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Abstract
Prompt tuning, which freezes all parameters
of a pre-trained model and only trains a soft
prompt, has emerged as a parameter-efficient
approach. For the reason that the prompt ini-
tialization becomes sensitive when the model
size is small, the prompt transfer that uses the
trained prompt as an initialization for the tar-
get task has recently been introduced. Since
previous works have compared tasks in large
categories (e.g., summarization, sentiment anal-
ysis), the factors that influence prompt transfer
have not been sufficiently explored. In this
paper, we characterize the question answering
task based on features such as answer format
and empirically investigate the transferability
of soft prompts for the first time. We analyze
the impact of initialization during prompt trans-
fer and find that the train dataset size of source
and target tasks have the influence significantly.
Furthermore, we propose a novel approach for
measuring catastrophic forgetting and investi-
gate how it occurs in terms of the amount of
evidence. Our findings can help deeply under-
stand transfer learning in prompt tuning1.

1 Introduction

Advances in large language models (LLMs) (De-
vlin et al., 2018; Brown et al., 2020; Raffel et al.,
2020) have continued to be made since the ad-
vent of the Transformer (Vaswani et al., 2017).
As LLMs grow larger and larger, prompt tuning
(Lester et al., 2021) is introduced to reduce the
computational costs. This approach, which freezes
all parameters of a pre-trained model and only
trains a soft prompt, requires updating fewer param-
eters than fine-tuning while achieving comparable
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1We release our code and prompt checkpoints at
https://github.com/ailab-prompt-transfer/qa_
prompt_transfer.

performance in many natural language processing
(NLP) systems.

However, especially in model sizes below 11B
parameters, prompt initialization causes perfor-
mance differences. Recently, prompt transfer (PoT)
was proposed in SPoT (Vu et al., 2022) as a way
to better initialize prompts, in which a prompt em-
bedding trained for a source task is used for initial-
ization before training the target prompt. TPTTASK
(Su et al., 2022) claims that the performance is
effective when initialized with the best zero-shot
prompt. Several studies modified the prompt learn-
ing process to improve performance (Li et al., 2022;
Asai et al., 2022; Zhong et al., 2022; Wang et al.,
2023; Xie et al., 2023). The effectiveness of these
approaches achieves better or comparable perfor-
mance with prompt tuning and fine-tuning.

Nevertheless, previous studies unexplored the
factors influencing transferability and only focused
on large categories of tasks. Therefore, our goal
is not only to refine the categorization of Question
Answering (QA) tasks but also to investigate the
impact on prompt transferability.

Our study is the first to examine PoT across QA
datasets, and we report four important findings:
(1) Transferability has different trends for each tar-
get task. (2) Initialization with the prompt that
has high cosine similarity or high zero-shot perfor-
mance does not always guarantee positive transfer-
ability. (3) Transferability is related to the differ-
ence in the train dataset size between the source
and target tasks. (4) We identify the conditions for
catastrophic forgetting to occur from an amount of
evidence perspective and propose a new method to
measure it.

2 Preliminary

2.1 Formulation

Similar to T5 (Raffel et al., 2020), we applied a text-
to-text approach to the QA task. Given N train data,
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Dataset Answer format Amount of evidence Train Valid Test
DuoRC (Saha et al., 2018) Freeform Partial 60,094 12,845 12,415
NQ-Open (Lee et al., 2019) Freeform No 79,132 8,793 3,610
WQ (Berant et al., 2013) Freeform No 3,400 378 2,032
MRQA-NewsQA (Trischler et al., 2017) Extractive Single 66,744 7,416 4,212
SQuAD (Rajpurkar et al., 2016) Extractive Single 78,839 8,760 10,570
BoolQ (Clark et al., 2019) Categorical Single 8,484 943 3,270
MultiRC (Khashabi et al., 2018) Categorical Single 24,518 2,725 4,848
TQA (Joshi et al., 2017) Freeform Partial 78,859 8,763 11,313
CosmosQA (Huang et al., 2019) Multi-choice Partial 22,735 2,527 2,985
SIQA (Sap et al., 2019) Multi-choice Partial 30,069 3,341 1,954
SQuAD w/o ctx Freeform No 78,839 8,760 10,570
BoolQ w/o ctx Categorical No 8,484 943 3,270
MultiRC w/o ctx Categorical No 24,518 2,725 4,848
TQA w/o ctx Freeform No 78,859 8,763 11,313
CosmosQA w/o ctx Multi-choice No 22,735 2,527 2,985
SIQA w/o ctx Multi-choice No 30,069 3,341 1,954

