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Abstract
LLMs are revolutionizing NLP tasks. How-
ever, the use of the most advanced LLMs, such
as GPT-4, is often prohibitively expensive for
most specialized fields. We introduce HEAL,
the first continuously trained 13B LLaMA2-
based LLM that is purpose-built for medi-
cal conversations and measured on automated
scribing. Our results demonstrate that HEAL
outperforms GPT-4 and PMC-LLaMA in Pub-
MedQA, with an accuracy of 78.4%. It also
achieves parity with GPT-4 in generating medi-
cal notes. Remarkably, HEAL surpasses GPT-4
and Med-PaLM 2 in identifying more correct
medical concepts and exceeds the performance
of human scribes and other comparable models
in correctness and completeness.

1 Introduction

The emergence of large language model (LLM) has
brought revolutionary changes to natural language
processing and understanding tasks, paving the way
for practical applications of AI across multiple do-
mains such as law, finance, and healthcare. Private
LLMs such as GPT-4 (OpenAI, 2023) and Med-
PaLM 2 (Singhal et al., 2023) and open-source
LLMs like LLaMA2 (Meta, 2023) have shown
strong performance on general NLP benchmarks.
However, recent studies have shown promise that
with continued training on more targeted datasets,
e.g. smaller LLMs like Orca (Mukherjee et al.,
2023; Mitra et al., 2023) and Phi-2 (Mojan Java-
heripi, 2023), can surpass much larger LLMs on
general tasks. Despite the success of LLM in gen-
eral capabilities, they often fall short in niche do-
mains like healthcare, where precision and pro-
found understanding are crucial. Hence, several
models such as Meditron-70B (Chen et al., 2023b),
PMC-LLaMA (Wu et al., 2023) have emerged.

Transcribing medical conversations is a challeng-
ing task for both humans and machines due to po-
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tential transcription errors and the innate complex-
ity of spoken language, an issue unaddressed by
existing medical LLMs. Existing LLMs trained
on medical data largely do well on problems like
medical Q&A but struggle to produce a comprehen-
sive EHR-compatible medical note. Some domain-
adapted LLMs (Van Veen et al., 2023) can write
some components of the note, but they leave out the
crucial "Subjective" section. Some fine-tuned mod-
els (Zhang et al., 2021) can generate notes from
medical conversations but need human overview.

Overall, we developed a new medical LLM pro-
ficient in interpreting medical conversation. By
using techniques like continued pretraining on di-
verse data and explanation tuning, including med-
ical and general web corpora, GPT-4 task instruc-
tions, EHRs, the model was capable of producing
medical SOAP notes approved by physicians.

Our main contributions include:
To the best of our knowledge, we are the first

to build a small-size (13B) medical LLM that can
produce medical notes without any human interven-
tion from doctor-patient conversations that bypass
human quality and are accepted by physicians.

HEAL surpasses Med-PaLM 2 and other pub-
licly available models of the same size, matches
GPT-4’s performance in medical notes generation,
and excels with the highest completeness.

Despite having a smaller model size, we
achieved an accuracy of 78.4% on PubMedQA,
outperforming GPT-4 and within 5% of Med-
PaLM 2’s performance.

2 Continued Pretraining

2.1 Dataset

We collected our training data from three major
sources to enable the model to generate coherent
English sentences, comprehend medical content,
and execute complex instructions required for gen-
erating medical notes. (see Table 1)

1
565



Dataset Number of tokens Percentage of
(in billions) total data

Non-medical public 5.33 35.79
Medical public 5.68 38.14

Medical proprietary 3.88 26.07
Total 14.89 100.00

Table 1: Pretraining datasets.

Non-medical public datasets. To ensure that the
new model doesn’t lose the generative capabilities
of the pretrained LLaMA2 model, we added gen-
eral domain datasets such as C4 (Raffel et al., 2019).
Continued pretraining on them was crucial for gen-
erational tasks, enhancing the model’s grammar
and phrase composition skills. Initially, we also in-
cluded filtered subtitle data from open-subtitle and
youtube. However, we decided to exclude these
datasets due to their poor quality negatively impact-
ing the model’s performance.

