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Abstract

Text Style Transfer (TST) seeks to alter the
style of text while retaining its core con-
tent. Given the constraints of limited paral-
lel datasets for TST, we propose CoTeX, a
framework that leverages large language mod-
els (LLMs) alongside chain-of-thought (CoT)
prompting to facilitate TST. CoTeX distills the
complex rewriting and reasoning capabilities
of LLMs into more streamlined models capable
of working with both non-parallel and parallel
data. Through experimentation across four TST
datasets, CoTeX is shown to surpass traditional
supervised fine-tuning and knowledge distil-
lation methods, particularly in low-resource
settings. We conduct a comprehensive eval-
uation, comparing CoTeX against current unsu-
pervised, supervised, in-context learning (ICL)
techniques, and instruction-tuned LLMs. Fur-
thermore, CoTeX distinguishes itself by offer-
ing transparent explanations for its style trans-
fer process.

1 Introduction

TST aims to rephrase a source text s with the de-
sired style τ while preserving its core meaning and
ensuring fluency of the generated text t (Jin et al.,
2022). The term “style" can encompass the per-
sonal characteristics of an author, such as age, and
pragmatic use like formality or toxicity. To develop
TST systems using supervised methods, several
human-annotated datasets have emerged (Rao and
Tetreault, 2018). For instance, Rao and Tetreault
(2018) introduced a corpus for formality style trans-
fer, transforming informal language to its formal
counterpart and vice versa. Nonetheless, super-
vised parallel data, crucial for training deep neural
networks, is scarce and costly to obtain. Hence, un-
supervised methodologies (Shen et al., 2017; Liu
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et al., 2021) have been proposed to manage stylis-
tic attributes without relying on parallel data. Liu
et al. (2022) and Zhang et al. (2020) create pseudo-
parallel data from unlabeled samples via diverse
data augmentation with task-specific knowledge.
Works by Gong et al. (2019); Wang et al. (2019a);
Reid and Zhong (2021) employ an auxiliary style
classifier to steer the transfer direction. Meanwhile,
Krishna et al. (2020) and Hallinan et al. (2023b)
deploy multiple style-specific models to produce
various styles individually. Of late, LLMs have
demonstrated exceptional prowess across diverse
NLP tasks. Studies like Reif et al. (2022); Pu and
Demberg (2023) have found that extremely large
LMs, with over 100B parameters, are adept at TST
with ICL. Drawing from these findings, our paper
uses LLMs to generate pseudo-parallel data and
distills the TST skills of the LLM into a compact
student model. Moreover, we enhance distillation
and efficiency using CoT prompting.

LLMs have demonstrated impressive perfor-
mance across various tasks and reasoning capa-
bilities. CoT prompting (Wei et al., 2022) is a
promising technique that extracts these reasoning
skills and enhances accuracy in target tasks. How-
ever, deploying these enormous LLMs poses com-
putational and practical challenges. Recent stud-
ies (Huang et al., 2022; Wang et al., 2023a; Hsieh
et al., 2023) have thus turned to offline knowledge
distillation (KD) (Hinton et al., 2015) to condense
these reasoning capabilities into a smaller model.
Using CoT rationales can also increase distillation
efficiency with less data (Li et al., 2022; Shridhar
et al., 2023). Concurrently, Saakyan and Muresan
(2023) examine CoT prompting combined with do-
main expert feedback for improved formality trans-
fer. Nevertheless, the potential of CoT prompting
and KD to enrich a broader range of TST tasks
remains underexplored.

