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Abstract

The Directed Acyclic Transformer is a fast
non-autoregressive (NAR) model that performs
well in Neural Machine Translation. Two is-
sues prevent its application to general Natural
Language Generation (NLG) tasks: frequent
Out-Of-Vocabulary (OOV) errors and the in-
ability to faithfully generate entity names. We
introduce Control-DAG, a constrained decod-
ing algorithm for our Directed Acyclic T5 (DA-
T5) model which offers lexical, vocabulary and
length control. We show that Control-DAG
significantly enhances DA-T5 on the Schema
Guided Dialogue and the DART datasets, estab-
lishing strong NAR results for Task-Oriented
Dialogue and Data-to-Text NLG.

1 Introduction

Non-autoregressive (NAR) models for text gener-
ation offer the promise of much faster generation
than auto-regressive (AR) models. However NAR
models have been largely developed for Neural Ma-
chine Translation (NMT) (Xiao et al., 2022), with
other Natural Language Generation (NLG) tasks
less well studied. We will show how a NAR model
developed for NMT, the Directed Acyclic Trans-
former (DAT) (Huang et al., 2022), can be used for
generation in Task-Oriented Dialogue (TOD) and
Data-to-Text (D2T) scenarios.

DATs as originally developed for NMT perform
poorly in NLG on TOD and D2T tasks: they fail
to generate specified entity names in up to 40% of
responses and frequently (>20%) produce Out-Of-
Vocabulary (OOV) words. Practical systems must
operate at zero error rate in these aspects to be
deployable at scale. Previous NAR study reported
similar error patterns (Xiao et al., 2022). Unless
these shortcomings are addressed, NAR models
will not be usable for general NLG.

We introduce three constrained decoding proce-
dures for NLG using DATSs. Our approach converts
Directed Acyclic Graphs (DAG) generated by DAT

into Weighted Finite State Automata (WFSA). We
then intersect these WFSAs with other automata
that are defined to ensure that designated entities
(lexical constraints) are generated and OOVs are
eliminated (vocabulary constraints). To avoid gen-
erating responses that are too short, we employ
a Viterbi decoding algorithm to control the target
length of the generated text (length constraints).
We refer to the decoding procedure that in-
corporates all these steps as Control-DAG. We
evaluate extensively on the Schema Guided Di-
alogue (SGD) (Rastogi et al., 2020) and the Data
Record To Text (DART) datasets (Nan et al., 2021)
for NLG in TOD and D2T domains. Our Di-
rected Acyclic TS model, when decoded with
Control-DAG, is free from OOV error, faithfully
generates all specified entity names, and achieves
marked BLEU and BLEURT gains on both datasets.
We use pynini (Gorman, 2016) for WFSA opera-
tions. Our contributions are summarized below:

1. We introduce Control-DAG, a constrained de-
coding algorithm which simultaneously offers
lexical, vocabulary, and length controls for
Directed Acyclic models, addressing key limi-
tations in NAR text generation.

2. We demonstrate the effectiveness of
Control-DAG on two major NLG tasks:
Task-Oriented Dialogues and Data-to-Text.
To our knowledge, DA-T5 with Control-DAG
is the first practical NAR benchmark on the
SGD and the DART datasets.'

2 Related Work

The Directed Acyclic Transformer (DAT) (Huang
et al., 2022) performs on par with AR baselines
in NMT and has attracted much interests. Shao
et al. (2022) developed a Viterbi decoding algo-
rithm for DAT. Ma et al. (2023) introduced a fuzzy

Code: https://github.com/EriChen0615/ControlDAG
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Figure 1: Control-DAG with lexical, vocabulary, and length constraints. 1. Directed Acyclic TS (DA-T5) takes the
input text to generate a Directed Acyclic Graph (DAG). 2. The DAG is pruned by likelihood, keeping K. most
likely output tokens and K; most likely out-going arcs, and converted into a Weighted Finite State Automaton
(WFSA). We show WFSA vertices and arcs in the upper-right corner. 3. For lexical and vocabulary constraints,
constraint FSAs are built from equivalent regular expressions (Sec.3.1). The length target predictor is a simple
linear predictor based on the input sequence length (Sec.4). 4. We intersect the WFSA with constraint FSAs to
obtain a constrained WFSA which only contains hypotheses that satisfy all lexical and vocabulary constraints. S.
DFS-Viterbi is used to obtain the most likely string in the constrained WFSA that satisfies the length constraint.

alignment objective to improve DAT training. In
NLG, PreDAT (Huang et al., 2023) pretrains a DAT
for open-domain dialogue, notably with high word
error rate reported even after extensive pre-training.
Our work highlights the links between DATs and
automata, and shows well-studied WFSA algo-
rithms (Mohri et al., 2002) can be used in con-
strained decoding to eliminate OOV errors.

