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Abstract

Minimum Bayes-risk (MBR) decoding has re-
cently gained renewed attention in text genera-
tion. MBR decoding considers texts sampled
from a model as pseudo-references and selects
the text with the highest similarity to the oth-
ers. Therefore, sampling is one of the key ele-
ments of MBR decoding, and previous studies
reported that the performance varies by sam-
pling methods. From a theoretical standpoint,
this performance variation is likely tied to how
closely the samples approximate the true distri-
bution of references. However, this approxima-
tion has not been the subject of in-depth study.
In this study, we propose using anomaly detec-
tion to measure the degree of approximation.
We first closely examine the performance vari-
ation and then show that previous hypotheses
about samples do not correlate well with the
variation, but our introduced anomaly scores
do. The results are the first to empirically sup-
port the link between the performance and the
core assumption of MBR decoding.1

1 Introduction

Minimum Bayes-risk (MBR) decoding has recently
re-emerged as a better alternative to beam search in
text generation such as neural machine translation
(NMT), text summarization, and image captioning
(Eikema and Aziz, 2020; Freitag et al., 2022; Fer-
nandes et al., 2022; Suzgun et al., 2023; Bertsch
et al., 2023). MBR decoding first samples texts
from a model and then selects the text most similar
to the others, considering the text samples as sub-
stitutes for references. Therefore, sampling plays
an important role in MBR decoding, and previous
studies have reported that the performance varies
by sampling methods (Eikema and Aziz, 2020,
2022; Fernandes et al., 2022; Freitag et al., 2023).

∗Work done during an internship at CyberAgent.
1The code is available at https://github.com/

CyberAgentAILab/mbr-anomaly.

From a theoretical standpoint, the samples are
assumed to approximate the true distribution, the
distribution of human-quality translations (Kumar
and Byrne, 2002, 2004). If the approximation de-
viates, biases can emerge in results of MBR de-
coding. This implies a significant link between
the performance variation and approximation qual-
ity. Although previous studies explained the per-
formance variation by some properties of samples,
e.g., sampling bias and cumulative probability mass
(Eikema and Aziz, 2020; Freitag et al., 2023), those
properties have no clear relation with the true dis-
tribution. Consequently, the relation between the
performance gains by sampling methods and the
core assumption remains unclear.

This study aims to empirically support the link
between the performance and the approximation
of true distribution. To this end, we introduce
measures for the degree of approximation. If the
assumption for samples holds, references, which
are drawn from the true distribution by definition,
should not deviate from the majority of the sam-
ples. Based on this recasting, we employ anomaly
detection (also called outlier or novelty detection)
for the measure. Our hypothesis is that references
achieve lower anomaly scores among samples ob-
tained with a higher-performance sampling method.
We first closely examine the performance variation
by sampling methods. Then, we show that the vari-
ation highly correlates with the anomaly scores but
not so with the properties based on previous hy-
potheses. The results are the first to provide empir-
ical evidence for the link between the performance
and core assumption, which is an important step to
understanding the connection between the actual
performance and the theory of MBR decoding.

2 Preliminaries

Let u(y, r) be a utility function to measure the qual-
ity of model translation y (candidate; Freitag et al.,

459

https://github.com/CyberAgentAILab/mbr-anomaly
https://github.com/CyberAgentAILab/mbr-anomaly


0.580.480.52

0.610.660.54

0.810.730.59

0.480.470.46

𝑟′!: Blue bird flying.

𝑟′": 
Flying blue bird seen.

𝑟′!: 
Blue bird seen in sky.

Candidates 𝒴

Pseudo-References ℛ′

0.53

0.60

0.71

0.47

𝑦!: A blue bird.

𝑦": The bird is flying. 

𝑦#: Blue bird is flying.

𝑦$: There's a blue bird.

Avg.

𝑦∗

𝑢(𝑦, 𝑟!)

Figure 1: Illustrative example of MBR decoding.

2022) given its reference translation r. Among a
set of candidates Y , MBR decoding selects the one
that minimizes the expected error or, equivalently,
maximizes the expected utility (Kumar and Byrne,
2002, 2004; Freitag et al., 2022):

y∗ = argmax
y∈Y

Er∼Phuman(·|x)[u(y, r)]. (1)

Here, Phuman(·|x) is the true distribution over
translations of an input text x (Kumar and Byrne,
2002, 2004), which describes human-quality trans-
lations in the space of all translations.

Since the true distribution is unknown, MBR de-
coding approximates Eq. (1) with finite samples
drawn from a model r′ ∼ Pmodel(·|x). That is,
MBR decoding assumes that the samples drawn
from a model approximate the true distribution
of references. The samples are called pseudo-
references (Freitag et al., 2022), which subse-
quently serve as alternatives to references in the
computation of MBR as follows:

y∗ = argmax
y∈Y

1

|R′|
∑

r′∈R′
u(y, r′). (2)

In practice, candidates Y and pseudo-references
R′ can be the same or different sets of samples.
Figure 1 shows an example of the above procedure.

