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Abstract
To mitigate forgetting, existing lifelong event
detection methods typically maintain a mem-
ory module and replay the stored memory data
during the learning of a new task. However,
the simple combination of memory data and
new-task samples can still result in substantial
forgetting of previously acquired knowledge,
which may occur due to the potential overlap
between the feature distribution of new data
and the previously learned embedding space.
Moreover, the model suffers from overfitting
on the few memory samples rather than ef-
fectively remembering learned patterns. To
address the challenges of forgetting and over-
fitting, we propose a novel method based on
embedding space separation and compaction.
Our method alleviates forgetting of previously
learned tasks by forcing the feature distribu-
tion of new data away from the previous em-
bedding space. It also mitigates overfitting by
a memory calibration mechanism that encour-
ages memory data to be close to its prototype to
enhance intra-class compactness. In addition,
the learnable parameters of the new task are ini-
tialized by drawing upon acquired knowledge
from the previously learned task to facilitate
forward knowledge transfer. With extensive
experiments, we demonstrate that our method
can significantly outperform previous state-of-
the-art approaches.

1 Introduction

Event detection (ED) aims to detect the event type
of trigger words in a given sentence, e.g., extract-
ing the event type injure from the trigger word
scalded in text “He was scalded by hot water”.
Traditional ED methods typically consider a fixed
pre-defined set of event types (Chen et al., 2015;
Nguyen et al., 2016; Huang and Ji, 2020; Chen
et al., 2024). However, as the environment and data
distributions change in real scenarios, the model
might face challenges in handling rapidly emerging
new types (Lu et al., 2022).

A more practical setting is lifelong event detec-
tion or LED (Cao et al., 2020), where the model
learns event knowledge from a sequence of tasks
with different sets of event types. In LED, the model
is expected to retain and accumulate knowledge
when learning new tasks, which is challenging due
to catastrophic forgetting (McCloskey and Cohen,
1989) of previously acquired knowledge. Existing
methods (Cao et al., 2020; Yu et al., 2021) for miti-
gating forgetting in LED typically maintain a mem-
ory that saves a few key samples of previous tasks,
which are then combined with new data for training.
Recently, Liu et al. (2022) introduce Episodic Mem-
ory Prompts (EMP) that leverages soft prompts to
remember learned event types, achieving state-of-
the-art performance on LED.

Despite its effectiveness, EMP has two key limi-
tations. First, simply combining new data and mem-
ory samples for training can still result in forgetting
as the feature distribution of new data might over-
lap with the previously learned embedding space
(see Appendix A.1). Second, it may overfit on a
few memory samples after frequent replays rather
than effectively retaining learned patterns.

To address the above limitations of EMP, in
this paper, we introduce a novel method based
on Embedding space Separation and COmpaction
(ESCO) for LED. In particular, we propose a
margin-based loss that forces the feature distribu-
tion of new event types away from the learned em-
bedding space to alleviate forgetting. Inspired by
Han et al. (2020), we introduce a memory calibra-
tion mechanism to encourage memory data to be
close to its prototype to avoid overfitting on the
few memory samples. In addition, the learnable pa-
rameters of the new task are initialized using those
of the previously learned task to facilitate forward
knowledge transfer, which is as important for life-
long learning as preventing forgetting (Ke et al.,
2020; Qin et al., 2023a,b). The empirical results
show that our method significantly outperforms
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previous state-of-the-art approaches. In summary,
our main contributions are:

• We propose ESCO, a novel method based on
embedding space separation and compaction to
mitigate forgetting and overfitting in LED.

• With extensive experiments and analysis, we
demonstrate the effectiveness of our method com-
pared to existing ones.

2 Problem Formulation

LED involves learning from a stream of event de-
tection tasks T = (T 1, . . . ,T 𝑛), where each task
T 𝑘 has its own training set D𝑘

train, validation set
D𝑘

valid, and test set D𝑘
test. For every input text 𝑥𝑖 in

D𝑘 , it contains a set of target spans {𝑥𝑖𝑡 } and their
corresponding labels 𝑦𝑖𝑡 which belong to the event
type set C𝑘 of task T 𝑘 . Note that the event type
sets of different tasks are non-overlapping.