In this paper, we present CoTeX framework, us-
ing CoT prompting to improve TST. It identifies
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Figure 1: Overview of CoTeX framework. We use few-shot CoT prompting to generate reasoning paths and
transferred texts from an LLM and then train a smaller task-specific model with generated data.

cues for TST and clarifies the rewriting process
(§ 2). We then distill the reasoning and style trans-
fer abilities of LLMs into compact models. We
exploit CoT prompting to enhance TST, applica-
ble to scenarios both with and without parallel
data, and show the effectiveness of CoTeX in low-
resource settings. Our primary findings include:
(1) Our target-blind CoTeX (CoTeX-TB) substan-
tially boosts data efficiency for training smaller
student models for TST. (2) The target-aware Co-
TeX (CoTeX-TA) consistently outperforms SFT
and conventional KD across various datasets and
training data sizes. (3) Our CoTeX-TB outperforms
state-of-the-art (SoTA) unsupervised and ICL meth-
ods on three TST datasets. (4) Leveraging CoT ra-
tionales, our distilled student models can elucidate
the rewriting procedure.

2 Method

2.1 Data Generation

We employ CoT combined with instruction prompt-
ing to extract rationales from LLMs regarding the
TST process. We have two different settings (target-
blind and target-aware) to generate rationales.

Target-Blind (TB). We first explore our method
in the target-blind setting where we only give a
source text and the name of the desired target style.
This setting can be adaptable to a broader range
of style transfer directions. As shown in the left
side of Figure 1, each input example is constructed
using an instruction template, ptb. This template en-
compasses a source input si, a task instruction, the
target style τ , and a CoT trigger phrase: “Let’s
break down the rewriting process step by step.”
LLM is tasked with producing the CoT, ci, pertain-
ing to the text rewriting process and the resultant
transferred text, t̂i. To distinguish between the CoT
and the transferred text, we instruct the model to

initiate the transferred text on a new line, prefixed
with a special token ‘[Transferred]:’. To facilitate
the LLM’s adherence to the desired output struc-
ture, we present m examples created by humans as
context before the actual input. In our implementa-
tion, we employ three manually crafted examples
as few-shot prompts.

Target-Aware (TA). For datasets with super-
vised parallel data, we use the instruction template
pta.1 As Figure 2 shows, this template pta inte-
grates a source text si, its corresponding human-
annotated target text ti, and the target style τ . The
LLM is then prompted to explain how si is trans-
formed into ti, leading it to produce a CoT, ci. This
generated CoT is prefixed with a distinct token
‘[EXPLANATION]:’. To ensure LLMs produce
outputs in the desired format, we also employ m
guiding examples, m = 3 in our experiments.

Figure 2: Few-shot chain-of-thought prompting for data
generation with supervised data (target-aware setting).
We use the few-shot prompts that include a few ex-
amples to guide LLM to generate desired outputs in a
standard format.

2.2 Training Student Models
We leverage the LLM-generated data to finetune
smaller, task-specific student models. For the data

1We manually tune both instruction templates and find the
optimal templates used in this paper.
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generated in the target-blind setting, we utilize the
instruction template ptb, which includes source text
si and target style τ as input. The corresponding
supervision ŷi for training is the generated CoT ci
combined with the synthetic transferred text t̂i, i.e.,
ŷi = ci ⊕ t̂i. When employing the data generated
from the target-aware setting, we also adopt the
template ptb. From this, we derive the generated
CoT ci and merge it with the gold target text ti.
This composite then serves as the supervision ŷi
(i.e., ŷi = ci ⊕ ti) for training a student model.
A student model is trained with ŷi employing the
conventional cross-entropy loss.

3 Experiments

3.1 Datasets and Metric

We employ four public datasets across three style
transfer directions, chosen for their inclusion of
human-annotated parallel data in both training and
evaluation sets. This facilitates direct comparisons
between different settings.
Formality Transfer. We use GYAFC dataset
from Rao and Tetreault (2018) and focus on the
informal to formal language transfer direction.
GYAFC dataset includes two domains, Family &
Relationships (F&R) and Entertainment & Music
(E&M). Detoxification. ParaDetox (Logacheva
et al., 2022b) is a parallel dataset for text detoxi-
fication. Shakespeare to Modern English. Xu
et al. (2012) introduce a human-annotated dataset
for translating text between William Shakespeare’s
plays and their modernized versions.
Low-Resource Training. Our method offers ad-
vantages in low-resource settings, as the CoT is
poised to enhance the learning efficiency of student
models and bolster their generalizability. Thus, we
create smaller training sets by randomly sampling
training data, ranging from 1K to 20K.
Evaluation Metric. We report BLEU, leveraging
the Sacre-BLEU Python library (Post, 2018), as
main metric for evaluation.