Enforcing lexical constraints in auto-regressive
decoding has been studied extensively. Con-
strained beam search (CBS) (Post and Vilar, 2018;
Hu et al., 2019; Li et al., 2020) is a widely used
family of lexically constrained decoding procedure.
We show how CBS can be adapted to NAR Di-
rected Acyclic models.

3 Constrained Decoding with DA-TS

The architecture of our DA-T5 model follows that
of the DAT by Huang et al. (2022). Conceptually,
DAT takes an input sequence and generates a DAG
with a pre-determined number of DAG vertices.
Vertex embeddings are produced first, and then
token emission probabilities and state transition
probabilities are generated from these vertex em-
beddings via softmax and self-attention, resp. Each
vertex has a token emission distribution. These
vertices and transitions define a weighted DAG
that contains output string hypotheses. DAT uses a
vanilla Transformer to produce vertex embeddings
whereas we use TS5, hence the name DA-TS5.

In training DA-T5, we use ‘glancing training’

(Qian et al., 2021) as DAT. In inference, DAGs are
generated with DA-TS and converted to WFESAs.
The procedure is simply Moore-to-Mealy Machine
conversion (Appendix B.1). Prior to the conver-
sion, we perform likelihood-based pruning of each
vertex, keeping K. most likely output tokens and
K, most likely out-going arcs. This pruning bal-
ances coverage against decoding speed, with larger
thresholds leading to a more complete WFSA at
the cost of slower decoding.

3.1 Constrained Decoding

For hard lexical and vocabulary constraints we
build corresponding Finite State Automata (FSA).
Intersecting the WFSA with these constraint FSAs
produces a WFSA that only contains hypotheses
that satisfy all constraints (Mohri et al., 2002). For
length constraints, we propose a pruned version
of DAT Viterbi decoding by Shao et al. (2022) to
search for strings with specified length. Appendix
B gives implementation details and complexity
analyses. Figure 1 illustrates our Control-DAG
system with an example.

Hard Lexical Constraints (HLC) For each
phrase C; that must appear in the generation, we
construct a constraint FSA A; that accepts and
only accepts strings where the phrase C; appears at
least once, corresponding to the regular expression
“. % (C;).x” (IEEE, 2004). We then intersect the
WESA converted from the DAG with all of the con-

straint FSAs. The resulting WFSA Wy o contains
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# Decoding \ BLEURT BLEU BLEU-BP NEO| SER| Time Spd.Up
T5-small (Auto-regressive)
1  Greedy 69.7 28.8 1.00 0.0 0.49 13:30 x1.6
2 Beam search (BS) 70.2 29.1 1.00 0.0 0.12 16:05 x1.4
Constrained beam (CBS) 65.6 22.5 1.00 0.0 0.0 22:15 x1.0
Directed Acyclic T5-small (Non-Autoregressive)
4 Greedy 56.0 18.3 0.92 29.7 46.3 2:52 x7.8
5 Beam search 55.6 16.0 0.60 20.7 20.6  6:50 x3.3
6 CBS-DAG 59.8 21.7 0.73 19.2 0.0 5:57 x3.7
7  WFSA shortest path 53.8 13.0 0.44 12.2 34.8 3:04 x7.3
8 w/ HLC 58.1 20.2 0.58 11.0 0.0 5:16 x4.2
9 w/ VC 54.0 14.1 0.45 0.0 47.5  4:18 x5.2
10  w/ LC (DFS-Viterbi) 58.5 20.8 1.00 21.9 45.8 3:31 x6.3
11 Control-DAG 60.0 22.9 1.00 0.0 0.0 13:14 x1.7