3 Performance Variation by Sampling

Previous studies reported that performance varies
by sampling methods in NMT. However, they used
the same set of model translations for both can-
didates and pseudo-references (Eikema and Aziz,
2020; Fernandes et al., 2022; Freitag et al., 2023)
or explored sampling methods only for candidates
(Eikema and Aziz, 2022). These settings obscure
the effect of pseudo-references, for which the true

distribution is assumed, on the performance vari-
ation. This section shows the effect of pseudo-
reference sampling on performance by evaluating
pseudo-references separately from candidates.

3.1 Setup

Following Fernandes et al. (2022), we use publicly-
available Transformer models (Vaswani et al.,
2017) trained by Ng et al. (2019)2 for the WMT19
news translation task (Barrault et al., 2019). The
models were trained in four directions between En-
glish (en) and German (de) or Russian (ru). We con-
ducted our experiments on the test set of WMT19
(newstest19), which was used as the development
set in the previous work (Fernandes et al., 2022).
Due to the quadratic computational cost of MBR
decoding, we drew 100 samples of Y and R′ for
each of the 1,000 examples of newstest19. We em-
ploy COMET22 for the utility function u, which
is the state-of-the-art evaluation metric in machine
translation (Rei et al., 2022, 2020).3

For sampling methods, we use those that have
been reported to be effective: ancestral sampling
(Eikema and Aziz, 2020; Freitag et al., 2022), beam
search, nucleus sampling (Eikema and Aziz, 2022;
Fernandes et al., 2022), and epsilon sampling (Fre-
itag et al., 2023). Ancestral sampling draws sam-
ples from Pmodel(·|x) without modification, while
nucleus sampling restricts sampling to words with
top-p probabilities (Holtzman et al., 2020) and ep-
silon sampling truncates words with probabilities
lower than ϵ (Hewitt et al., 2022). We adopt the
best hyperparameters reported for p and ϵ (Fernan-
des et al., 2022; Freitag et al., 2023). The beam
size was set to 100 to collect 100 samples.

3.2 Results

Fixing Candidates. Since we focus on sampling
for pseudo-references, we first search for the best
sampling method for candidates and fix it. The
objective of searching for the best is to prevent the
pseudo-reference’s contribution to scores from be-
ing capped and obscured by the candidate’s quality.
To this end, we conduct the search on the same new-
stest19 as the subsequent experiments.4 Following

2https://github.com/facebookresearch/fairseq/
blob/7409af7f9a7b6ddac4cbfe7cafccc715b3c1b21e/
examples/translation/README.md

3COMET22 improved robustness to the deviation in num-
bers and named entities, which was the weakness of the previ-
ous COMET (Amrhein and Sennrich, 2022).

4If the objective is to find the best combination of sampling
methods, which is not our focus, then it is desirable to use
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Candidate de-en en-de ru-en en-ru

Ancestral 85.82 86.32 82.11 86.13
Beam 88.47 89.32 84.16 89.44
Epsilon (ϵ = 0.02) 88.51 89.47 84.36 90.17
Nucleus (p = 0.6) 88.01 89.12 83.76 89.96
Nucleus (p = 0.9) 88.02 89.04 83.98 89.57

Table 1: Oracle scores in COMET22 to determine the
sampling method for candidates. The results are the av-
erage of three runs with different seeds except for beam
search. The best/worst scores are in bold/underlined.

Fernandes et al. (2022), we search for the sam-
pling method that achieves the highest oracle score,
maxy∈Y u(y, r), on average. Table 1 shows that
epsilon sampling achieves the highest oracle score
across the language pairs. Based on these results,
we fixed the sampling method of candidates to ep-
silon sampling in all the following experiments.

Varying Pseudo-References. Then, we evaluate
the effect of pseudo-references on performance by
varying their sampling methods. Table 2 shows
the results. As expected from previous studies, the
performance of MBR decoding varies even when
only changing the sampling methods of pseudo-
references. The variation is nearly consistent across
language pairs, indicating the pervasive effect of
pseudo-reference on performance. The best sam-
pling method for candidates (epsilon sampling) is
not the best for pseudo-references. This shows that
the desirable properties for candidates and pseudo-
references are different.

Table 2 also shows the results of beam search just
for the comparison with MBR decoding. Here, the
beam size was set to 5. MBR decoding significantly
outperforms beam search and even outperforms the
ensemble model, which was the winner of WMT19
(Barrault et al., 2019). Since the effectiveness of
epsilon sampling was reported on the other WMT
dataset (Freitag et al., 2023), we have a good reason
to use epsilon sampling for this comparison.

4 Hypotheses for Performance Variation

The previous section confirmed that the perfor-
mance varies by sampling pseudo-references. The
question that naturally arises in response to the
results is: why does this variation occur?

different splits to explore and test the combination to ensure
the generalization. Nevertheless, our subsequent results in
Tables 1, 2, 4, and 5 suggest the generalization of the found
best combination as it consistently performs the best across
almost all language pairs.