3.2 Model Comparison.

In low-resource settings, CoTeX is compared to
(1) SFT: conventional supervised fine-tuning us-
ing parallel data, (2) teacher LLM: the teacher
model evaluated on the Test set via few-shot ICL,
i.e., using the three-shot prompt and template ptb
described in Section 2, and (3) Distill: traditional
offline knowledge distillation, which relies solely
on LLM-generated pseudo-parallel data without a

CoT path.
For comprehensive evaluations, CoTeX is fur-

ther compared with (1) Prompt&Rank: a SoTA
in-context learning method for TST (Suzgun et al.,
2022), and (2) instruction-tuned LLMs: open-
source LLMs assessed through three-shot ICL us-
ing the same prompt and template described in
Section 2; these LLMs include Alpaca 7B (Taori
et al., 2023), Vicuna 7B (Chiang et al., 2023),
LLaMA2-Chat 7B (Touvron et al., 2023), and
FlanT5-XL (Chung et al., 2022) (with 3B param-
eters). Additionally, for each dataset, compar-
isons are made with existing dataset-specific un-
supervised and supervised methods. Unsuper-
vised methods include DualRL (Luo et al., 2019),
STRAP (Krishna et al., 2020), DLS (He et al.,
2020), and TSST (Xiao et al., 2021) for formal-
ity transfer; Mask&Infill (Wu et al., 2019) and
CondBERT (Dale et al., 2021) for detoxification;
and STRAP and TSST for modernizing Shake-
spearean text. Supervised methods include Multi-
NMT (Niu et al., 2018), GPT-CAT (Wang et al.,
2019b), and SemiFST (Liu et al., 2022) for formal-
ity transfer; ParaDetox (Logacheva et al., 2022a)
for detoxification; and PointerS2S (Jhamtani et al.,
2017) for modernizing Shakespearean text.

3.3 Implementation

We employ PaLM2 Unicorn (Anil et al., 2023) as
our LLM for data generation. In the target-blind
setting, we generate a CoT path and a transferred
text.2 For the target-aware approach, we solely
produce a CoT path. Both approaches use a tem-
perature of 0.7. Afterward, we finetune a T5-large
model (with 770M parameters) (Raffel et al., 2020)
with the curated dataset.3 We finetune T5 for 2,000
steps with a learning rate of 1e− 3 and batch size
of 128. We evaluate validation performance every
16 steps and report test result of the best step.4

3.4 Hyperparameter for Training Student
Model

We set the maximal input and output sequence
lengths to 512 and 256, respectively. To opti-
mize the T5 model’s finetuning, we search both
the learning rate and batch size within specified
search spaces: lr ∈ {1e − 3, 5e − 4, 1e − 5} and

2Our ancillary study also examines the generation of mul-
tiple pairs of CoT paths and transferred text.

3We provide a concise experiment of using T5-XL model
in Appendix B.

4More details about hyperparameters are in Appendix 3.4.
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Figure 3: Test results of low-resource settings.

batch size ∈ {32, 64, 128}. We undertake hyper-
parameter tuning using formality (F&R) dataset.
Based on the validation BLEU score, we identify
the optimal hyperparameters are lr = 1e− 3 and
batch size = 128. We finetune T5 for 2,000 steps,
evaluate performance on the validation set every 16
steps, and report the test performance on the best
step. All T5 models are trained on four V3 TPUs.

4 Results

We now present your experimental results. CoTeX-
TB and CoTeX-TA denote models trained using
datasets created through target-blind and target-
aware methods, respectively.