Table 1: The details of QA datasets. "w/o ctx" refers to the removal of context from the original dataset to evaluate
the influence of the amount of evidence.

we performed gradient updates to the following
log-likelihood objective: maxΘ

∑N
i log pΘ(yi|xi)

where xi is the input text, and yi is the output se-
quence.

max
θP

N∑

i

log pθ,θP(yi|[P;xi]) (1)

The prompt tuning method proposed in Lester et al.
(2021) is represented by Equation 1. The parame-
ter of a pre-trained language model θ is fixed, and
only the prompt parameter θP of the soft prompt
P = [p1, p2, . . . , pl] ∈ Rl×d is learnable. We use
the prompt length l = 100, and d is the input di-
mension of the model.

2.2 Datasets

Following the two classification systems from
Rogers et al. (2023), we show 16 QA datasets2

used in our analysis in Table 1. Detailed descrip-
tions of each dataset are provided in Appendix A.

First, the amount of evidence is how much evi-
dence is provided to answer the question. Single
Source indicates that the information required to
answer the question is explicitly contained within a
context. Partial Source means that although some
evidence is available, it needs to be integrated with
external knowledge to answer the question. No
Source needs to find answers solely from implicit
knowledge. The more evidence available to answer
a question, the more explicit knowledge exists; con-

2In cases where only one of valid or test datasets was
available such as Rajpurkar et al. (2016), we used it in the
testing process. Additionally, we split the train datasets into a
9:1 ratio, and used it in the train and valid process, respectively.
The number of datasets we used is shown in Table 1.

versely, the less evidence, the more implicit knowl-
edge exists.

Second, the answer format is divided into four
types. Extractive format refers to when the answer
span can be found within the provided context. Cat-
egorical format denotes that the correct answer is in
a pre-defined option, exclusively employing yes or
no formats in our dataset. Multi-choice format indi-
cates that answer options are given, and the answer
is to be chosen from among them. Lastly, Freeform
format refers to cases where the model generates
answers without following a specific format.

3 Results and Analysis

To study the transferability of soft prompts, we
used 16 QA datasets as the source and target tasks.
The main terms referred to in this section are as
follows: (1) vanilla prompt tuning (Vanilla PT), the
result of training the prompt in Equation 1 after
random initializing; (2) zero-shot performance, the
result of solving the target task using the source
prompt without additional training; and (3) prompt
transfer (PoT), the result of initializing the target
prompt with the selected source prompt and train-
ing it as shown in Equation 1. For our experiments,
we used the T5BASE

3 as our base LM. Further ex-
perimental details are in Appendix B.

3.1 Transferability with Initialization
Can transferability be interpreted as cosine sim-
ilarity? As shown in Figure 1, we investigated
the prompt transferability with cosine-similarity.
We can observe that prompt embeddings with the

3https://huggingface.co/t5-base
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(a) (b)

Figure 1: (a) Heatmap of our task transferability results. (b) Heatmap of the cosine similarities between the source
prompt embeddings. The colors of the task names indicate the answer format type: Blue, Extractive; Green,
Categorical; Brown, Freeform; Yellow, Multi-choice.

Target Task Random Best Source Task Zero-shot PoT Worst Source Task Zero-shot PoT ∆