Medical public datasets. We filtered data from
medical web domains such as nih.gov to cover dif-
ferent aspects of medical concept understanding
and replay medical knowledge to the model, so the
model won’t forget the medical knowledge after
continued training. MedDialog (Chen et al., 2020)
taught medical language conversation while read-
ing materials such as PubMed articles (Gao et al.,
2020) provided the model with an overall medical
context. PubMed and filtered web medical corpus
were two major sources, each contributed around
2.5B tokens each in the final training dataset.

Proprietary medical datasets. We also curated a
deidentified proprietary medical dataset that con-
sists of real-world doctor-patient conversations
from the United States, Electronic Health Records
(EHR), SOAP (Subjective, Objective, Assessment,
and Plan) notes, and ROS (Review of System) tem-
plates. We also created a synthetic dataset compris-
ing of medical instructions, like extraction of medi-
cations from a medical conversation and grammar
correction of a generated medical note, respectively.
These instructions were generated with the help of
both humans and GPT-3.5/GPT-4. For some of the
instructions, we also included detailed explanation
as shown in (Mukherjee et al., 2023). Training
on such instructions with explanations, helped the
model better comprehend the medical notes and
understand the reasoning behind it, which was es-
pecially needed for the downstream medical docu-
mentation task. For example, we created a medical
instruction that asks the model to retrieve informa-
tion from a conversation as shown below:

You specialize in summarizing medical
conversations, providing clear and thor-
ough explanations so that people can
trust your summary with evidence. I
have part of a transcript from a conversa-
tion between my doctor and myself.
Task: Summarize the <targeted content>
from this conversation.
Requirements: <requirements>
Transcript: <transcript>

Then we further created instructions about review-
ing the generated note:

Your job is to review a given medical
note and generate an updated note.
Rules: <rules on how to review>.
List all the needed updates for the medi-
cal note as Updates. Return the updated
medical note as Updated Medical Note.
Transcript: <transcript>
Medical Note: <medical note>

Finally, both of them were used for training the
model to improve the model’s understanding of the
summarization task.

While we developed a much larger high-quality
custom dataset including more than 60B tokens,
currently only 14.89B tokens were used for this
training exercise.

2.2 Training Details
We performed training using FSDP (Zhao et al.,
2023) pipeline parallelism with hybrid sharding
and flash attention 2 on 32 A100 80 GB GPUs. We
continued training LLaMA2 13B using learning
rate of 5e-5 which decays to 1e-5 following a co-
sine schedule. We chose a relatively small batch
size of 256, to achieve more than 10K effective
gradient update steps. A medical conversation can
exceed 30 minutes and surpass 4K in context length.
Therefore, we used 8K context length by applying
positional interpolation (Chen et al., 2023a) to the
base model. We set the weight decay at 0.1 and a
warm-up step count to 50.
Robust Training. To be tolerant of machine
and experiment related mishaps, we used fixed
seed, checkpoints, and implemented phased train-
ing where we divided the training data into n sub-
sets. If the loss of a particular validation subset
started to stabilize, we reduced the sampling rate
in the next phase for efficiency.
Data Packing & Dedup. We packed data by sen-
tence to fit into max sequence length. We also
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Figure 1: Pretraining validation perplexity.

deduplicated our data to improve data quality (Lee
et al., 2021).
Loss. For the general corpus including C4, pub-
lic medical materials, we calculated the gradient
on every token. However, on proprietary instruc-
tion data, the loss was only calculated on response
tokens like (Mukherjee et al., 2023).

3 Evaluations

This section shows some of our continued pretrain-
ing results and evaluation methodology.