Low-Resource Settings. We first examine Co-
TeX’s impact in low-resource context. Figure 3
shows CoTeX’s performance in both target-blind
and target-aware settings across varying training
data sizes. In both formality transfer datasets,
CoTeX-TB outperforms SFT-T5 and Distill-T5.
This advantage is noticeable with limited data,
specifically under 10K. For instance, using just 1K
samples from the informal-formal (E&M) dataset,
the BLEU scores for SFT, CoTeX-TB, and CoTeX-
TA are 55.13, 68.62, and 65.40, respectively. We
find that both CoTeX-TB and CoTeX-TA outper-
form or match the LLM’s performance on the two
formality datasets. In translating Shakespearean to
modern English, CoTeX-TB exhibits significant su-
periority over SFT-T5 and Distill-T5 across all data
sizes. We believe that such an enhancement can be
attributed to the high quality of LLM generations.
LLM with few-shot in-context learning obtains a
BLEU score of 32.43. Though CoTeX-TB under-

Method BLEU Method BLEU

Formality (F&R) Formality (E&M)

Unsup. DualRL 53.01 DLS 23.09
TSST 60.99 STRAP 31.39

ICL

Prompt&Rank 30.60 Prompt&Rank 30.96
Alpaca 41.85 Alpaca 52.40
Vicuna 37.09 Vicuna 46.47
LLaMA2-C. 19.62 LLaMA2-C. 25.14
FlanT5-XL 55.70 FlanT5-XL 42.58

Sup.

Multi-NMT† 75.35 Multi-NMT† 72.01
GPT-CAT† 77.26 GPT-CAT† 71.39
SemiFST 80.32 SemiFST 76.87
SFT (ours) 77.12 SFT (ours) 73.01
Distill (ours) 64.79 Distill (ours) 64.31
CoTex-TB 72.05 CoTex-TB 71.70
CoTex-TA 77.13 CoTex-TA 74.65

Detoxification Modernizing Shake.

Unsup. Mask&Infill∗ 44.77 DLS 12.85
CondBERT∗ 48.89 STRAP 19.96

ICL

Prompt&Rank 11.06 Prompt&Rank 20.87
Alpaca 24.32 Alpaca 24.33
Vicuna 34.54 Vicuna 17.76
LLaMA2-C. 14.65 LLaMA2-C. 25.19
FlanT5-XL 50.13 FlanT5-XL 21.55

Sup. ParaDetox 53.98 PointerS2S 30.78
SFT (ours) 52.88 SFT (ours) 22.69
Distill (ours) 43.97 Distill (ours) 22.88
CoTex-TB 48.53 CoTex-TB 26.79
CoTex-TA 54.79 CoTex-TA 25.70

Table 1: Comparing to previous methods. The best-
performed method is in bold. The best method without
utilizing a full parallel Train set is underscored. Unsup.:
unsupervised, Sup.: supervised, †: Take from Liu et al.
(2022). ∗: Utilize outputs from implementation of Lo-
gacheva et al. (2022b).

performs SFT on detoxification, CoTeX-TA still
outperforms SFT in most data sizes.

Utilizing the Full Dataset. Training student
models with CoTeX on all training samples of
each dataset, we present comparative results in
Tables 1.5 Given that many unsupervised TST
studies have not reported BLEU scores, we com-
pute BLEU scores for their public outputs using
our evaluation scripts to ensure a fair compari-
son. CoTeX-TB surpasses previous unsupervised
methods, the SoTA ICL method Prompt&Rank,
and instruction-tuned LLMs across both domains
within the formality transfer dataset. Although
CoTeX-TA does not exceed the performance of
SoTA supervised methods, SemiFST, for formality
transfer, it is noteworthy that our method does not
depend on task-specific data augmentation strate-
gies or knowledge, offering greater flexibility. In
the detoxification task, our results are compared
with the top-performing model from Logacheva
et al. (2022b). CoTeX-TA outperforms previous
supervised methods, while CoTeX-TB falls slightly

5CoTeX-TB setting utilizes the source text from training
sample while keeping the target undisclosed.
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Figure 4: Scaling up synthetic data per source.

