Advancing Regular Language Reasoning in
Linear Recurrent Neural Networks

Ting-Han Fan*
Independent Researcher
tinghanf@alumni.princeton.edu

Ta-Chung Chi*
Carnegie Mellon University
tachungc@andrew.cmu.edu

Abstract

In recent studies, linear recurrent neural net-
works (LRNNs) have achieved Transformer-
level performance in natural language and
long-range modeling, while offering rapid par-
allel training and constant inference cost. With
the resurgence of interest in LRNNs, we study
whether they can learn the hidden rules in
training sequences, such as the grammatical
structures of regular language. We theoreti-
cally analyze some existing LRNNs and dis-
cover their limitations in modeling regular lan-
guage. Motivated by this analysis, we propose
a new LRNN equipped with a block-diagonal
and input-dependent transition matrix. Ex-
periments suggest that the proposed model is
the only LRNN capable of performing length
extrapolation on regular language tasks such
as Sum, Even Pair, and Modular Arithmetic.
The code is released at https://github.
com/tinghanf/RegluarLRNN.

1 Introduction

There is a recent surge in the use of LRNNs (Gu
et al., 2022; Peng et al., 2023; Orvieto et al., 2023)
as alternatives to the de-facto Transformer archi-
tecture (Vaswani et al., 2017; Radford et al., 2019),
which is ingrained in the field of natural language
processing. LRNNs depart from the inter-timestep
non-linearity design principle of classic RNNs (El-
man, 1990; Jordan, 1997; Hochreiter and Schmid-
huber, 1997; Cho et al., 2014), while at the same
time: 1. achieving Transformer-level performance
on the task of natural language modeling (Fu et al.,
2023; Poli et al., 2023) and even better perfor-
mance on synthetic long-range modeling tasks (Gu
et al., 2022; Gupta et al., 2022; Orvieto et al., 2023;
Hasani et al., 2023; Smith et al., 2023). 2. hav-
ing the added benefits of fast parallelizable train-
ing (Martin and Cundy, 2018) and constant infer-
ence cost.

i Equal contribution

45

Alexander I. Rudnicky
Carnegie Mellon University
air@cs.cmu.edu

In spite of the remarkable empirical performance
on natural language tasks, there has been no re-
search on LRNNs’ ability to model regular lan-
guage. Regular language is a type of language that
strictly follows certain rules like grammar.! The
successful modeling of a regular language is im-
portant since it implies a model’s ability to learn
the underlying rules of the data. For example, if
the training data are arithmetic operations such
as 1 + 2 x 3, a model should learn the rules of
a + b, a x b, and that x has a higher priority than
+. Learning unambiguous rules behind the data
is a critical step toward sequence modeling with
regulated output.

In this paper, we aim to determine if existing
LRNNSs are competent to learn the correct gram-
mar of regular language by testing their language
transduction capability under the length extrapo-
lation setting. Concretely, a model is trained only
to predict the desired outputs on a set of short se-
quences of length L. It then needs to predict
the correct outputs for longer testing sequences of
length L., > L. Adopting the length extrap-
olation setting is essential to mitigate the risk of
a model learning spurious shortcut solutions (Liu
et al., 2023).

We theoretically show that some of the recently
proposed LRNNs lack the expressiveness to en-
code certain arithmetic operations used in the tasks
of regular language. In light of this observation,
we propose a new LRNN equipped with a block-
diagonal and input-dependent transition matrix,
which enable the successful modeling of regular
language. Experiments show that the proposed
model is the only LRNN architecture that can ex-
trapolate well on regular language tasks such as
Sum, Even Pair, and Modular Arithmetic.

LRNN:Ss in this work have the following general

'"Formally speaking, the rules are defined/recognized by
the underlying finite-state machine.