3.1 Pretraining

We employed two evaluation methods to monitor
pertaining. Firstly, we measured the perplexity
across all the data sources. We used a validation
set to track how efficiently the model learns from
each source. Figure 1 is a subset of evaluations
on EHR and MIMIC IV Note. EHR Note is 1K
notes sampled from our proprietary dataset, which
is the doctors’ written notes from real clinic visits.
MIMIC IV Note is 1K sampled deidentified critical
care notes from the public dataset (Johnson et al.,
2020). The Figure 1 shows that as the training
continues, the model progressively increases its
understanding of both data sets. However, MIMIC
IV has a much lower perplexity suggesting that the
base LLaMA2 model might have been trained on
this dataset during the initial pertaining process.

Secondly, for a holistic understanding of the gen-
eration quality, we used several few-shot (3-shot)
generative tasks for validation, that included:
1) Long text generation: This task is associated
with summarizing different categories of the subjec-
tive section of SOAP notes from medical transcripts
between doctor and patient. For example:

Prompt Summarize the patient’s chief
complaint from the given text.
Transcript: <transcript>
Output <response>

Training ROS Long Text Long Text
data (multi-choice) Rouge-1 Rouge-cls

(Acc %) (f1 %) (f1 %)
1B Total 47.36 44.81 41.53

MED 37.85 39.44 35.91
PUB 36.81 44.49 42.35

Table 2: Training data ablation results. The MED
dataset is derived from the 1B training dataset by exclud-
ing all the public datasets. Similarly, the PUB dataset is
produced by removing all medical datasets.

2) Medium text generation: This is a question an-
swering task on medical transcript. We curated this
data by modifying the Alpaca (Rohan et al., 2023)
pipeline on the collected transcription dataset. We
queried GPT-4 to generate questions prompting re-
sponses ranging from a few words to a full sentence
based on the transcription. For example:

Prompt Identify the patient’s current
medication.
Transcript: <transcript>
Output <response>

3) Short text generation: This comprises of ROS
(Review of System) - related classification tasks,
including questions about body system identifica-
tion (multi-choice), and absence or presence of
symptoms (single-choice). For example:

Prompt Is the patient showing signs of
depression, like persistent sadness, lack
of interest, or appetite changes?
Transcript: <transcript>
Output <response>

We measured Rouge-cls for tasks 1, 2 and accu-
racy for task 3, to monitor pretraining performance.
Each of evaluation dataset has 1000 examples.

Figure 2 demonstrates that our model’s perfor-
mance consistently improved in generating long
and medium texts, and in multi-choice classifica-
tion. However, no significant improvement was
observed in single-choice classification. We at-
tribute this to the already high accuracy numbers
and the fact that further improvement was noted
when the model was separately trained on a smaller
related dataset, indicating potential enhancements
with scaled-up training.

3.2 Pretraining Ablation
Table 2 shows our examination of the effects of
varying data proportions using a 1B token dataset,
derived from a scaled-down version of our custom
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Figure 2: Pretraining validation generation capability monitoring.

Model #Incorrect #Irrelevant #Missed
Human 1.20 0 11.20
GPT-4 0.80 0.20 6.75

Med-PaLM 2 1.36 0 10.50
GPT-3.5 2.00 1.71 8.50

†LLaMA2-chat-13B 4.14 4.71 11.21
†PMC-LLaMA-13B 1.57 0.43 15.14

*LLaMA2-13B 1.50 0.14 9.86
*MedLLaMA-13B 2.07 0.71 11.57

*Meditron-7B 3.00 0.57 10.64
HEAL 0.85 0.30 4.30

Table 3: Average entity errors comparison. Both
* and † are fine-tuned models. * indicates a pretrained
model was used as the base, † denotes a fine-tuned
instruction model was used as the base.

15B dataset on the 7B LLaMA2 model. The abla-
tion study revealed that removing general datasets
from the mix detrimentally impacted the model’s
generative abilities, resulting in decreased sum-
marization quality. We were also able to con-
clude that the medical datasets indeed improved
the model’s understanding of the medical context.
Consequently, we decided to use equal proportions
of these datasets during training to maintain the
model’s generative abilities while improving its
understanding of medical contexts.