Table 1: Main results on the SGD dataset. For reference, auto-regressive T5-small by Kale and Rastogi (2020)
achieves 26.2 BLEU and 0.80 SER. BP stands for the brevity penalty term in computing BLEU. SER stands for Slot
Error Rate in percentage. All speed ups are computed against auto-regressive constrained beam search. Constrained
beam search (Row 3) forces the replication of slot values that need to appear exactly and hence has zero slot
error rate. CBS-DAG (Row 6) refers to Constrained beam search adapted for Directed Acyclic Graph introduced
in Sec.3.1. HLC refers to Hard Lexical Constraint; VC is Vocabulary Constraint; and L.C is Length Constraint.

Control-DAG (Row 11) is WFSA shortest path decoding with HLC, VC, and LC applied simultaneously.

only hypotheses that satisfy all lexical constraints.

Vocabulary Constraints (VC) We build a vo-
cabulary FSA A, ocqp that accepts and only accepts
strings of words from a valid vocabulary; intersec-
tion with A,,cqp prevents OOV errors. Ayocqp 18
obtained from three FSAs: a dictionary FSA Ag;qt
that accepts and only accepts English words; a spe-
cial token FSA Ay, that accepts and only accepts
numbers, punctuation, and special tokens; and a
dynamic FSA Ag,, that accepts and only accepts
entity names specified in the input. The final vo-
cabulary FSA A, ,cqp is obtained by unioning the
three FSAs and taking the Kleene closure (Eq.1).

Avocab = (Adict U Aspec U Adyn)* (D

For efficiency, we perform a one-time deter-
minization and minimization (Mohri et al., 2002)
of the union (Ag;ct U Aspec) and store the optimized
FSA in memory.

Length Constraints (LC) Shao et al. (2022) in-
troduced a Viterbi decoding procedure for DAT that
finds the highest scoring hypothesis for each string
length. We find this exact Viterbi procedure to be
impractical because the number of WFSA states
can be large (>30,000) after intersection with the
constraint FSAs. We introduce a pruned version of
this procedure, Depth-First Search Viterbi (DFS-
Viterbi). DFS-Viterbi searches the WFSA with

DFS and keeps the best hypotheses of all possible
string lengths at each vertex to avoid repeated com-
putation. During DFS, we only explore the minimal
set of out-going edges such that their cumulative
probability is bigger than a threshold p. This prun-
ing is inadmissible but works well in practice. We
also introduce an exponential length penalty that
penalizes strings shorter than target length L4 and
select the hypothesis with the lowest overall costs.
In experiments to follow, L;,; is obtained via sim-
ple linear regression.

HLC with CBS In addition to automata-based
methods, we introduce CBS-DAG, a constrained
beam search algorithm for our NAR DA-T5. CBS-
DAG is straight-forwardly adapted from AR CBS
by Hu et al. (2019) (Appendix B.4).

4 Experiments and Results

We evaluate on the SGD and the DART
datasets. In SGD, the aim is to generate
natural utterances from dialogue actions (e.g.,
INFORM(destination=Cambridge)) that contain
the specified information. DART is a more general
data-to-text task that takes triplets of (SUBJECT,
RELATION, OBJECT) to generate natural texts.
Hyper-parameters and implementation details are
in Appendix A.
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Metrics We use BLEURT (Sellam et al., 2020)
and BLEU (Papineni et al., 2002) to measure text
quality relative to ground truth text. We also report
the BLEU Brevity Penalty (BP), as a small BP indi-
cates too short generation. For SGD, we use Slot
Error Rate (SER) (Kale and Rastogi, 2020) to eval-
uate lexical faithfulness. A slot error occurs when
a slot value that should be reproduced exactly (e.g.,
a phone number) is not in the generated text. For
DART, we use subjects/objects whose string val-
ues are always in the ground-truth training text as
hard lexical constraints and propose Exact Occur-
rence error Rate (EOR) for evaluation. EOR is the
percentage of model responses where at least one
of the string values from these subjects/objects is
missing. For OOV errors, we define neologism rate
(NEO) to be the percentage of model’s responses
that contain at least one OOV generation.