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 45-53
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/tinghanf/RegluarLRNN
https://github.com/tinghanf/RegluarLRNN

formulation:

T = Aprp_1 + Buy,

1
yr = h(zy). M

A} is a matrix that defines the recurrence relation.
Ay, may or may not depend on the input uj. When
it is input-independent, Ay, is reduced to A; oth-
erwise, Ay = g(uy) for some function g. The
first line encodes a linear recurrence in the state
x. The second line is an output y;, that depends
on x. To control the expressiveness, the function
h may or may not be a linear operation. Since the
existing LRNNs differ in their linear recurrence
relations (Eq. (2), (3), and (4)), we mainly focus
on analyzing these relations.

2 Limitations of Most LRNNs

In this section, we theoretically show that most
LRNNSs are unable to represent arithmetic oper-
ations. The analysis serves as a motivation to
study input-dependent transition matrices with con-
straints on their column norm.

2.1 Input-independent LRNN

To begin with, state-space models (in discrete-time
format) follow the standard LRNN recurrence rela-
tion:

2

Eq. (2) encapsulates the recurrence relation of
S4 (Gu et al., 2022; Gupta et al., 2022), S5 (Smith
et al., 2023), and Linear Recurrent Unit (Orvieto
et al., 2023). For example, A represents the HiPPO
matrix family (Gu et al., 2023) of S4 or a complex
diagonal matrix of Linear Recurrent Unit. We show
in Proposition 1 that such an input-independent ma-
trix A cannot represent subtraction.

xp = Axp_1 + Buy

Proposition 1. An input-independent LRNN is in-
consistent in representing subtraction.

Proof. Denote ug, u—, and u; as the input vector
w.r.t. input characters 0, -, and 1. Denote z as the
initial state vector. The sequences "0-1" and "1-0"
are represented as

zo_1 = A%z 4+ A%ug + Au_ 4+ uq, for"0-1"
r1_0= A3z 4+ A%uy + Au_ 4 ug, for "1-0"

Because 0 — 1 ## 1 — 0, by forcing z¢_1 # z1_0,
we have

Aug 4+ Au_ 4+ uyp # A% + Au + .

46

On the other hand, let zo— = A%z + Aug + u_ be
the vector representation for "0-". The sequences
"0-0-1" and "0-1-0" are represented as

To—0—1 = AS:BO_ + A2UO + Au_ + up
zo_1-0 = A3xo_ + A%uy + Au_ + ug.

Notice xg_g_1 1s for "0-0-1" while xy_1_¢ for "O-
1-0". Enforcing x¢g_g—1 = xp—1—0, we have

A?ug 4+ Au_ + ug = A%uq + Au_ + ug,

which is a contradiction.]

The limitation described by Proposition 1 also
applies to models adopting diagonal linear recur-
rence relations (Gupta et al., 2022; Smith et al.,
2023; Orvieto et al., 2023). The failure to repre-
sent regular language will be corroborated by the
inferior length extrapolation performance reported
later in § 4.

3 Proposed Method

Now that input-independent LRNNs struggle with
representing arithmetic operations, we review
the paradigms known to model regular language,
which is the type of formal language recognized by
a Finite State Automata (FSA) (Chomsky, 1956).
An FSA is described by a 5-tuple (Q, 3, 6, qo, F').
@ and X are non-empty sets of states and input
symbols. ¢y € @ is an initial state. § : Q X X — Q
is an input-dependent transition function; F' C)
is a set of final states.

We hypothesize that an LRNN could model reg-
ular language if it can simulate an FSA, whose
transition function has the following two key prop-
erties:

* It is input-dependent.

* If represented in the matrix form, its column
vectors all have unit norm (in || - ||1).

3.1 Diagonal Input-dependent LRNN

Let us first examine the simplest input-dependent
LRNN:

3)
where v, = f(ug) is a vector that depends on
ug. Unfortunately, we show that a diagonal input-
dependent LRNN still cannot represent subtraction
in Proposition 2.

Proposition 2. A diagonal input-dependent LRNN
is inconsistent in representing subtraction.

vy = diag(vg)rr—1 + Buy,

The proof is essentially a generalization of Propo-
sition 1 and is deferred to Appendix A.1.