DuoRC 2.14 SQuAD 32.86 35.56 BoolQ 0.77 36.79 -1.23
NQ-Open 0.00 SQuAD w/o ctx 1.66 2.30 MultiRC w/o ctx 0.00 1.99 +0.31
WQ 0.00 NQ-Open 3.69 3.99 MultiRC 0.00 2.51 +1.48
MRQA-NewsQA 4.80 SQuAD 38.39 41.90 MultiRC 1.16 38.49 +3.41
SQuAD 13.96 DuoRC 78.90 81.57 CosmosQA 1.07 81.28 +0.29
BoolQ 0.00 MultiRC 67.37 76.70 SIQA w/o ctx 0.00 78.38 -1.68
MultiRC 0.06 BoolQ 69.68 74.05 TQA 0.00 78.57 -4.52
TQA 13.21 DuoRC 39.51 43.58 MultiRC 1.87 44.06 -0.48
CosmosQA 2.91 SIQA 78.22 82.81 MultiRC 0.00 82.81 0.00
SIQA 0.61 CosmosQA 99.28 99.59 BoolQ 0.00 99.64 -0.05
SQuAD w/o ctx 0.00 NQ-Open 0.96 1.74 BoolQ 0.00 1.65 +0.09
BoolQ w/o ctx 19.27 BoolQ 47.83 51.13 SIQA w/o ctx 0.00 62.17 -11.04
MultiRC w/o ctx 43.05 MultiRC 57.86 58.15 SQuAD w/o ctx 0.00 58.54 -0.39
TQA w/o ctx 0.15 SQuAD w/o ctx 5.09 4.06 BoolQ w/o ctx 0.02 4.15 -0.09
CosmosQA w/o ctx 0.20 SIQA w/o ctx 74.64 82.65 MultiRC 0.00 82.45 +0.20
SIQA w/o ctx 0.46 SQuAD 26.46 99.39 BoolQ 0.00 99.33 +0.06

Table 2: Relativeness of zero-shot and PoT performance. Random indicates the performance after random
initialization. Best Source Task represents the best performance task in a zero-shot setting. Worst Source Task
represents the worst performance task in a zero-shot setting. Each score is EM. The difference in the PoT scores
between Best Source Task and Worst Source Task is denoted by ∆. When the Zero-shot scores are equal, we
chose the source task with the higher PoT score.

same answer formats are clustered together in Fig-
ure 1(b). However, Figure 1(a) demonstrates that
the high similarity score between the source and
target task does not necessarily result in positive
transferability. For example, even though the trans-
fer BOOLQ (Clark et al., 2019) → MULTIRC
(Khashabi et al., 2018) has the highest similar-
ity score of 0.9, it yields a negative transferabil-
ity of −2.8%. We note that the PoT performance
varies significantly depending on the target task.
Therefore, prompt initialization with high cosine-

similarity does not guarantee performance improve-
ment. As a result, we find that it is not suitable to
interpret transferability through cosine-similarity
in the QA task.

Can transferability be interpreted as zero-shot
performance? To verify the effectiveness of se-
lecting the best zero-shot prompt when used for ini-
tialization, we compare PoT performance between
the best and worst zero-shot prompts in Table 2.
When initialized with the best zero-shot prompt,
it only outperforms the worst one in 7 out of 16
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Figure 2: Normalized transferability difference based
on the train datasets size. The X-axis refers to each
case where the target dataset size is bigger, equal, and
smaller than the source dataset size. The Y-axis denotes
the difference between the PoT performance and the
vanilla prompt performance after normalization.

cases. The mean absolute error was 1.58, indicat-
ing that the performance difference is approximate.
Additionally, Figure 5 and Figure 6 indicate that
most cases converge to similar values as the epoch
progresses, regardless of which source prompt is
selected. It can therefore be seen that the method
proposed in Su et al. (2022) cannot assure better or
comparable transfer performance in the QA task.

Effect of Dataset Size In Table 4, the PoT perfor-
mance varies considerably depending on the target
task. Therefore, we applied min-max normaliza-
tion4 to each target task to compare the correlation
between the source and target tasks. We classi-
fied the QA datasets based on the number of train
datasets into small, medium, and large (see Ap-
pendix D). Subsequently, we divided into three
groups 5 founded on the difference in size between
the source task and target task as follows: Target >
Source, Same and Target < Source.

As shown in Figure 2, the normalized task trans-
ferability results are based on the difference in the
dataset group size between the source task and the
target task. Regarding the Target < Source group,
most cases show positive transferability. The me-
dian (Q2) of each box plot indicates a tendency to
drop in the sequence of Target < Source, Same, and

4See the formula in Appendix C.
5For example, Target > Source, indicating the train dataset

group of the target task is larger than the source task (e.g.,
target task: large, source task: small).

Target > Source. We demonstrate that the dataset
size of the source and target tasks in the QA task is
a key factor in transferability.