We emphasize that SER, EOR, and OOV are crit-
ical metrics as even a small error rate could lead to
an intolerable number of misleading responses for
systems deployed at scale. ‘Speed up’ is measured
against auto-regressive CBS implemented by Li
et al. (2020) with batch size of 1 to reflect a realis-
tic NLG system that operates at zero SER/EOR.

Training We train DA-TS5 from scratch by glanc-
ing training by Qian et al. (2021) on the SGD and
the DART datasets for 30 and 50 epochs, respec-
tively. Auto-regressive TS5 is trained following
Chen et al. (2023).

Decoding configurations Weuse K; = K. =3
and K; = K, = 5 for DAG-to-WFSA conversion
on SGD and DART, respectively. For LC, we fita
simple linear regression model on the training set to
predict the target token length given the input token
length. Decoding hyper-parameters are determined
on the validation sets.

4.1 Non-Autoregressive NLG on SGD

Table 1 reports NLG performance on SGD with
auto-regressive TS5 decoding in Rows 1-2 with
greedy and beam search. Although these sys-
tems yield high BLEURT and BLEU, they still
commit slot errors (SER=0.12%). Constrained
Beam Search (CBS) eliminates slot errors by forc-
ing the generation of designated slot values, but
with longer decoding times (16:05 — 22:15) and a
degradation in BLEU (—6.6) and BLEURT (—4.6)
compared to unconstrained beam search. This
constraint-quality trade-off is also observed in pre-
vious study (Post and Vilar, 2018); See Appendix

Decoding BLEURT BLEU NEO SER
Greedy 56.0 183 29.7 463
Lookahead 56.6 19.3 23.0 44.6
Viterbi 52.7 13.4 124 50.5
Joint Viterbi 52.1 12.6 10.5 50.6
Control-DAG 60.0 229 0.00 0.00

Table 2: Performance on the SGD dataset using Control-
DAG and other decoding algorithms in the literature.
NEO stands for Neologism rate. Huang et al. (2022)
proposed Lookahead. Shao et al. (2022) introduced
Viterbi and Joint Viterbi.

D for CBS failure modes. Auto-regressive TS5 is
completely free from OOV errors (NEO=0.0).

Turning to non-autogressive NLG, generation
with DA-T5 using common decoding methods
(greedy, beam search) leads to very high SER (>
20%) and OOV errors in at least 20% of the gen-
erated responses (Rows 4, 5). Although our CBS-
DAG (Row 6) eliminates SER by design and en-
hances quality as measured by BLEURT (+3.8) and
BLEU (+3.4), its neologism rate is still unusably
high (19.2%).

We now discuss the performance of our con-
strained decoding methods. Unconstrained WFSA
shortest path decoding (Row 7) is as fast as
greedy decoding, showing that DAGs can be ef-
ficiently converted to WFSAs. However, uncon-
strained generation directly from the WFSA fre-
quently leads to slot errors (SER=34.8%), OOV
errors (NEO=12.2%), and a harsh brevity penalty
(BP=0.44). These aspects of text quality can be
improved individually by constrained decoding
(Rows 8-10): Hard Lexical Constrained decod-
ing eliminates slot errors (SER=0); Vocabulary
constraints eliminate OOV errors (NEO=0); and
Length constrained decoding leads to better text
lengths (BP=1.0). Control-DAG (Row 11) com-
bines these methods to achieves zero SER and zero
neologism rate while satisfying the length require-
ment and yielding a speed advantage of x1.7 rela-
tive to auto-regressive CBS.

Table 2 shows the performance of using ex-
isting decoding procedures developed for DA-
Transformer to decode DA-TS on the SGD dataset.
Control-DAG has the overall best BLEU (22.9) and
BLEURT (60.0) .