3.2 Improved Expressiveness: Liquid-S4

To improve the expressiveness of Eq. (3), we note
that the recently proposed liquid-S4 (Hasani et al.,
2023) model has the following recurrence relation:

xp = Axg_1 + (Bug) © xx—1 + Buy,

4
= (A + diag(Buy))zk—1 + Bug, X

where © denotes the Hadamard product and
diag(w) constructs a diagonal matrix from w. Al-
though Liquid-S4 does not suffer from the limita-
tion outlined in Proposition 2, our experiments in
§ 4.4 show that Liquid-S4 still cannot extrapolate
on regular language tasks.

3.3 Block-diagonal Input-dependent LRNN

Finally, we decide to push the expressiveness of
Ay to the limit and make it fully input-dependent:

&)

where A, = g(uy) is a block diagonal matrix in
practice for the sake of efficiency. Ay, depends on
uj but not previous timesteps. ¢ is an arbitrary
function with the output being the size of Ay.

Eq. (5) is numerically unstable because the prod-
uct Hle A; could produce large numbers. The
solution is to impose additional constraints on the
norm of Ay:

vy = Aprp_1 + Buy,

Ay, = diag (Af", ..., A{") € RO

A,(j) _ [U ,U’(:,b)} c Rb*b

o, <1, i€ [1,.h], j €L,
where || - ||, denotes the vector p-norm and v,(f’j) is
a column vector that depends on ug. For any vector
v, we can derive another vector v’ to satisfy the
p-norm constraint through v = v/ max(1, ||v||,).

Because ||v||, > ||v||q when p < ¢, a smaller p
imposes a stronger constraint on the columns of

(4,1)
k

(6)

A,(f). In other words, we can stabilize Eq. (5) by

selecting a sufficiently small p.

Take p = 1 as an example. Every block A,(;) is
a matrix that none of its column norm is greater
(1) 40
k+14%%
kind of matrix. Specifically, let v(*), ..., v(®) be the

columns of A(i) A,(j). We have

than 1 in || - ||;. This implies A is the same

k+1
[o®lr o Jo®l) =17 |4, 40 o
<1’ ‘A,(jil‘ ‘A,(j) <1’ (A,(j) <1

47

Note that 1 is a column vector of all ones. | - | and
< are element-wise absolute value and inequality
operations. The last two inequalities holds since
()

r1 and A,(;)’s are no greater

the column norm of A
than Lin || - [|1.

Eq. (7) demonstrates that p = 1 can stabilize the
proposed block-diagonal recurrence, Eq. (5). How-
ever, a small p restricts a model’s expressiveness.
In § 4.4, we will show that p = 1.2 is small enough

to yield good empirical performance.

3.4 Efficient Implementation via Parallel
Scan

We implement LRNNs in the parallel scan
(PScan) mode as shown in Fig. 1. The idea of
PScan is to group similar operations together,
run them in parallel, and deliver the same re-
sults as those in the sequential (Sequential)
for loop mode. For example, to compute x3
Az As Ajug+AgAsur+Asust+us, Sequential
runs this in three steps. On the other hand, PScan
decomposes the computation into two steps:

e Step 1: Compute Ajug + w1 and Asuo + us.
Because these two operations are similar, we can
compute them in parallel.

o Step 2: w3 = A3As(Ajug +u1) + (Asug + us).

Generally speaking, a length-L generation
takes [logy, L| steps using PScan. However,
each step requires careful handling of the in-
termediate matrices. As illustrated in Fig. 1,
for a length-8 generation, the first step re-
quires [A1, A3, As, A7], the second step requires
[Ag, A3Aa, Ag, A7Ag), and the third step requires
[A4, As Ay, AgAsAy, A7A6A5A4]. To this end,
we present an algorithm to generate the interme-
diate matrices in Appendix A.2.1. We integrate
these intermediate matrices in PScan and show
that PScan is equivalent to Sequential in Ap-
pendix A.2.2.

The computational complexity of our model is
O(b3hlog(T)), where b, h, and T represent the
block size, number of blocks, and sequence length,
respectively. With the embedding dimension held
fixed as bh, the complexity scales quadratically
w.r.t the block size.