Source Text just want to know HAVE YOU BEEN TO THE DOC YET

CoTeX
Generation

The original text is informal.
The use of all caps and the absence of punctuation are informal. The
use of “DOC" is a misspelling of “doctor".
[[Transferred]]: I just want to know if you have been to the doctor yet.

Reference I want to know if you have been to the doctor yet.

Source Text bembie hit the nail on the head

CoTeX
Generation

The original text is informal.
The use of “bembie" is a misspelling of “bembie".
[[Transferred]]: Bembie hit the nail on the head.

Reference Bembie reached the proper conclusion.

Table 2: Case study on CoTeX-TB generations.

short of CondBERT, which employs additional
style-conditional LMs for transfer control. FlanT5-
XL, an instruction-tuned LLM, leads in ICL perfor-
mance with a BLEU score of 50.13. For translat-
ing Shakespearean to modern English, CoTeX-TB
shows marked improvements over both unsuper-
vised and ICL methods, attributed to the superior
quality of LLM generations in this specific transfer
task.

Increasing Synthetic Data per Source Text. For
CoTeX-TB, we conduct an ancillary study to ex-
plore the benefits of employing multiple CoT paths
with synthetic target texts for a source text. Given
a source text si, the LLM generate q CoT paths,
{ci,1, ci,2, . . . , ci,q} and their corresponding syn-
thetic target text {t̂i,1, t̂i,2, . . . , t̂i,q}. We select a
subset of 5K unique source texts as inputs and in-
vestigate the effect of q over a range of {2, 4, 8}.
We experiment with two datasets, Formality (F&R)
and Shakspeare-modern English. Table 4 shows a
positive correlation between the student model’s
performance and increasing q values.

Level Criteria

Rate A • Valid, acceptable and satisfying (subject to
the annotator) response;

• Accurately identified the most cues for text
style transfer;

• The reasoning path can directly lead to the
transferred text.

Rate B • The response is acceptable but has minor
errors that can be improved;

• Mirror errors include out-of-context con-
tent, minimal factual errors, missing many
cues for text style transfer, etc.

Rate C • The response is relevant but it has signifi-
cant errors in the content;

• Cannot identify any correct cues for text
style transfer.

• The reasoning path cannot lead to the trans-
ferred text.

Rate D • Invalid and unacceptable response;

• Nothing related to the text style transfer
task.

Instruction: This task is text styles transfer that trans-
fers a {$source_style} source text to a target text with
style {$target_style}. Each example includes a source
text and the corresponding model-generated rationales of
the rewriting process as well as the transferred text. You
evaluate the rationales of the rewriting process and do not
take the quality of the transferred text into account.

Table 3: Human evaluation protocol and instruction. We
adapt the evaluation criteria from Wu et al. (2023) and
Wang et al. (2023b).

Qualitative Study. We now present a qualitative
study to delve into rewriting rationales generated
by CoTeX-TB. Examples are showcased in Table 2,
derived from Test set of Formality (F&R) which
transfers from informal to formal text. We sort
generations by their BLEU scores against gold ref-
erences and select random high and low-scoring
samples. The first example, obtained BLEU of 100,
correctly identifies informal components, fixes in-
formal spellings, and yields a formal and grammat-
ical sentence. The second example (BLEU=7.27)
misses comprehending the idiom “hit the nail on
the head” from the source, without translating it
into a formal expression. Nevertheless, we note that
the LLM (i.e., PaLM2) can appropriately adapt this
idiom to “accurately identified the key point”. This
leads us to hypothesize that a smaller LM exhibits
potential limitations in its ability to understand im-
plicit style cues.
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Figure 5: Human evaluation results of CoT reasoning
paths of 50 samples. Form.: formality transfer, Detox.:
Detoxification.