4.2 Results on DART

The results on DART (Table 3) validate our findings
on the SGD dataset: Control-DAG yields the best
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# Model BLEURT BLEU BP NEOJ/ EOR| Time Spd.Up
T5-small (Auto-regressive)
1 Greedy 71.2 313 095 4.1 5.0 24:50 x1.3
2 Beam search 72.8 31.9 0.93 3.2 39 30:53 x1.1
3 Constrained beam 70.5 29.3  0.95 33 0.0 33:10 x1.0
Directed Acyclic T5-small (Non-Autoregressive)
4  Greedy 45.0 182 1.00 489 39.5 3:17 x10.1
5 Beam search 45.6 140 053 343 43.6 9:29 x3.5
6 CBS-DAG 46.0 189 0.80 36.1 0.0 7:26 x4.5
7  WEFSA shortest 42.1 10.8 038 273 454 3:49 x8.7
8 w/ HLC 46.8 144 046 244 0.0 9:39 x3.4
9 w/ VC 39.3 7.7 0.28 0.0 45.1  10:38 x3.1
10  w/ LC (DFS-Viterbi) 46.8 183 0.86 444 40.3 5:26 x6.1
11 CONTROL-DAG 46.8 19.0 1.00 0.0 0.0 24:03 x1.4

Table 3: Results on the DART dataset. The naming convention for metrics and decoding methods follow that in

Table 1. EOR is Exact Occurrence Error.

performance while maintaining a speed advantage
and each constrained decoding step contributes as
expected. We now contrast performance on DART
and SGD to show how Control-DAG performs on
tasks with very different characteristics.

DART has a challenging vocabulary that causes
even AR models to commit OOV errors. This is
also reflected by the much higher neologism rate
when decoding DA-T5 with greedy (48.9% versus
29.7% in SGD). This explains why less aggres-
sive pruning (top-5) is needed for DART relative
to SGD (top-3). We find the simple procedure
of searching the training data for subjects/objects
whose values are exactly reproduced and using
them as lexical constraints boosts DA-TS perfor-
mance by +4.7 BLEURT and +3.6 BLEU (Row
8, Table 3). This demonstrates that hard lexical
constraints are effective and easy to apply for less
lexically constrained NLG tasks such as DART.

5 Conclusion

We propose Control-DAG for decoding non-
autoregressive Directed Acyclic models with lex-
ical, vocabulary, and length constraints, address-
ing key limitations in NAR text generation. Con-
strained decoding is efficiently performed via well-
studied Weighted Finite State Automata algorithms.
DA-T5 with Control-DAG establishes strong NAR
results on the Schema Guided Dialogue and the
DART datasets, bridging gaps in NAR research.
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7 Limitation

Given our focus on decoding algorithms, we leave
further training and model scaling to future work.
It is possible to further improve inference speed
by writing the DAG-to-WFSA conversion and the
DFS-Viterbi algorithm in the C programming lan-
guage to reduce overhead from the python interface.
In this paper, we demonstrate substantial speed-up
can be achieved without these optimizations and
leaves further speed-up techniques to future work.
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8 Ethical Statement

We trained two versions of the DA-T5 model: one
on the training set of Schema Guided Dialogue and
one on the training set of the DART dataset. These
are English datasets and do not contain sensitive
personal information or offensive language. De-
tailed statistics of the SGD and DART datasets can
be found in Rastogi et al. (2020) and Nan et al.
(2021), respectively. We note that the model may
hallucinates information or generates language that
appears offensive. Some linguistic phenomena of
our DA-TS5 models are in Appendix D. It is vital
that developers test DA-TS fully before deploy-
ment.

All software packages that our code built on
are used as their original intention. Our code is
released under the MIT license.
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A Experiment setup details

Metrics details For BLEURT, we use the
BLEURT-20 checkpoint. For BLEU, we use the
sacrebleu implementation. Decoding times are
average of three runs on a single A100 GPU for
the SGD dataset and on a single V100 GPU for the
DART dataset.

Vocabulary for neologism evaluation From the
entire corpus, we extract all space-delimited words,
strip punctuation and numbers, and maintain true
cases. All words in the test corpus are also added to
the evaluation vocabulary without pre-processing.
Note that they are not added to the constraint vo-
cabulary for VC decoding to avoid leakage. For
the SGD, we also add all words in the slot names,
slot values, and slot descriptions from the schema,
resulting in a vocabulary of 19,126 words. In evalu-
ation, we only strip punctuation from words in the
generated texts. We also use the pyspellchecker
library (Tyler Barrus, 2018) to check that the word
in question is indeed OOV.