4 Experiments

4.1 Regular Language Tasks

We evaulate the models using the regular language
transduction tasks introduced in Deletang et al.

» @ » ®» @ & & &

Figure 1: Illustration of Parallel Scan for a length-8 generation.

(2023). We prioritize language transduction over
language recognition as the former can be more use-
ful in practice Deletang et al. (2023). We are par-
ticularly interested in Sum(5), EvenPair(5), and
ModArith(5).

Sum(M) The input is a string {s; ;‘:_01 of num-
bers in [0,...,M — 1]. The output is their sum
modulo M: 3"~ s; mod M. For example, when
M =5, the input 0324 corresponds to the output
4 because 0 + 3 + 2 + 4 mod 5 = 4. Notably,
Sum(2) is the famous PARITY problem that eval-
uates whether there is an odd number of 1s in a
bit string. Thus, Sum(M) is a generalization of
PARITY and shares the same characteristic: If one
error occurs during the summation, the output will

be wrong.

EvenPair(M) The input is a string {s;}7~ of
numbers in [0,...,M — 1]. The output is 1 if
Sn—1 = So and O otherwise. For example, when
M = 5, the input 0320 corresponds to the output
1 because the first entry equals the last entry. Since
EvenPair(M) only cares about the first and last en-
tries, a model should learn to remember the first en-
try and forget the remaining ones 7 € [1,..,n — 2].

ModArith(M) The input is a string {s;}/) of
odd length (i.e., n is odd). The even entries
(t € [0,2,...]) are numbers in [0,...,M — 1];
The odd entries (i € [1,3,...]) are symbols in

48

{+,—, x}. The output is the answer of a math-
ematical expression under modulo M. For example,
when M = 5, the input 1+2-3x4 corresponds
to the output 1 because 1 +2 — 3 X 4 mod 5 =
—9 mod 5 = 1. ModArith(M) is much more com-
plicated than Sum(M) and EvenPair(M) because
a model should learn to prioritize multiplication
over addition and subtraction.

4.2 Length Extrapolation

In our pilot experiments, we discovered that all
models can achieve near-perfect same-length test-
ing accuracy; i.e., testing with Lex = L. This
is not impossible since a large enough model can
memorize all training sequences in its parameters.
To evaluate whether a model truly learns the under-
lying rules of a language, we first train a model on
sequences of length L generated by an FSA; It is
then evaluated on sequences of length Lex > Ly
generated by the same FSA.

Table 1 summarizes the extrapolation setting.
We mostly follow the requirements in Deletang
et al. (2023), where the training and extrapola-
tion lengths are 40 and 500. The lengths for
ModArith(5) are 39 and 499 because this task re-
quires odd-length inputs.

4.3 Baseline Models

We select baseline LRNNs such as S4 (Gu et al.,
2022), S4D (Gupta et al., 2022), and Liquid-S4

Sum(5) EvenPair(5) ModArith(5)
40 40 39
500 500 499

L
Lex

Table 1: Training and Extrapolation Settings. L.,
and L., represent the training and extrapolation se-
quence lengths, respectively.

(Hasani et al., 2023) using the released codebase?
under Apache-2.0 license. These models are cho-
sen since they are the most stable and theoretically
grounded LRNN design thanks to the careful pa-
rameterization of their state transition matrices. We
also experiment with RWKYV (Peng et al., 2023)
and a vanilla LRNN without S4’s parameterization.
Unfortunately, their performance lags behind S4
on the reported tasks.

4.4 Experimental Results

For the proposed method, we set p 1.2
in Eq. (6) and train the block-diagonal input-
dependent LRNN with (b, h) = (8, 8). Because
ModArith is more complicated than Sum and
EvenPair, ModArith uses 3 layers while the oth-
ers take 1 layer. Each layer is a full pass of LRNN
as described in Eq. (1).