3.3 Medical Note Generation

Evaluation Dataset and Setup. We compared
the HEAL model to several general and medi-
cal SOTA models, including the high-end GPT-
4, GPT-3.5, and Med-PaLM 2 (Singhal et al.,
2023) and other similarly sized open-source medi-
cal LLMs, as shown in Table 3. We meticulously
fine-tuned LLaMA2-Chat-13B (Meta, 2023) and
the PMC-LLaMA-13B (Wu et al., 2023) on med-
ical generative tasks of varying lengths, detailed
in Section 3.1 using 10K instruction samples. Pre-
trained models like LLaMA2-13B (Meta, 2023),
MedLLaMA (base model of PMC-LLaMA), and
Meditron-7B (Chen et al., 2023b) were explanation-
tuned on our proprietary dataset of 500K examples
to enhance their instruction-following capabilities.

We also compared these models to human scribes
from our production system (medical students who
underwent internal scribe training and received
monetary compensation for their services). All
the models and scribes were evaluated on generat-
ing the Subjective and Plan sections of the SOAP
medical note using 10 doctor-patient dialogue-style
conversations averaging 12 minutes each.
Evaluation Metric. We leveraged human medical
experts to evaluate these models. They developed
a rubric note for each transcript, highlighting all
essential medical information as separate medical
entities. Every entity symbolized a significant sen-
tence or phrase that a healthcare provider needed to
approve the note. On average, our experts identified
35 medical entities per transcript. We evaluated the
generated notes on three key parameters: Complete-
ness, Correctness, and Conciseness as outlined in
(Van Veen et al., 2023) using the following metrics:
1) Missed Information refers to the entities omitted
in the test note relative to the rubric note. This
metric reflects the test note’s completeness.
2) Incorrect Information implies the entities inac-
curately captured by the test note. This metric is
critical in healthcare where information accuracy is
essential, as misinformation can erode trust in AI.
3) Irrelevant information refers to extraneous ele-
ments in the test note not linked to the rubric note.
As lengthy medical notes require more time for
review, it’s crucial to reduce irrelevant information.
Results and Analysis. Table 3 compares the per-
formance of our HEAL model, other models, and
human scribes. Notably, HEAL surpasses all other
models in the Missed Information metric, indi-
cating a superior ability to identify and summa-
rize critical medical information. We attribute this
improved performance to our continued pretrain-
ing approach using complex medical instructions.
We also observed some inaccuracies due to ASR
(Automatic Speech Recognition) errors, yet both
our model and GPT-4 excelled at correcting these
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Dataset LLaMA2 PMC- GPT-4 Med- HEAL
13B LLaMA (5-shot) PaLM 2 13B

13B (best)
PubMedQA 76.40 77.90 75.2 81.8 78.4

MedQA 45.48 56.36 81.4 86.5 47.2

Table 4: Accuracy (%) on PubMedQA and MedQA.

mistakes. Human scribes and Med-PaLM 2 cre-
ated concise notes but missed vital medical details.
Other models, such as GPT 3.5, MedLLaMa, and
LLaMA2-chat, struggled to grasp real-world con-
versation nuances, as shown by their high Incorrect
and Missed Information scores. Overall, our model
shows exceptional performance in all metrics of the
task, outperforming both human scribes and other
fine-tuned models.

In our detailed quality evaluation, we found that
a human scribe takes about 1.67 times longer than
the audio recording to create a medical note. How-
ever, AI models can generate the same note almost
instantly, demonstrating the efficiency and time-
saving capabilities of AI in medical transcription.

3.4 Public Benchmark

Although HEAL is specifically designed for medi-
cal note summarization, we also tested its perfor-
mance against other LLMs on two popular medical
benchmarks to evaluate its efficiency in other med-
ical tasks.
PubMedQA (Jin et al., 2019) A biomedical QA task
to answer research questions with yes/no/maybe
using the corresponding PubMed paper snippets.
MedQA (Jin et al., 2021) Multi-choice questions
extracted from US Medical License Exams.