Exact Occurrence Error We go through the
training data to identify subjects/objects that are al-
ways present in the ground-truth text. For example,
we find that the subject of the relation priceRange
always appear in the ground-truth text. Whenever

priceRange appears during testing, we treat the
string value of its subject as hard lexical constraints.
If the string cannot be found in the generated text,
an exact occurrence error is flagged.

Data Preprocessing We linearize the input di-
alogue actions or triplets to strings as input to
our DA-T5 model. On the SGD, we follow the
Schema Guided Linearization by Kale and Rastogi
(2020) to process our input data. On DART, we
process the triplets into arrays of “<h> SUBJECT
<r> RELATION <t> OBJECT” where <h>, <r>, and
<t> are special tokens.

Training hyper-parameters The DAG vertex
size L is determined by the upsample factor A
(L = XA x N where N is the input length) with
A = 5 for both the SGD and the DART datasets.
We use the T5-small architecture with randomly
initialized weights to generate vertex embeddings
(79.3M trainable parameters). We train the model
with a learning rate of le-4, a batch size of 8 using
the AdamW optimizer. Glancing training is used
to facilitate training with a constant annealing fac-
tor 7 = 1.0. SGD training took around 13 hours
(25 minutes per epoch) on a single A100 GPU in-
cluding all validation runs. DART training took 24
hours on a single V100 GPU. We find that glancing
training is critical to successful training. Without it
the model performs poorly (4.6 BLEU on the SGD
when decoded with Greedy).

Target length predictor Let = be the input
length in tokens, L;;; = [26.1z + 0.4] for the
SGD and Ly = [0.52 + 11.9] for DART. Co-
efficients are fitted on the validation set. We use
strictness A = 1 in LC decoding.

Beam search Auto-regressive Beam Search (BS)
and Constrained Beam Search (CBS) use beam size
= 5. CBS-DAG uses a base beam size of 4 with
dynamic adjustment (Sec.B.4).

B Algorithmic details

B.1 DAG-to-WFSA conversion

A Weighted FSA (WFSA) consists of states and
weighted directed arcs connecting the states. The
outputs (tokens) are labeled on the arcs. DAG-
to-WFSA is simply Moore Machine to Mealy
Machine conversion by treating DAG vertices as
WESA states and exploding the output tokens at
DAG vertices to WFSA arc labels. WFSA arc
weights are the sum of negative log-likelihood for
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state transition and token emission. The best path
has maximal likelihood.

We prune the DAG before conversion to reduce
the number of WFSA arcs. For each vertex v in
the DAG, we only keep the top K. tokens and top
K, transitions in descending probabilities. We also
keep tokens that appear in the constraint phrases,
ensuring there exists paths that realize lexical con-
straints in the WFSA (Algo.2). Algo.l1 shows
pseudo-code. x denotes Cartesian product.

Algorithm 1 DAG to WFSA conversion

Inputs: DAG vertices V, transition matrix
FE, emission matrix P, emission degree K,
and transition degree K;. Lexical constraint
phrases C = [C1, ..., Ciy].

1 E+ 0

2: for u € topological_sort(V') do

3: T [u] < argtopk(Pu, :], K)

4: Slu] « argtopk(E[u, ], K;)

5: T u] <= T[u] U FORCEEMIT(u, C)

> Forced emission (Algo.2)

6: for t,v € Tu] x S[u| do

7: w = —(log Plu, t] 4+ log E[u, v])
8 e < (u,t,w,v)

9 E+— EU{e}

10: end for

11: end for

12: Construct the WFSA with edge set £

Finding the shortest path has linear complex-
ity in the number of edges because our WFSA is
acyclic. The pruning parameters, /; and K., trades
of completeness with decoding speed. Larger val-
ues lead to a more complete WFSA at the cost of
longer decoding time.

B.2 Vocabulary Constraint

We elaborate on how to construct the FSAs for
vocabulary constraints below:

Dictionary FSA  From the training corpus, we ex-
tract space-delimited unigrams, strip numbers and
punctuation, sort them in descending frequency,
and cutoff at 90% cumulative frequency. This re-
sults in a vocabulary V' of 1129 words on the SGD
dataset. We then tokenize each unigram with the TS
tokenizer, build FSA that accepts and only accepts
the tokenized sequence (e.g. “photosynthesis”
— “_photo”, “synthesis”), and union these
FSAs to form the dictionary FSA A ;.