After the training on D𝑘
train, the model is ex-

pected to perform well on all the 𝑘 tasks that it
has learned and will be evaluated on the combined
test set D̂𝑘

test = ∪𝑘
𝑖=1D𝑖

test consisting of all known
event types Ĉ𝑘 = ∪𝑘

𝑖=1C𝑖. During the learning, a
memory module M which stores a few key sam-
ples of previous tasks is maintained to overcome
the forgetting problem.

3 Embedding Space Separation and
Compaction

When learning a new task T 𝑘 , following Liu et al.
(2022), we first initialize a set of soft prompts P𝑘 =
{𝑝𝑘1 , ..., 𝑝𝑘| C𝑘 |} where C𝑘 is the event type set of

T 𝑘 . The accumulated prompts Q𝑘 = [P1, ...,P𝑘]
until time step 𝑘 are then combined with the in-
put text 𝑥𝑖 to obtain the contextual representations
using a frozen BERT (Devlin et al., 2019):

[x𝑖 ,Q𝑘] = BERT( [𝑥𝑖 ,Q𝑘]) (1)

where x𝑖 and Q𝑘 are the representations of 𝑥𝑖 and
Q𝑘 , respectively. To facilitate forward knowledge
transfer (Qin and Joty, 2022b), we initialize soft
prompts P𝑘 of the new task using learned prompts
P𝑘−1 of the previous task. For the first task T 1, we
initialize each event type prompt 𝑝1

𝑖 in P1 using its
corresponding name.

To predict the event type of the span 𝑥𝑖𝑡 , we
concatenate the representations corresponding to
the start and end token and obtain the logits over
all learned types through a feed-forward network

(FFN) as well as a linear layer:

𝑍 𝑖
𝑡 = Linear(FFN( [x𝑖𝑚, x𝑖𝑛])) (2)

where x𝑖𝑡 = FFN( [x𝑖𝑚, x𝑖𝑛]) is the span representa-
tion, 𝑚 and 𝑛 denote the start and end index of the
span, respectively. Following Liu et al. (2022), to
entangle span representations with soft prompts,
the probability distribution over all prompts is cal-
culated as 𝑍𝑞 = FFN(Q𝑘) · x𝑖𝑡 , where · is the inner
product. 𝑍𝑞 is then combined with 𝑍 𝑖

𝑡 to optimize
the cross entropy loss:

Lnew = −
∑︁

(𝑥𝑖𝑡 ,𝑦𝑖𝑡 ) ∈D𝑘
train

CE(𝑍 𝑖
𝑡 + 𝑍𝑞, 𝑦

𝑖
𝑡 ) (3)

After learning the previous task T 𝑘−1, we select
the top-𝑙 most informative training examples for
each event type in C𝑘−1 using the herding algo-
rithm (Welling, 2009), which are then saved in the
memory module M for replay to mitigate forget-
ting. Similar as Eq. 3, the training objective for
memory replay when learning T 𝑘 is:

Lmem = −
∑︁

(𝑥𝑖𝑡 ,𝑦𝑖𝑡 ) ∈M
CE(𝑍 𝑖

𝑡 + 𝑍𝑞, 𝑦
𝑖
𝑡 ) (4)

However, the simple combination of Lnew and
Lmem can still result in substantial forgetting of
acquired knowledge due to the potential overlap
between the feature distribution of new event types
and the previously learned embedding space (see
Appendix A.1). To ensure that the new feature
distribution is away from the learned embedding
space, we design a margin-based loss, which de-
creases the similarity scores between new samples
and prototypes (see Eq. 8 for the calculation of
prototypes) of learned event types:

Lsim =
∑︁

(𝑥𝑖𝑡 ,𝑦𝑖𝑡 ) ∈D𝑘
train

∑︁
e𝑖∈E𝑘−1

max(0, 𝑔(x𝑖𝑡 , e𝑖) − 𝑚1) (5)

where E𝑘−1 is the prototype set of previous 𝑘 − 1
tasks, 𝑔(, ) is the similarity function (cosine sim-
ilarity) and 𝑚1 is the margin for Lsim. Note that
Lsim is different from metric learning or contrastive
learning (Qin and Joty, 2022a) which typically con-
siders both positive and negative pairs. Lsim only
includes negative pairs while ignoring positive ones
as our goal in designing Lsim is to separate the
new feature distribution and the learned embedding
space.
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As the size of memory M is typically small,
the model is prone to overfit on the few memory
samples after frequent replays, making learned dis-
tributions distorted. To effectively recover from
distorted learned distributions, we introduce a mem-
ory calibration mechanism inspired by Han et al.
(2020). Specifically, for each memory sample in
M, we encourage it to be close to its corresponding
prototype to improve the intra-class compactness
of learned distributions. More formally,