Table 2 compares the length extrapolation capa-
bility of our model with other LRNN baselines on
regular language tasks. As we can see, the pro-
posed model is the only LRNN that can extrapolate
well on regular language. The inferior performance
of S4 and S4D is expected since they cannot rep-
resent subtraction as illustrated in Prop. 1. As for
Liquid-S4, despite the usage of input-dependent
block matrices (discussed in § 3.2), it still cannot
extrapolate well on regular language. We believe
this can be explained by its low expressiveness
(Eq. (4)) compared to the proposed model (Eq. (5)
and (6)). Overall, we can see that the combination
of input dependency and sufficient expressiveness
plays an important role in terms of regular language
modeling.

4.5 Speed Comparison

We conduct our experiments using a Quadro RTX
8000 GPU. To provide context for the aforemen-
tioned complexity analysis in § 3.4, we take the
Sum(S) task and set 7' = 40 during the train-
ing stage. Sequential requires 0.033s per in-
stance, while PScan completes the task in 0.021s.

“https://github.com/HazyResearch/state-spaces

49

Ours S4 S4D Liquid-S4
Sum(5) 1.00 0.27 0.27 0.27
EvenPair(5) 0.99 0.81 0.82 0.72
ModArith(5) 1.00 0.27 0.27 0.27

Table 2: Length Extrapolation Performance on Reg-
ular Language Tasks. Each reported number is an av-
erage of five random trials. Each random trial returns
the best testing accuracy over 40,000 gradient updates.

During the testing stage, we set T" = 500, where
both Sequential and PScan take 0.03s per in-
stance. One might anticipate PScan to outperform
Sequential during testing. However, in prac-
tice, this is not the case, as the complexity incurred
by b counteracts the speedup offered by log(T).
To validate our hypothesis, we set b = 1 and re-
assess the speed. Subsequently, PScan achieves
0.0008s per instance, whereas Sequential takes
0.002s. Regarding why PScan demonstrates a no-
table speedup during the training stage, we hypoth-
esize that it is due to the improved backpropagation
path enabled by PScan.

5 Conclusion

In this work, we explored LRNNSs in the realm
of regular language modeling. We discovered
that existing LRNNs cannot effectively represent
subtraction. Consequently, we proposed a new
LRNN equipped with a block-diagonal and input-
dependent transition matrix. Our experiments con-
firmed the proposed model’s capability to model
various regular language tasks, including Sum,
Even Pair, and Modular Arithmetic, under the chal-
lenging length extrapolation setting.

Limitations

The limitations of this work stem from several fac-
tors: (a) our evaluation is confined to only three
regular language tasks; (b) the scope of our work
excludes natural language; and (c) the proposed
model introduces new hyperparameters such as the
block size and the p-norm.

For (a), it is possible to discuss the average
performance over randomly generated regular lan-
guage, as demonstrated in Valvoda et al. (2022).
Regarding (b), while natural language falls beyond
the scope of our study, we believe the proposed
model is at least as effective as prior linear RNN
models on natural language, owing to its enhanced
expressiveness. Concerning (c), the block size typi-

cally increases with the complexity of the problem.
Nonetheless, it is feasible to maintain the same
block size if more layers are employed (e.g., as
described in § 4.4). Additionally, the p-norm pa-
rameter is chosen to be close to 1 to ensure stability;
longer sequences correspond to smaller values of

p.
Ethics Statement

Our work lays the groundwork for developing
LRNNSs in underexplored languages, such as regu-
lar language. Inappropriate usage of our technique
might have negative societal impacts, including po-
tential losses due to wrong predictions and ethical
challenges regarding the improper use of the model.
These implications apply to most language process-
ing research and are not unique to this specific
work.

References

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on information
theory, 2(3):113-124.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya,
Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Ve-
ness, and Pedro A Ortega. 2023. Neural networks
and the chomsky hierarchy. In The Eleventh Inter-
national Conference on Learning Representations.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179-211.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W
Thomas, Atri Rudra, and Christopher Re. 2023.
Hungry hungry hippos: Towards language modeling
with state space models. In The Eleventh Interna-
tional Conference on Learning Representations.