Algorithm 2 The ForceEmit function

Inputs: Vertex predecessors under top-K tran-
sition pruning Ny (v). Lexical constraint
phrases C = [C1,...,Cys|. Emission tokens
at all predecessor vertices 7T ]

1: function FORCEEMIT(u, C)

22 F+0

3: for phrase C; € C do

4: for token ¢; in C;[: —1] do
5: for v € N (u) do

6: ift; € T[v] then

7: F— FU{tjq}

> Force-emit the next token ;1 in phrase C;

8: end if

9: end for
10 end for
11: end for
12: return F

Special token FSA A, accepts and only
accepts punctuation “$&’ ()x+,-./:;=>7@[]_",
start-of-sentence <s>, end-of-sentence token </s>,
and TS5 tokenizer’s start-of-word mark (u2581 “_").

Dynamic FSA : Ag,, is built for each input.
Given the entity names, we tokenize them, build
FSAs that accepts and only accepts the token se-
quence for each entity, and take the union. Note
that entity names may include space. For exam-
ple, Agy, may accept “Hong Kong” but not the
constituent unigrams “Hong” and “Kong”.

B.3 Length Constraint

Algo.3 lists the DFS-Viterbi algorithm and the sym-
bol definitions. The recursive relation is given in
Eq.2. For each vertex, we memoize the current best
string of each length and their costs. The shortest
path is recovered with parent pointers.

O(u,l+1)= min w(u,v)+0(v,l) (2)

UEN; (u)

We fit a first-order linear model to predict target
length L;4; from input length. Length is measured
in tokens and coefficients are given in Appendix
A. Enforcing a strict length constraint can lead
to incomplete sentences. Therefore, we find the
best [—length string for [ = 1,..., Lypper, where
Lypper = min(Lyg + 5, Lige x 1.5) and intro-
duce an exponential length penalty (Eq.3) similar
to BLEU. The candidate with the lowest overall
cost C” (Eq.4) is chosen as the final generation. We
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use simple linear regression to specify the length
target Lyg.

Lp— €xP (A(Lige/1 - 1)), ifl< I./tgt 3)
1, otherwise

C' = LP x 6(us,1) “4)

The WFSA  software  implementation,

pynini (Gorman, 2016), allows us to effi-
ciently traverse the WFSA as graphs. Prior to
running DFS-Viterbi, we sort the WFSA states
topologically and perform epsilon-removal (Mohri
et al., 2002). Epsilon transitions do not have
actual token labels, and are removed to prevent
over-counting the output length. The WFSA can be
topologically sorted because intersection preserves
the acyclic property of its input: any cycles will
result in strings of unbounded length which cannot
be accepted by the acyclic WFSA.

Let |V| be the number of WFSA states. The
space complexity of memoization is O (Lyg x |V]).
The worst-case time complexity is exponential
O(Lgtl). However, we observe a linear time com-
plexity of O(L;g4:) when applying DFS-Viterbi to
our trained DA-T5 model. We attribute the effi-
ciency to: (1) memoization; (2) transition probabil-
ities are concentrated on a few successors. We find
that the number of out-going edges after pruning,
| N5 (u)|, approximates 1 when p = 0.7, leading to
very efficient search.

B.4 Constrained Beam Search for Directed
Acyclic Graphs (CBS-DAG)

CBS-DAG follows the beam expansion and prun-
ing rules in Dynamic Beam Allocation (DBA) (Post
and Vilar, 2018). Let K be the beam size. At each
vertex transition, CBS-DAG extends the beam with
the top- K tokens from model prediction, the next
token in active constraints, and the first token in
non-active constraints. Active constraints are iden-
tified by the KMP string-matching algorithm. After
beam expansion, we regroup the candidates into
“banks” by the number of unmet constraint tokens
and retain the most likely candidate within each
bank. We dynamically adjust the beam size such
that beam size is always larger than the number
of non-empty banks (i.e., the number of constraint
tokens plus one).

Algorithm 3 DFS-Viterbi finds the shortest path
with exactly L4 edges.