Lcal = −
∑︁

(𝑥𝑖𝑡 ,𝑦𝑖𝑡 ) ∈M
log

exp 𝑔(x𝑖𝑡 , e𝑙)∑ | E𝑘−1 |
𝑗=1 exp 𝑔(x𝑖𝑡 , e 𝑗 )

(6)

where e𝑙 is the prototype of 𝑦𝑖𝑡 . The total loss for
learning on T 𝑘 is defined as:

Ltotal = Lnew + 𝜆1Lsim + 𝜆2(Lmem + Lcal) (7)

where 𝜆1 and 𝜆2 are loss weights.
After learning T 𝑘 and selecting memory data

for T 𝑘 , we use the memory M to calculate proto-
types of all learned event types in C𝑘 . Specifically,
for each event type 𝑒 𝑗 in C𝑘 , we obtain its proto-
type e 𝑗 by averaging the span representations of all
samples labeled as 𝑒 𝑗 in M as follows:

e 𝑗 =
1

|M𝑒 𝑗 |
∑︁

(𝑥𝑖𝑡 ,𝑦𝑖𝑡 ) ∈M𝑒 𝑗

x𝑖𝑡 (8)

where M𝑒 𝑗 = {(𝑥𝑖𝑡 , 𝑦𝑖𝑡 ) | (𝑥𝑖𝑡 , 𝑦𝑖𝑡 ) ∈ M, 𝑦𝑖𝑡 = 𝑒 𝑗}.

4 Experiment

4.1 Experimental Setup

We conduct experiments on two representative
event detection datasets in our work: ACE05
(Doddington et al., 2004) and MAVEN (Wang
et al., 2020). Following Liu et al. (2022), we
divide each dataset into a sequence of 5 tasks
with non-overlapping event type sets to form a
class-incremental setting. After learning T 𝑘 , the
model is evaluated on the combined test set D̂𝑘

test =
∪𝑘
𝑖=1D𝑖

test of all seen tasks. As the task order might
influence the model performance, we run experi-
ments for each dataset 5 times with different task
order permutations and report the average results.
More details of the experimental setup are in Ap-
pendix A.2.

4.2 Methods Compared

We compare our approach with the following meth-
ods: (1) Fine-tuning tunes the model only on new
data without memory; (2) BiC (Wu et al., 2019) in-
troduces a bias correction layer to improve lifelong
learning performance; (3) KCN (Cao et al., 2020)
designs prototype enhanced retrospection and hier-
archical distillation to alleviate semantic ambigu-
ity and class imbalance; (4) KT (Yu et al., 2021)
proposes to transfer knowledge between related
types; (5) EMP (Liu et al., 2022) leverages type-
specific soft prompts to remember learned event
knowledge; and (6) Multi-task learning (MTL)
simultaneously trains the model on all data, serving
as the upper bound in LED.

4.3 Main Results

We report the F1 score of different methods at each
time step in Table 1. From the results, we can ob-
serve that ESCO significantly outperforms previ-
ous baselines on both datasets, demonstrating its su-
periority. Simply fine-tuning the model on new data
without memory replay results in poor performance
due to severe forgetting of learned knowledge. Al-
though BiC, KCN and KT could alleviate forgetting
to some extent, there is still a large performance
drop after learning all tasks. EMP achieves better
performance because the type-specific soft prompts
help retain previously acquired knowledge. How-
ever, it does not necessarily ensure large distances
among feature distributions of different event types,
and easily overfits on the memory samples. Our
proposed ESCO outperforms EMP by a large mar-
gin through embedding space separation and com-
paction. To verify its effectiveness, we visualize the
embedding spaces of EMP and ESCO on ACE05
in Fig. 1. Specifically, we randomly select 6 event
types from different learning stages and visualize
their test data using t-SNE (Van der Maaten and
Hinton, 2008). The comparison demonstrates that
ESCO could achieve larger inter-class distances
and better intra-class compactness in the embed-
ding space.