Human Evaluation on Generated Reasonings.
To assess the quality of model-generated ratio-
nales (i.e., CoT path) for the rewriting process,
we conduct a human evaluation. Following previ-
ous works (Wang et al., 2023b; Wu et al., 2023),
we develop our evaluation protocol and instruc-
tions as shown in Table 3. We assemble a team
of four human experts to undertake this evaluation.
Each annotator was tasked with reviewing 50 gener-
ated rationales across different models and transfer
tasks. For each evaluation, the dataset provided
included the source text, a generated rationale for
the rewriting process, and the resultant transferred
text. As depicted in Figure 5, although CoTeX-TB
lags behind the teacher model (PaLM2 Unicorn),
100% of its responses in the detoxification task
and 74% in the formality transfer task are deemed
acceptable.

5 Related Work

When parallel TST datasets are available, nu-
merous studies (Rao and Tetreault, 2018; Shang
et al., 2019; Chawla and Yang, 2020; Lai et al.,
2021) have utilized a sequence-to-sequence frame-
work for supervised training TST models. To im-
prove model efficacy, multitask learning (Niu et al.,
2018; Xu et al., 2019), lexically constrained decod-
ing (Post and Vilar, 2018), and task-specific data
augmentation (Zhang et al., 2020; Liu et al., 2022)
have been incorporated. Addressing the scarcity
of parallel data, unsupervised methods have been
developed for TST, employing methodologies like
disentanglement of latent representations (Liu et al.,
2020; Nangi et al., 2021; Yi et al., 2021), proto-

type editing (Li et al., 2018), style rewriting using
attribute-specific LMs (Krishna et al., 2020), and
reinforcement learning (Luo et al., 2019; Hallinan
et al., 2023a). Our CoTeX framework explores
both parallel and non-parallel data landscapes. The
advent of LLMs has introduced ICL for executing
TST with few-shot prompts, bypassing the need for
model parameter updates (Reif et al., 2022; Suz-
gun et al., 2022). Yet, these methods typically lack
interpretability. In parallel, Saakyan and Muresan
(2023) employ CoT prompting alongside domain
expert feedback to enhance formality transfer and
interpretability. Our CoTeX extends to broader
range of TST directions, aiming to utilize CoT to
provide rewriting explanations and minimize the
requirement for human intervention.

6 Conclusion

We introduced CoTeX, a novel approach for TST.
Through CoT prompting, we elicit the rationals for
the style rewriting process from LLMs and then
distill both the TST and reasoning capabilities into
smaller task-specific models. CoTeX demonstrated
its efficiency and effectiveness with and without
utilizing parallel data, especially in low-resource
scenarios. The CoT reasoning from CoTeX bol-
stered the explainability of TST models.

7 Limitations

TST Directions. We incorporate three style trans-
fer directions to enable a clear comparison between
target-blind and target-aware CoTeX. Benefiting
from the powerful capacity of LLMs, we believe
that our method could be extended to a broader ar-
ray of TST directions (e.g., sentiment transfer). We
plan to explore more transfer directions in future
work.

Model Selection. We only use T5-large as the
student model in the paper. We also conduct a
concise study to apply CoTeX to the T5-XL model.
As results shown in Appendix B, our CoTeX-TA
still outperforms SFT on ParaDetox dataset.

Evaluation Metrics. Unlike previous stud-
ies (Krishna et al., 2020; Liu et al., 2022), we
abstain from using other automatic metrics (e.g.,
BERTscore for meaning preservation) to evalu-
ate our models. Our decision is grounded in two
main reasons: (1) While these automatic evalu-
ations consider three facets, i.e., preservation of
semantic meaning, accuracy of style transfer, and
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fluency they lack an effective methodology for ag-
gregating these metrics to convey the overall perfor-
mance (Ostheimer et al., 2023); (2) Our preliminary
experiments involving these automatic metrics re-
vealed a misalignment between their outcomes and
the BLEU score derived from human-annotated ref-
erences. We thus opt to report the BLEU score in
the paper. Detailed results from our preliminary
tests are presented in Appendix A.