In PubMedQA, Med-PaLM 2 with the best
prompting strategy (Singhal et al., 2023) took ad-
vantage of its huge size and further tuning on Pub-
MedQA data to achieve the highest score. As
shown in Table 4, HEAL achieved 78.4% accu-
racy after tuning, which surpasses GPT-4’s perfor-
mance (Nori et al., 2023), fine-tuned LLaMA2 and
even PMC-LLaMA (Wu et al., 2023) which is fur-
ther tuned on 75B PubMed data. Our improved per-
formance can be attributed to our proprietary medi-
cal instruction data on conversational data which
focuses more on medical understanding.

In MedQA, we attained a 47.2% accuracy rate,
surpassing the LLaMA2 13B model yet falling
short of PMC-LLaMA. MedQA focuses on medi-
cal reasoning, requiring the model to recall medical
knowledge and derive diagnoses or solutions from
specified problems. Larger models like GPT-4,
Med-PaLM 2, or those trained with vast amounts of

data hold an inherent advantage in this task. HEAL,
which is geared towards interpreting medical con-
versations, does not align with this task, yielding
suboptimal performance on this dataset.

4 Conclusion

This paper presents our work of developing a med-
ical LLM capable of comprehending and summa-
rizing medical conversation. As a result, this is
the first model, with significantly fewer parameters,
to outperform humans, existing medical LLMs in-
cluding Med-PaLM 2, PMC-LLaMA and perform
on par with GPT-4. Our evaluation shows that even
small-scale continued pretraining of smaller LLMs
can show impressive gains. We believe that scaling
up our training can further improve results. Our
work presents a promising development in health-
care documentation and other medical areas.

5 Related Work

Medical LLMs. Various medical LLMs such as
MedGPT (Kraljevic et al., 2021), and Med-PaLM
2 (Singhal et al., 2023) show how training on var-
ious medical datasets, improves model’s perfor-
mance on medical knowledge understanding tasks.
MEDITRON-70B (Chen et al., 2023b), the state-of-
the-art open-source LLM and PMC-LLaMA (Wu
et al., 2023) demonstrates the effectiveness of task-
specific fine-tuning and instruction tuning.
Domain adaption LLM. As demonstrated by (Gu-
rurangan et al., 2020), (Beltagy et al., 2019), con-
tinued pretraining on unlabeled, domain-specific
data boosts model performance on domain tasks,
providing a practical solution when resources for
scratch domain-adaptive pretraining are limited.
Medical Note Generation. Prior work by (Zhang
et al., 2021), (Van Veen et al., 2023) demonstrated
the feasibility of using Language Models to gener-
ate medical summaries from dialogues. However,
they primarily aimed at producing partial notes or
semi-automated methods requiring human involve-
ment, rather than comprehensive, provider-ready
reports.
Explanation tuning. Orca (Mukherjee et al., 2023;
Mitra et al., 2023) models showcased that smaller
Language Models capable of sound reasoning can
efficiently perform complex tasks. They were
trained by explanation tuning a LLaMA2 13B
model (Touvron et al., 2023) using bigger mod-
els like GPT4 as a teacher.
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6 Ethical Considerations

All the data processing and experiments were done
in HIPAA-compliant environment. We deidentified
clinical data to remove any PHI information as per
our data compliance agreement. HEAL is only
used for internal medical tasks like summarization,
transcription based Q&A, and note review. All
prompts are audited to prevent unintentional usage.

7 Limitations

Our design focuses on contextual comprehension
and summarization of transcripts, and can be fur-
ther improved on MedQA or similar benchmarks
with training on more medical data. Future projects
could explore utilizing more sophisticated base
models, curating higher quality data with a bal-
anced mix of medical knowledge and reasoning
content, and scaling up the experiment.
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