4.4 Ablation Study

To analyze the contribution of different components
of ESCO, we conduct several ablations. Specif-
ically, we investigate three variants of ESCO:
(a) without the margin-based loss (w.o. margin),
(b) removing the memory calibration mechanism
(w.o. calibration), and (c) without forward knowl-

596



MAVEN ACE05

Task index 1 2 3 4 5 1 2 3 4 5

Fine-tuning 63.51 39.99 33.36 23.83 22.69 58.30 43.96 38.02 21.53 25.71
BiC 63.51 46.69 39.15 31.69 30.47 58.30 45.73 43.28 35.70 30.80
KCN 63.51 51.17 46.80 38.72 38.58 58.30 54.71 52.88 44.93 41.10
KT 63.51 52.36 47.24 39.51 39.34 58.30 55.41 53.95 45.00 42.62
EMP 67.50 59.67 58.03 54.80 54.39 58.35 50.03 54.91 47.78 47.19

ESCO 67.50 61.37 60.65 57.43 57.35 58.35 57.42 57.63 53.64 55.20

MTL — — — — 68.42 — — — — 67.22

Table 1: F1 score (%) of different methods at every time step on two datasets. ‘MTL’ stands for ‘multi-task learning’.
ESCO is significantly better than EMP with 𝑝-value < 0.05 (paired t-test). We report results with variance and
detailed results for different task orders in Appendix A.3 and Appendix A.4, respectively.

Figure 1: Comparison between the embedding spaces
of EMP (left) and ESCO (right). Colors represent dif-
ferent event types with numbers being the event indexes.
Compared with EMP, ESCO shows larger inter-class
distances, e.g., the distance between 13 and 18, and bet-
ter intra-class compactness (circled regions).

edge transfer (FKT) (w.o. FKT). The results of
different ablations after learning all tasks are re-
ported in Table 2. We can see that all components
contribute to overall performance. The margin-
based loss yields about 1.25% performance boost
as it can bring feature distribution of new data away
from the learned embedding space. The memory
calibration mechanism improves the F1 score by
1.47%, which demonstrates the necessity of im-
proving intra-class compactness of learned distribu-
tions. The adoption of forward knowledge transfer
leads to 0.80% improvement, indicating that it can
indeed transfer useful learned knowledge to facili-
tate the learning of new tasks.

4.5 Further Analysis

Quantify Knowledge Transfer. Following
Lopez-Paz and Ranzato (2017), we report the
backward transfer (BWT) and forward transfer
(FWT) of EMP and ESCO after learning all tasks

Method MAVEN ACE05 Average

ESCO 57.35 55.20 56.28
w.o. margin 55.92 54.13 55.03
w.o. calibration 55.76 53.85 54.81
w.o. FKT 56.58 54.38 55.48

Table 2: F1 score (%) of different ablations after learn-
ing all tasks: (i) without the margin-based loss, (ii)
without the memory calibration mechanism, and (iii)
without forward knowledge transfer. All components
improve the performance of our method.

Dataset MAVEN ACE05
BWT FWT BWT FWT

EMP -10.4 -2.9 -16.8 0.5

ESCO -6.3 -1.2 -7.5 4.1

Table 3: Backward transfer (BWT) and forward transfer
(FWT) of EMP and ESCO after learning all tasks on
MAVEN and ACE05.

in Table 3. From the comparison, we can observe
that ESCO outperforms EMP by a large margin
in terms of BWT and FWT on both datasets,
demonstrating its effectiveness.

In addition, we show results of a different back-
bone model (RoBERTa (Liu et al., 2019)), the ef-
fect of memory size, results of different memory
sample selection methods, the comparison with the
contrastive loss in Qin and Joty (2022a), and a case
study of the model output in Appendix A.5 ∼ A.9,
respectively.