8 Ethical Consideration

The primary objective of training CoTeX model
is to achieve more computationally efficient and
effective models for TST. We focus on the positive
TST directions, such as language detoxification.
We use an LLM to generate rationales alongside
transferred text, which are subsequently distilled
into smaller LMs. It’s important to acknowledge
that the LLM’s generation might encompass so-
cietal biases (Lucy and Bamman, 2021) or hallu-
cinations (Zhang et al., 2023), and student mod-
els trained with this data could inherit these char-
acteristics of the teacher LLM. Additionally, our
CoTeX-TA relies on datasets from prior research.
Thus, any biases present in the original annotation
processes of these datasets might also be reflected
in our trained models. We expect the ongoing
work (Ouyang et al., 2022; Dev et al., 2022) of
improving LM’s social fairness, faithfulness, and
trustworthiness could benefit both teacher and stu-
dent models.
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Appendices
A Preliminary Test on Evaluation Metrics

In our preliminary experiment, we evaluate model
performance with several automatic metrics uti-
lized by previous works (Krishna et al., 2020; Luo
et al., 2019; Reif et al., 2022). These automatic met-
rics have been widely used in unsupervised TST
due to their independence from human-labeled par-
allel data. However, we find that the outcomes from
these metrics do not align with the reference-BLEU
score derived from human-annotated references.
These automatic metrics evaluate transferred text
from three aspects:

1. Similarity: To evaluate the similarity be-
tween the source text and the transferred text,
we employ BERTscore and self-BLEU. For
BERTscore calculations, we use the SimCSE-
large model (Gao et al., 2021) as the back-
bone.

2. Transfer Accuracy: To evaluate the effi-
cacy of the style transfer, we employ a
classifier (Babakov et al., 2023) to deter-
mine whether the transferred text successfully
achieves the desired style.

3. Fluency: To access the fluency of the trans-
ferred text, we compute its perplexity us-
ing GPT. Additionally, we utilize a classifier
trained on the Corpus of Linguistic Accept-
ability (CoLA) from (Krishna et al., 2020)
to determine the grammaticality of the trans-
ferred text.

In this preliminary experiment, we conduct ex-
periments using varying training sizes from the for-
mality transfer (F&R) dataset. These experiments
are carried out in a target-blind setting, where we
finetune a T5-large model using the synthetic data
generated from LLM. For assessing transfer ac-
curacy, we employ a binary classifier introduced
by Babakov et al. (2023), which is a RoBERTa-
base model finetuned on the GYAFC’s training set.
This classifier achieves a test accuracy of 0.91. As
Table 4 shows, the outcomes from these metrics
did not correspond well with the reference-BLEU
score. We thus opt to report the BLEU score in the
paper.

B Experiment with T5-XL

We conduct a concise experiment to apply our Co-
TeX to T5-XL (containing 3B parameters). As

Table 5 shows, our CoTeX-TA outperforms SFT
across all the data sizes.
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# of data Ref-BLEU BERTScore Self-BLEU Tra. Acc. PPL CoLA

1000 72.54 0.96 45.34 0.94 61.15 0.95
2000 73.13 0.96 46.89 0.93 59.02 0.95
5000 71.92 0.96 50.71 0.90 65.54 0.94

10000 72.86 0.96 51.15 0.89 63.98 0.95
20000 72.90 0.96 49.89 0.90 64.66 0.94

Table 4: Preliminary result on GYAFC (F&R) for investigating evaluation metrics. Tra. Acc.: transfer accuracy,
PPL: perplexity.

# Data SFT CoTex-TB CoTex-TA

1000 49.15 46.64 53.93
2000 51.58 47.56 54.26
5000 52.91 47.92 54.83

10000 52.32 47.96 55.13
15000 52.88 48.47 55.19

Table 5: Finetuning T5-XL on detoxification dataset
with our CoTeX or SFT.
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