0.12% 0.39% 1.45% 0.12%
knn angular 2.46% 2.53% 9.70% 2.46% 2.53% 9.70%

Table 1: Percentage of all language pairs with reproducible distances (up to 2 decimal places) using each method.

3 Results

3.1 Reproducibility Study
We attempted to reproduce the pre-calculated dis-
tance provided by URIEL for each language pair.
This involved reproducing the aggregation step and
the distance calculation step using the feature vec-
tors provided by URIEL. We used the aggregated
feature vectors from URIEL as the basis for the
distance computations.

Reproducing aggregated vectors While we suc-
cessfully reproduced the first two aggregation vec-
tors (union and average), we were unable to repli-
cate the exact kNN aggregation vector because the
necessary details were not provided.

Reproducing distance calculations As men-
tioned earlier, URIEL provides pre-computed
distances for each language pair based on dif-
ferent feature vectors (particularly syntactic,
phonological, and inventory). However, the
methodology used to calculate these distances is
unclear in the documentation. We aimed to repro-
duce these provided distance values to infer the
methodology used.

There are three ambiguities in the documentation
regarding distance computations:

1. Which aggregated vector is used; union,
average, or knn?

2. Which distance metric is used; cosine dis-
tance DC(u, v) or regularized angular dis-
tance 2Dθ(u, v)?

3. How are the missing feature values treated?

We found that among possible methods of treating
missed values, the following method aligns with
the pre-computed distances closely:

• If every value in a feature vector is missing,
replace it with a vector of the same length
containing only 1’s.

• If some, but not all, values in a vector are
missing, replace the missing values with 0.

Using this method for treating missing values,
we calculated the distances for each language pair
using all possible combinations of aggregation
methods and distance metrics.

The percentage of all language pairs whose dis-
tance can be reproduced with each set of choices is
shown in Table 1 (“All Languages” section)3. The
highest percentage of reproducible distances was
achieved using regularized angular distance with
union vectors.

A similarly high percentage of distances could
be reproduced by using regularized angular dis-
tance with average vectors instead of union vec-
tors. This can be explained by noting that the union
and average vectors are identical for many lan-
guages. Corresponding average and union vec-
tors are equal when all available sources agree
on the relevant features of a language. Specif-
ically, syntax_union and syntax_average are
equal for 95.23% of languages, phonology_union
and phonology_average for 99.73% of languages,
and inventory_union and inventory_average
for 91.59% of languages.

Additionally, in Table 1 (“Languages with Non-
Empty Feature Vectors” section), we consider the
reproducibility of distances for language pairs
where both languages have non-empty feature vec-
tors. This is relevant because all empty vectors are
considered identical for distance purposes.

We conclude that regularized angular distance
with union vectors is the most likely method used
to calculate the pre-computed distance vectors pro-
vided by URIEL. However, some distance values
could not be reproduced using this or any other
method we tried. There are no clear factors causing
the irreproduciblity of certain distance values.

3URIEL provides phonological and inventory dis-
tances up to 4 decimal points. However, reproducibility suffers
when using more than 2 decimal points.
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3.2 Analysis of Feature Coverage

URIEL provides feature vectors for 4,005 lan-
guages, as well as corresponding distance values
for all pairs of these languages (16,040,025 pairs).

However, a large number of features in these vec-
tors have missing values, and many feature vectors
are completely empty, indicating that every feature
in these vectors is missing. This raises concerns
about the meaningfulness of the distance values
provided for such languages, as the vectors contain
no information to distinguish these languages.

Out of the 4,005 languages, 1,735 (43.32%) have
empty syntax_union vectors, 2,914 (72.76%)
have empty phonology_union vectors, and 2,534
(63.27%) have empty inventory_union vectors.
Furthermore, 1,251 (31.24%) languages have no
feature information at all, meaning they have empty
vectors for syntax_union, phonology_union,
and inventory_union. Some languages have
empty vectors in one or more of these three cat-
egories, but not all.

Figure 2a shows the number of languages with
non-empty union feature vectors in each of the 20
largest language families. The column labelled “all
features” represents the number of languages with
non-empty union feature vectors in at least one
of the categories. The “total” column shows the
total number of languages from each language fam-
ily included in URIEL. The shading indicates the
percentage of languages with non-empty vectors
compared to the total number of languages in the
corresponding language family.