5 Related Work

Lifelong event detection (LED) aims to continu-
ally learn from a sequence of event detection tasks
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with different sets of event types. Cao et al. (2020)
propose KCN which addresses the semantic am-
biguity and data imbalance problems in LED by
prototype enhanced retrospection and hierarchical
distillation. KT (Yu et al., 2021) encourages bi-
directional knowledge transfer between old and
new event types. Liu et al. (2022) introduce EMP to
retain previously learned task-specific event knowl-
edge through soft prompts. In contrast to previous
works, we innovate on the methodology by impos-
ing further constraints in the embedding space to
mitigate forgetting and overfitting.

6 Conclusion

In this work, we have introduced embedding space
separation and compaction (ESCO) for lifelong
event detection (LED). ESCO imposes novel fea-
ture constraints in the embedding space to alleviate
forgetting and overfitting problems. It initializes
the learnable parameters for the new task by inherit-
ing those from the previously learned task to facili-
tate forward knowledge transfer. With extensive ex-
periments and analysis, we have demonstrated that
ESCO significantly outperforms previous methods.
For future work, we are interested in exploring
ESCO in a meta-learning paradigm for LED.

Limitations

Although effective, ESCO also has some limita-
tions. For example, ESCO mainly focuses on the
setting where each task has enough training data.
Few-shot learning and in-context learning have
been receiving increasing interest within the com-
munity. We leave how to explore lifelong event de-
tection in few-shot settings as future work. Besides,
as large language models (LLMs) have shown im-
pressive performance on a variety of tasks (Brown
et al., 2020; Ouyang et al., 2022; Touvron et al.,
2023; Qin et al., 2023c,d,e; Achiam et al., 2023;
Xia et al., 2024; Ding et al., 2023), a further im-
provement could be to explore lifelong event detec-
tion with LLMs.
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MAVEN

Task index 1 2 3 4 5

EMP 67.1 58.3 55.7 53.2 52.9
ESCO 67.1 60.8 59.0 55.3 55.1

Table 4: Performance comparison between EMP and
ESCO on MAVEN using RoBERTa as the backbone.
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A Appendix

A.1 Overlap of Feature Distributions

Fig. 2 shows an example of the overlap between fea-
ture distributions of event types at different learning
stages.

A.2 Implementation Details

All methods are implemented with Py-
Torch/Transformers library (Wolf et al., 2020). For
hyperparameters, we mainly follow the settings
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Figure 3: The performance of ESCO and EMP with
different memory sizes.

in Liu et al. (2022) to have a fair comparison.
We adopt −0.1 for the margin value 𝑚1 so that
the similarity score between a new sample and
the prototype of a previously learned event type
could be optimized to a negative number, i.e., large
inter-class distance. We set the weight 𝜆1 to 0.1 so
that its corresponding loss Lsim has roughly the
same order of magnitude as other losses. The loss
weight 𝜆2 is set to 𝑠

𝑘+𝑠 , where 𝑘 is the number of
target spans in the current batch and 𝑠 is equal to
50 following Liu et al. (2022). For each task, we
train the model for 20 epochs with early stopping.

For the state-of-the-art EMP (Liu et al., 2022),
we reproduce the results using its open-source code
and the same environment. For our method, we use
the same environment and shared hyperparameters
as EMP. For other baselines, we reuse the results
in Liu et al. (2022). There are mainly two rea-
sons: (a) They perform much worse than EMP,
i.e., they are not primary comparison approaches in
our work; and (b) EMP reports different baseline
results from Yu et al. (2021), indicating different
settings. However, EMP does not provide details
on how to obtain baseline results. As we use the
same setting as EMP, we decide to reuse its results
for other baselines.

A.3 Results with Variance

We show results with variance for EMP and ESCO
in Table 5.

A.4 Detailed Results for Different Task
Orders

Table 6 reports detailed results for different task
orders.
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MAVEN ACE05

Task index 1 2 3 4 5 1 2 3 4 5

EMP 67.50±3.54 59.67±2.74 58.03±1.44 54.80±0.95 54.39±0.82 58.35±6.92 50.03±18.18 54.91±9.19 47.78±2.57 47.19±8.53
ESCO 67.50±3.54 61.37±2.92 60.65±1.85 57.43±0.81 57.35±0.66 58.35±6.92 57.42±13.56 57.63±6.26 53.64±4.41 55.20±4.16

Table 5: F1 score (%) and variance of EMP and ESCO at every time step on two datasets.