3.2 Investigating Catastrophic Forgetting
Catastrophic Forgetting Formula Catastrophic
forgetting (Kirkpatrick et al., 2017) is the ten-
dency for previously learned task knowledge to
be abruptly lost as information relevant to the cur-
rent task is incorporated. However, there is still no
clear method for measuring this phenomenon.

Therefore, we propose a novel metric for evalu-
ating catastrophic forgetting:

(Zero-shot correct) ∩ (PoT incorrect)

Zero-shot correct
(2)

where Zero-shot correct is the case of correct re-
sponses in a zero-shot setting, and PoT incorrect is
the case of incorrect answers after prompt transfer
in the target task. In a zero-shot setting, correct
responses indicates that the trained prompt from
the source task retains valuable information for the
target task. On the other hand, incorrect answers
after additional learning with the target task indi-
cate forgetting of source task knowledge relevant
to the target task.

We analyse catastrophic forgetting in terms of
the amount of evidence in the QA datasets. Single
Source use the most explicit knowledge, followed
by Partial Source, and No Source. The relation-
ship between explicit and implicit knowledge is
a trade-off. When comparing the quantity of ex-
plicit and implicit knowledge with the amount of
evidence, Equation 2 is used for cases where the
target task has a bigger, equal, or smaller amount
of explicit knowledge than the source task.

Analyzing Catastrophic Forgetting As illus-
trated in Figure 3, the results compare the extent
of catastrophic forgetting based on the levels of ex-
plicit and implicit knowledge in each dataset. If the
source task has more explicit knowledge or less im-
plicit knowledge than the target task, catastrophic
forgetting tends to occur. In the right side6 of Fig-
ure 3, Partial-Single, No-Single, and No-Partial are
displayed mixed together and the left also shows a
similar trend. As a result, the existence of a knowl-
edge gap between the source and target task is more
influential in catastrophic forgetting than the extent
of the knowledge gap.

6Explicit: Target < Source indicates that the amount of
explicit knowledge of the target task is less than the amount
of explicit knowledge of the source tasks.
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Figure 3: Percentage of Catastrophic Forgetting based
on the amount of evidence. The X-axis shows the differ-
ences between the target and source task according to
the amount of evidence. The Y-axis represents the per-
centage of catastrophic forgetting. Each label indicates
the amount of evidence type in Target-Source order.

4 Conclusion

In this paper, we study PoT in the QA task. In
particular, we empirically investigate prompt ini-
tialization, demonstrating that the difference of
train dataset size between source and target tasks
is affecting the transferability. We also define a
novel method to measure catastrophic forgetting
and show that there is a relationship between the
amount of evidence in QA datasets and the ten-
dency of catastrophic forgetting. Finally, our fine-
grained analyses provide meaningful insights to
help improve the performance of PoT.

Limitations

Our paper has two limitations as follows: First, we
only perform all experiments on the T5BASE model.
We cannot serve results on various models and
model sizes because of our limited computational
resources. Secondly, although we show the type
of occurrence for catastrophic forgetting by our
proposed evaluation metric, we do not present an
approach to mitigate them.

In further experiments, we observe the possibil-
ity that prompt transferability could be influenced
by different model architectures, prefixes, or other
factors. Therefore, in the future work, we will ex-
plore strategies to save the knowledge of source
tasks related to target tasks and investigate the use

of various backbone models.
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A Datasets

Table 1 displays the datasets used in our experi-
ments. More descriptions of each dataset are as
follows:

• DuoRC (Saha et al., 2018) is a reading com-
prehension dataset with low lexical overlap
between questions and context. It has unique
question-answer pairs generated from a movie
plots collection. The original dataset included
no answer, but we only used the data that has
an answer. Background and common sense
are required to derive the answer, surpassing
the context’s explicit knowledge. We used
the dataset from https://huggingface.co/
datasets/duorc/viewer/SelfRC.

• The original Natural Questions (NQ) dataset
was introduced by Kwiatkowski et al. (2019).
The NQ-Open, which removes the context
from NQ, was introduced by Lee et al.

(2019). We used the dataset from https:
//huggingface.co/datasets/nq_open.

• The WebQuestions (WQ, Berant et al.,
2013) dataset consists of questions that can
be answered via Freebase. The dataset
link we used, https://huggingface.co/
datasets/web_questions, only provides a
freebase link, so we did not use a separate
context.