Similarly, Figure 2b focuses on the top 200 most
spoken languages in the world4, as identified by
Ethnologue 2023. Figure 5 presents this informa-
tion for all language families in URIEL.

3.3 Distribution of Non-Missing Features

In section 3.2, we discussed languages with empty
feature vectors, i.e., languages that lack any feature
information in a given category. We found that
these languages constitute a large portion of all
languages in the URIEL dataset.

To better understand the feature coverage of the
remaining languages, we will now exclude the lan-
guages with empty feature vectors. In Figure 3,
we visualize the distribution of the remaining lan-
guages based on the number of feature values pro-
vided in their union vectors for each category.

4Excluding Bajjika, the 103rd most spoken language,
which is missing from URIEL.

(a) In the 20 largest language families.

(b) In the top 200 most spoken languages.

Figure 2: Number of languages with non-empty union
feature vectors

In Figure 3c, we observe that if any language
has a non-empty inventory_union vector, then
this vector contains no missing values. By refer-
encing the original source5, we find that this source
provides complete International Phonetic Alpha-
bet (IPA) charts for all languages it covers. Since
inventory vectors represent the information from
the IPA chart of each language, they do not have
any missing values when a complete IPA chart is
available.

As depicted in Figure 3b,languages with non-
empty phonology_union vectors generally have
either at least 20 or at most 7 phonology features,
with no values in between. On the other hand,
syntax features exhibit a more even distribution
(Figure 3a) with a peak in the number of languages
with 11 to 15 syntax features.

5In this case, the relevant source is PHOIBLE, a repository
of cross-linguistic phonological inventory data.
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(a) non-missing features in syntax_union

(b) non-missing features in phonology_union

(c) non-missing features in inventory_union

Figure 3: Distribution of languages based on the number
of non-missing features in the union vector for each cat-
egory, excluding languages with empty feature vectors.

4 Literature Review

4.1 Methodology of Literature Review
A structured search strategy was implemented
to gather articles containing citations of
URIEL/lang2vec from Google Scholar, sorted by

relevance. We then reviewed each paper through a
particular process. First, we read the abstract and
introduction of the paper to fill in the summary
section, and identified relevant keywords from
each paper. Then, we used the search function
to find occurrences of “Littel”, “URIEL”, and
“lang2vec” to locate where and how URIEL
was used in the paper. Finally, we searched for
keywords such as “database”, “language distance”,
and “WALS” to identify other methods co-existing
with or compared to URIEL in the paper.

Following the initial search, duplicated instances
of URIEL usage and articles with similar topics
were categorized. Further analysis focused on the
most cited articles, as well as articles relevant to
performance prediction, language distance, and ty-
pological feature comparison. Selected articles un-
derwent a full-text review, during which a detailed
examination of methodologies, findings and limita-
tions was conducted.

4.2 Findings from Literature Review
Our literature review consists of a comprehensive
analysis of 198 citations of the URIEL database up
to February 2024. The cited literature focuses on a
range of topics, including cross-lingual modelling,
performance prediction, and other NLP applica-
tions such as document image classification, text-
to-speech, and speech recognition (Adams et al.,
2019; Raj et al., 2023).

Researchers have explored the efficacy of
URIEL in cross-lingual modelling, cross-lingual
learning, and zero-shot transfer scenarios
(Lauscher et al., 2020). Patankar et al. (2022), Xia
et al. (2020), and Srinivasan et al. (2021) delved
into methodologies for predicting the performance
of multilingual NLP models across diverse tasks.

Researchers often use URIEL and lang2vec to
select the source language in cross-lingual trans-
fer tasks and language translation tasks. Lin et al.
(2019a) attempt to solve the task of automati-
cally selecting optimal transfer languages as a
ranking problem and build models that consider
URIEL’s language features to perform this predic-
tion. Huang et al. (2021) use lang2vec to verify
model outcomes, evaluate the effectiveness of mod-
els across different languages, and analyze the cor-
relation between model outcomes and language
distance between the source and target languages
in language translation tasks. Aside from language
distance computation, Üstün et al. (2020) inte-
grated lang2vec into models such as BERT and mul-
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tilayer perceptrons, enhancing their performance
across various linguistic tasks.