Albert Gu, Karan Goel, and Christopher Re. 2022. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra,
and Christopher Re. 2023. How to train your

50

HIPPO: State space models with generalized orthog-
onal basis projections. In International Conference
on Learning Representations.

Ankit Gupta, Albert Gu, and Jonathan Berant. 2022.
Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information Pro-
cessing Systems.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang,
Makram Chahine, Alexander Amini, and Daniela
Rus. 2023. Liquid structural state-space models. In
The Eleventh International Conference on Learning
Representations.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Michael T Jordan. 1997. Serial order: A parallel dis-
tributed processing approach. In Advances in psy-
chology, volume 121, pages 471-495. Elsevier.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2023. Transformers
learn shortcuts to automata. In International Confer-
ence on Learning Representations.

Eric Martin and Chris Cundy. 2018. Parallelizing lin-
ear recurrent neural nets over sequence length. In
International Conference on Learning Representa-
tions.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. 2023. Resurrecting recurrent neural net-
works for long sequences. In Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 26670-26698. PMLR.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Huangi Cao, Xin Cheng,
Michael Chung, Matteo Grella, Kranthi Kiran GV,
et al. 2023. Rwkv: Reinventing rnns for the trans-
former era. arXiv preprint arXiv:2305.13048.

Michael Poli, Stefano Massaroli, Eric Nguyen,
Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. 2023.
Hyena hierarchy: Towards larger convolutional lan-
guage models. In International Conference on Ma-
chine Learning, pages 28043-28078. PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Jimmy T.H. Smith, Andrew Warrington, and Scott Lin-
derman. 2023. Simplified state space layers for se-
quence modeling. In The Eleventh International
Conference on Learning Representations.

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=klK17OQ3KB
https://openreview.net/forum?id=klK17OQ3KB
https://openreview.net/forum?id=klK17OQ3KB
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=g4OTKRKfS7R
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=HyUNwulC-
https://openreview.net/forum?id=HyUNwulC-
https://proceedings.mlr.press/v202/orvieto23a.html
https://proceedings.mlr.press/v202/orvieto23a.html
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Ad-
ina Williams, and Ryan Cotterell. 2022. Bench-
marking compositionality with formal languages. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 6007-6018,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

A Additional Proofs

A.1 Proof of Proposition 2

Denote (Ag,ug), (A—,u_), and (A1,u1) as the
pairs of (transition matrix, input vector) w.r.t. input
characters 0, —, and 1. Note that Ay, A_, and A;
are diagonal matrices by assumption.

Denote z as the initial state vector. The se-
quences 0-1 and 1-0 are represented as

To_1 = A1A_Agz + A1 A_ug + Aju_ +uy
219 = AgA_A1z + AgA_u1 + Agu_ + ug.

Note that xg_1 is 0—1 and z1_¢ is 1-0. Because
the A matrices are diagonal, we know A1 A_ Ay =
ApA_A;. Because 0 — 1 # 1 — 0, by enforcing
To—1 # T1_0, We have

A1A_ug+ Aju_ +uy # AgA_uy + Agu_ + ug.

®)
On the other hand, let zg— = A_Agz+A_ug+u_
be the vector representation for "0-". Consider two
other sequences 0—0-1 and 0-1-0, their vector
representations are

To_o—1 = A1A_Agzro_ + A1A_ug + Aju_ +uq
To_1-0 = AgA_Arzo_ + AgA_u1 + Agu_ + up.

Note zg_o—1 18 0-0-1 and xp_1_¢ is 0—-1-0.
Similarly, because the A matrices are diagonal and
0—-0—-1=0-1-0, by enforcing x¢g_g_1 =
To—1—0, We have

A1A_up+ Aju_ +up = AgA_ug + Agu_ +uyg.

©))
Because Eq. (8) contradicts Eq. (9), the two rela-
tions xg_1 ?é T1_g and xro_g_1 = To_1_o can-
not co-exist. We hence conclude that an input-
dependent diagonal linear RNN is inconsistent in
representing subtraction.