Task Order MAVEN ACE05

1 2 3 4 5 1 2 3 4 5

1
70.80 62.19 60.00 56.11 54.95 62.58 65.60 67.20 45.06 39.07
70.80 64.73 62.22 57.26 57.67 62.58 68.35 66.02 54.13 49.33

2
66.06 56.01 56.16 54.07 54.91 49.17 50.99 57.78 51.76 42.49
66.06 58.36 58.16 57.71 57.40 49.17 52.13 60.73 57.85 54.76

3
70.80 59.91 57.43 55.53 55.02 62.58 59.43 50.08 46.27 55.12
70.80 62.70 60.03 58.27 57.57 62.58 61.03 51.96 47.95 59.97

4
67.42 62.35 58.74 54.10 53.19 64.68 55.15 56.87 47.30 41.65
67.42 62.81 62.72 56.12 56.20 64.68 69.12 58.44 57.78 53.67

5
62.39 57.90 57.81 54.20 53.88 52.74 18.99 42.62 48.53 57.64
62.39 58.22 60.09 57.78 57.88 52.74 36.49 51.01 50.46 58.29

Table 6: F1 score (%) of 5 runs with different task orders on two datasets. For every order, the upper row shows the
performance of EMP and the lower row is the result of ESCO.

EMP ESCO

Herding algorithm 54.4 57.1
Example influence 53.5 56.4

Table 7: F1 score (%) of EMP and ESCO with different
memory sample selection approaches.

ESCO ESCOcon

F1 score (%) 57.1 56.6

Table 8: Performance comparison between ESCO and
ESCOcon.

A.5 Different Backbone Model
To investigate the generalization ability of ESCO,
we further conduct experiments on MAVEN using
RoBERTa (Liu et al., 2019) backbone. The F1
scores of EMP and ESCO at each time step are
reported in Table 4, which verify that ESCO can
indeed generalize to different models.

A.6 Effect of Memory Size
Following Liu et al. (2022), we select 20 samples
as memory data for each event type. To inves-
tigate whether different memory sizes influence
the performance gain of ESCO, we conduct con-
trolled experiments on ACE05 with memory size
{5, 10, 15, 25, 30, 35}. The performance compari-

son between ESCO and EMP is shown in Fig. 3.
We can observe that ESCO consistently outper-
forms EMP by a large margin with different mem-
ory sizes, demonstrating its robustness.

A.7 Different Memory Sample Selection
Approaches

Following EMP (Liu et al., 2022), we use the herd-
ing algorithm (Welling, 2009) to select memory
samples. To validate whether different memory
sample selection approaches influence the perfor-
mance gain of ESCO, we replace the herding algo-
rithm of EMP and ESCO with example influence
(Sun et al., 2022) for memory selection. We ran-
domly select three sequences for experiments and
report the performance comparison between EMP
and ESCO in Table 7. We can see that: (a) ESCO
consistently outperforms EMP in different cases,
demonstrating its effectiveness; and (b) herding
algorithm performs better than example influence,
justifying our choice.

A.8 Comparison with the Contrastive Loss

As mentioned in §3, our designed margin-based
loss Lsim is different from the contrastive loss as
Lsim only includes negative pairs while ignoring
positive ones. To further demonstrate its superior-
ity, we replace it with the contrastive loss in (Qin
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Fighting continued until 9 May, when the Red Army entered the nearly liberated city.

Label Arriving
EMP Becoming_a_member
ESCO Arriving

In Japan, hundreds of people evacuated from mudslide-prone areas.

Label Escaping
EMP Removing
ESCO Escaping

Table 9: Output examples of EMP and ESCO. We color target spans in blue, correct outputs in green, and wrong
outputs in red.

and Joty, 2022a), namely ESCOcon. We use the
same sequences as Appendix A.7 for experiments
and report the results of ESCO and ESCOcon in
Table 8, which verify the effectiveness of Lsim.

A.9 Case Study
We select MAVEN as a representative task and
show several example outputs in Table 9. Com-
pared with EMP, ESCO is able to retain more pre-
cise and fine-grained event knowledge, e.g., ESCO
can successfully detect the event type Escaping
from the target span evacuated while EMP is con-
fused by another semantically similar type Remov-
ing.
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