• MRQA-NewsQA. NewsQA (Trischler et al.,
2017) is a machine comprehension dataset
composed of CNN news articles. The an-
swers consist of spans of texts from the article.
We used the NewsQA dataset from https:
//huggingface.co/datasets/mrqa, within
the MRQA (Fisch et al., 2019) benchmark.

• The Stanford Question Answering Dataset
(SQuAD, Rajpurkar et al., 2016) is a bench-
mark dataset in machine reading comprehen-
sion. It comprises Wikipedia articles accom-
panied by question-answer pairs formulated
by human annotators. Answers in SQuAD
are spans of text directly extracted from
the provided context. We used the dataset
from https://huggingface.co/datasets/
squad.

• BoolQ (Clark et al., 2019) is a format
of yes/no questions. A context is given
along with question-answer pairs. We used
the dataset from https://huggingface.co/
datasets/boolq.

• The MultiRC (Khashabi et al., 2018) dataset
consists of a paragraph (context), ques-
tion, and answer as well as a label to de-
termine whether the answer to the ques-
tion was correct. We used this dataset to
solve a categorical answer format problem
that determines whether the answer to a
question is correct. We used the dataset
from https://huggingface.co/datasets/
super_glue/viewer/multirc.

• TriviaQA (TQA, Joshi et al., 2017) is a read-
ing comprehension dataset, which is more
challenging than other QA datasets because
the questions cannot be answered directly by
span prediction and the context is much longer
than other benchmarks. We used two ver-
sions of TQA: the unfiltered version (TQA)
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and the unfiltered.nocontext version (TQA
w/o ctx). We used the dataset from https:
//huggingface.co/datasets/trivia_qa.

• CosmosQA (Huang et al., 2019) requires
commonsense-based reading comprehension
and consists of questions that require addi-
tional knowledge rather than extracting spans
from the context. The answer is in the form
of choosing one of four options. We used
the dataset from https://huggingface.co/
datasets/cosmos_qa.

• Social Interaction QA (SIQA, Sap et al., 2019)
is a dataset for testing commonsense reason-
ing about social situations. The answer is
to choose one of three options. We used
the dataset from https://huggingface.co/
datasets/social_i_qa.

B Training Details

In prompt tuning, we trained a soft prompt using
a NVIDIA RTX A5000 single GPU with 23GB
memory. We applied the AdamW optimizer with a
learning rate 0.005, set batch size of 16, and used
early stopping in three steps. We set the soft prompt
length l=100, which is the same as most prompt
transfer settings (Vu et al., 2022; Asai et al., 2022;
Su et al., 2022; Wang et al., 2023).

C Min-Max Normalization

The PoT performance for each target task is nor-
malized using a formula derived with reference to
(Patro and Sahu, 2015). We remove the denomina-
tor from the formula because sometimes it becomes
zero. The formula we used is as follows :

Normalized PoT score

=
(PoT score)− (V anilla PT score)

max(PoT score)−min(PoT score)
(3)

D Comparing Train Dataset Size

Figure 4 illustrates the categorization of QA
datasets based on the size of train datasets.

E Prompt Transfer Performance in Each
Epoch

Figure 5 and Figure 6 show that as the epoch pro-
gresses, the influence of initialization gradually
decreases. The red and blue lines denote the scores

Figure 4: QA dataset size. Each color indicates the train
dataset group: Green, small; Blue, medium; Red, large.

per epoch for the Best Source Task and Worst
Source Task shown in Table 2. Specifically, even
though some prompts have EM score of 0 in the
zero-shot setting, they achieve better or compara-
ble PoT performance than prompts with the best
zero-shot performance.

F Zero Shot Performance

The full results of zero-shot performance are shown
in Table 3.

G Prompt Transfer Performance

The full results in our experiments are shown in
Table 4.
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(a) BoolQ (b) BoolQ w/o ctx

(c) MultiRC (d) MultiRC w/o ctx

(e) SQuAD (f) SQuAD w/o ctx

(g) TQA (h) TQA w/o ctx

Figure 5: Prompt Transfer Performance in Each Epoch.
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(a) CosmosQA (b) CosmosQA w/o ctx

(c) SIQA (d) SIQA w/o ctx

(e) DuoRC (f) MRQA-NewsQA

(g) NQ-Open (h) WQ

Figure 6: Prompt Transfer Performance in Each Epoch.
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