Adilazuarda et al. (2024) demonstrated a way
to align lang2vec feature vectors and Multilingual
BERT (mBERT) embeddings to explore whether
multilingual language models (MLMs), such as
mBERT, capture the linguistic constraints defined
by URIEL vectors. Based upon theobservation
that mBERT embeddings and lang2vec vectors
strongly correlate, the paper introduces a new
method(LINGUALCHEMY) that aligns model rep-
resentations with the linguistic knowledge by lever-
aging URIEL vectors. This is achieved by adding
an additional URIEL loss term to the regular clas-
sification loss. URIEL loss is defined as the mean
squared error (MSE) between projected model out-
put and the corresponding URIEL vectors.

Notably, Ponti et al. (2019) highlighted the issue
of predicted World Atlas of Language Structures
(WALS) values from URIEL exhibiting noticeable
clusters, due to biases introduced by family-based
prediction of missing values in URIEL.

5 Conclusion

In conclusion, in our attempt to reproduce URIEL’s
“language distances”, we identified several areas for
improvement:

• Unclear definitions: The documentation for
the definition of distance values provided by
URIEL is unclear. Through our attempts, we
identified the likely definitions used, but there
are some distance values that remain irrepro-
ducible for unknown reasons.

• Missing Values: When computing distances,
missing values in the feature vectors are han-
dled by replacement with 0. There is no clear
justification for this approach, which affects
distance values for languages with many miss-
ing values (e.g., with a majority being the
low-resource languages).

• Low Coverage: We found that 31.24% of the
languages in URIEL have no linguistic feature
information. While language distance values
are provided for these languages by URIEL,
they are not meaningful due to the empty fea-
ture vectors. While the low coverage leads
to a broader issue for low-resource languages,
which is difficult to solve, URIEL can address
this by providing a nan value in these cases,
which would make it clearer to the user when

language distance values cannot be meaning-
fully derived.

As demonstrated in our literature review, there
are broad use cases for measuring language simi-
larity. By understanding and addressing areas of
improvement for URIEL and lang2vec, we can
contribute to the progress of research in multi-
lingualism and language diversity, especially for
low-resource languages that are not properly repre-
sented by these knowledge bases and tools.

5.1 Future Work
For future research, we are planning to establish
clear guidelines for acceptable levels of missing
data in linguistic datasets. Secondly, we aim to
refine URIEL specifically for medium- and high-
resource languages. For low-resource languages,
we will explore alternative similarity measure-
ments, such as conceptual distance or other over-
looked linguistic features. Our objective is to ad-
vance computational linguistics research by tack-
ling missing data challenges and improving method
applicability across diverse linguistic contexts.

5.2 Limitations
The limitation of this research is its reliance on the
accuracy and completeness of the URIEL knowl-
edge base when extracting data from its sources.
Any inaccuracies or omissions within the URIEL
dataset could impact the reproducibility and reli-
ability of our findings. We did not verify the re-
liability of the external data sources, nor did we
compare them against URIEL.
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A Top 200 Most Spoken Languages

Figure 4 provides information similar to Figure 3
in the main text, but focuses on the top 200 most
spoken languages in the world, as identified by
Ethnologue 2023, instead of all 4,005 languages in
URIEL.

Note that Bajjika, the 103rd most spoken lan-
guage in the world (with 12.3M speakers), is miss-
ing from URIEL. Consequently, figures 2b and 4
include data only for the other 199 languages.

B Full Table of Coverage Based on
Language Family

Figure 5 shows the number of languages with non-
empty feature vectors for each language family in
URIEL. Figure 2a in the main text is an abridged
version that displays only the 200 largest language
families.

(a) non-missing features in syntax_union

(b) non-missing features in phonology_union

(c) non-missing features in inventory_union

Figure 4: Distribution of the top 200 most spoken lan-
guages based on the number of non-missing features in
the union vector for each category, excluding languages
with empty feature vectors.
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Figure 5: Number of languages with non-empty union feature vectors in all language families.
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