A.2 Code for PScan

51

https://aclanthology.org/2022.coling-1.525
https://aclanthology.org/2022.coling-1.525

A.2.1 TIllustration of Matrix Generation

import numpy as np

seq_len = 2x%3 — 1
arr = np.array(['A' + str(i) for i in range(l,seqg_len +1)]).reshape(-1,1)
def spt (x):

assert len(x)%2 == 1, 'works when len(x)== 2++k -1 for k>=1"'

coef = x[::2]
remain = x[1::2]

coef_remain = np.core.defchararray.add(coef([l:], remain[:,-1:]
remain = np.concatenate([remain, coef_remain], axis=1)
return coef, remain

for i in range(int(np.ceil (np.log2(seq_len)))):
coef, arr = spt(arr)
print (coef)

The below output shows the function spt () can generate the intermediate matrices during PScan.

(['AL"]

['A3"]

['AS']

['A7']]

[["A2" '"A3A2']

['A6' 'ATA6']]

[['A4"' 'AS5A4' 'AGAS5A4' 'ATA6ASA4']]

A.2.2 Testing the Equivalence of Sequential and PScan

import numpy as np

import torch

import torch.nn as nn

torch.manual_seed (1

emb_dim = 2

seq_len = 7

bs =1

A = torch.randn (bs, seq_len, emb_dim, emb_dim)
u = torch.randn(bs, seqg_len, emb_dim)

x0 = torch.randn(l, emb_dim)

sequential

x = x0.expand(bs, emb_dim)

all_x = [x[:,None,:]]

for i in range(seqg_len):
x = torch.einsum('bij,bj->bi', A[:,i], x) + ul:,1i]
all_x.append(x[:,None, :])

all_x = torch.cat(all_x, dim=1)

print ('sequential mode')

print (all_x)

pa 1 scan

def scan(x, As):
c = As.shape[2]*2

x = x.view(bs, L//c, ¢, -1)
x1, x2 = x[:,:,:c//2], x[:,:,c//2:]
x2.shape = (bs, gr

As.shape = (bs, group r

assert As.shape[l1]%2==1, 'works when As.shape[l]== 2+xk -1 for k>=1'
coef = As[:,::2]

remain = As[:,1::2]

prodd = torch.einsum('bncij,bnjk->bncik', coef[:,1:], remain[:,:,-1]
remain = torch.cat ([remain, prodd], dim=2)

coef.shape = > nums, group size,

apply a .g., ['A2' 'A3A2']

of x2 in each group,

and add together

x2 = x2 + torch.einsum('bncij,bnj->bnci', coef, x1[

x = torch.cat ([xl, x2], dim=2)

return x, remain

log2_L = int(np.ceil(np.log2(seq_len+l)))

L = 2xxlog2_L # the length after zero padding
n_zero = L - seqg_len -
eu = torch.cat ([x0.expand(bs,-1) [:,None, :

eu = nn.functional.pad(eu,

X = eu

As = nn.functional.pad(A,

for i in range(log2_L):

x, As = scan(x, As)

x = x.view(bs, L, emb_dim) [

print ('parallel mode'

print (x)

(0,0,0, n_zero)

tpiyo1])

(0,0,0,0,0, n_zero))[:,:,None,:,:]

:,:seqg_len+l, :]

The below shows that Sequential and PScan are equivalent as they generate the same outputs.

sequential mode

tensor ([[[O.
5167,
.1399,
.9628,
.5308,
6631,
.7805,
.5068,

[

,_,
|
NP W~ OR,ROoOOoOQA N~ W~RO—~O

g5 ——

parallel
tensor ([[

o

—_—_—_, e, —_—_—
|

8310,

(¢}

.8310,
5167,

1399,

.9628,
.5308,
.6631,
.7805,
.5068,

-0.24771,
-1.4218],
1.30247,
1.3150],
-1.6903],
1.60827,
7.1659],
-0.6256111])

-0.2477],
-1.4218],
1.3024],
1.3150],
-1.6903],
1.60827,
7.16597,
-0.6256111)