1: function DFS-VITERBI(u, [, 0, Ligt, NT, w)
2: Arguments:
3: u: current vertex.
4: [: target length (number of edges) from
vertex u to a final vertex.
5: d: memoization table storing shortest dis-
tance to vertex v with exactly [ edges.
F': set of final states (vertices).
N,f (u): minimal set of successors of ver-
tex u with cumulative probability > p.
w(u,v): edge weight from vertex u to v.
9: if v is in F' then

A

*®

10: return 0

11: end if

12: if §[u, ] is not NULL then

13: return o[u, []

14: end if

15: min_distance < oo

16:  forallv € N (u)do

17: dist < w(u,v)+ DFS-VITERBI(v, [ +
1,0, F, NT,w)

18: if dist < min_distance then

19: min_distance < dist

20: end if

21: end for

22: d[u, I] < min_distance

23: return min_distance

24: end function=0
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C Further Analysis

DA-TS produces sparse DAGs We find that DA-
T5 learns to produce a sparse DAG in the following
sense: on average, each vertex has 1.68 transitions
with probability > 0.2 and 1.58 emissions with
probability > 0.2 after training. These statistics
are computed over the validation set, and explain
why we can prune aggressively during WFSA-to-
DAG conversion (top-3 for the SGD and top-5 for
DART) for speed without much loss of information.

D Qualitative Study
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Reference SER NEO

Model input: Please confirm thg following (?Ietails: Book a table for 2 at Baan Thai
House & Wine Bar in San Francisco for 11:30 am on March 1st.
CONFIRM ( Name of the restaurant
COPY= Baan Thai House & Wine Bar )
CONFIRM ( City where the
restaurant is located COPY= San
Francisco ) CONFIRM ( Tentative
time of restaurant reservation Joint Viterbi
COPY= 11:30 am ) CONFIRM (
Tentative date of restaurant

Control-DAG

Please confirm the following details: Booking a table for 2 at Baan 0 0
Thai House & Wine Bar in San Francisco on March 1st at 11:30 am.

- Please confirm: Booking a table for 2 on March 1st at 11:30 am on 0 Q
reservation COPY= March 1st ) March 1st at 11:30 am.
CONFIRM ( Number of seats to
reserve at the restaurant = 2 ) CBS-DAG
Please confirm: March 1st for 11:30 am Baan Thai House & Wine Bar in 0 Q
San Francisco on March 1st at 11:30 am.

Explanation: When decoded with Joint Viterbi, DA-T5 drops the restaurant name. CBS-DAG fulfills all lexical constraints (followed
by "COPY="in the input), but misses how many seats to reserve and is repetitive.

Reference SER NEO

Model input' I found 6 songs. How about California King Bed by Rihanna from the
: album Loud?'

Control-DAG
OFFER ( Name of the song COPY=

California King Bed ) OFFER (
Performer's name COPY= Rihanna
OFFER ( Collection of the song
COPY= Loud ) INFORM_COUNT (

I found 6 songs for you. How about California King Bed by Rihanna 0 O
from the album Loud?'

Joint Viterbi

count = 6 )
I found 6 songs. How about Performhanna from theanna? 0 0
CBS-DAG
I found 6 songs. How about California King Loudd Bed by Rihanna by O 0
California King Beder from the album Louer Bed.

Explanation: When decoded with Joint Viterbi and CBS-DAG, the generation contains OOV errors ("Performhanna”, "Louer").
CBS-DAG is again repetitive. The text generated using Control-DAG is fluent and accurate.

Reference SER NEO

Model input: you will arrive at peachtree station

Control-DAG
INFORM ( Name of station at

ending city COPY= peachtree
station ) you will arrive at peachtree station 0 0

Joint Viterbi

peachtreee station Q 0

CBS-DAG
peachtree station 0 o

Explanation: Decoding with Joint Viterbi yields duplicated letter "e"s in the station name. While the generated text from CBS-DAG
is factually correct, it is too short and appears too blunt compared to the reference.

(v] No error

0 Has error

Figure 2: Case study comparing DA-T5 with Control-DAG, Joint Viterbi, and CBS-DAG decoding on the SGD
dataset.
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