E
ps

ilo
n

(ϵ
=

0.
02

) Pseudo-Reference de-en en-de ru-en en-ru

Ancestral 85.82 87.51 82.02 88.41
Beam 85.62 87.40 81.64 87.78
Epsilon (ϵ = 0.02) 85.89 87.74 82.01 88.46
Epsilon (ϵ = 0.02)∗ 85.87 87.74 81.98 88.46
Nucleus (p = 0.6) 85.69 87.57 81.76 88.26
Nucleus (p = 0.9) 86.04 87.82 82.18 88.61

Beam Search 84.38 86.13 80.76 85.69
Beam Search (ensemble) 84.30 86.06 80.91 85.74

Table 2: COMET22 scores of MBR decoding with
different pseudo-references. Candidates are sampled
with epsilon sampling (ϵ = 0.02). Epsilon (ϵ = 0.02)∗

shows the results of sampling candidates and pseudo-
references with the same epsilon sampling but with
different seeds. The results are the average of three
runs with different seeds except for beam search. The
best/worst scores are in bold/underlined.

4.1 Previous Hypotheses

Eikema and Aziz (2022) hypothesized that unbi-
ased sampling is desirable for pseudo-references.
Since the biased sampling methods limit the sam-
pling to words of high probability, we use the av-
erage log probability (Avg. Prob.) of samples
as a continuous proxy of bias existence in sam-
pling. Eikema and Aziz (2020) and Freitag et al.
(2023) did not distinguish between candidates and
pseudo-references but referred to the larger cumu-
lative probability mass (Cum. Prob.) of unique
samples as a desirable property because it indicates
diverse and probable samples. Eikema and Aziz
(2022) employed candidate sampling that achieved
high expected utility. If this criterion applies to
pseudo-references, performance should be higher
when the expected utility against candidates (Cand.
Sim.) or references (Ref. Sim.) is high.

4.2 Our Hypothesis

Given the relaxation from Eq. (1) to Eq. (2), a better
approximation of the true distribution by pseudo-
references should be associated with higher perfor-
mance. To examine the relation, we propose using
anomaly detection to quantitatively evaluate the ap-
proximation. If a better approximation is achieved,
references should deviate less from the majority
of the samples since references are drawn from
the true distribution by definition. This recasting
allows us to use anomaly scores of anomaly de-
tection for measuring the degree of approximation.
We then hypothesize that a higher-performance
sampling method forms samples where references
achieve lower anomaly scores.
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5 Experiments

We test the hypotheses discussed in the previ-
ous section by evaluating the correlation between
the performance variation and the properties or
anomaly scores.

5.1 Setup
The setup is the same as described in Section 3.1.
We run each sampling method with three differ-
ent seeds and then calculate the Spearman’s rank
correlation coefficient ρ between their averaged
properties or anomaly scores (see Section 4) with
the COMET22 scores reported in Table 2.

5.2 Anomaly Scores
To test our hypothesis, we employ three popular
methods used in unsupervised anomaly detection
(Kriegel et al., 2011; Gu et al., 2019; Ruff et al.,
2021). The first uses Mahalanobis distance (dM ;
Mahalanobis, 1936) as an anomaly score, a clas-
sical distance measure between a data point and a
distribution. In our context, the distance is between
reference r and pseudo-references R′ in a feature
space: dM (r,R′) =

√
(r − µ)Σ−1(r − µ), where

µ and Σ−1 are mean and inverse covariance matrix
of R′, respectively. Mahalanobis distance assumes
that the data is normally distributed, but this as-
sumption does not necessarily hold. k-nearest
neighbors (kNN; Angiulli and Pizzuti, 2002)
does not have the assumption and is applicable to
other data, such as the one with multimodal distri-
bution. kNN is a simple algorithm to consider the
local density of a given data point. Still, it is known
to perform favorably to some state-of-the-art al-
gorithms for anomaly detection (Gu et al., 2019).
Let Ni(r,R′) be the ith nearest pseudo-reference
to r in Euclidean distance. kNN takes the aver-
age of Euclidean distance from r to its k-nearest
pseudo-references {Ni(r,R′)}ki=1: kNN(r,R′) =
1
k

∑k
i=1∥r − Ni(r,R′)∥. Local outlier factor

(LOF; Breunig et al., 2000) additionally consid-
ers the local density of the k-nearest data points
themselves. LOF in our setting measures how the
local density of r deviates from that of its k-nearest
pseudo-references. To better illustrate the relation-
ship with kNN, we show a simplified version of
LOF (Schubert et al., 2014) here: LOFk(r,R′) =
1
k

∑
r′∈{Ni(r,R′)}ki=1

∥r−Nk(r,R′)∥
∥r′−Nk(r′,R′)∥ . See Breunig

et al. (2000) for the complete formula we used.
To calculate the anomaly scores, samples needs

to be represented in a feature space. We obtain the

de-en en-de ru-en en-ru

Avg. Prob.(−) 0.580(✓) 0.290(✓) 0.870(✓) 0.638(✓)

Cum. Prob.(+) 0.058(×) 0.116(×) 0.348(×) 0.058(×)

Cand. Sim.(+) 0.543(×) 0.314(×) 0.829(×) 0.657(×)

Ref. Sim.(+) 0.580(×) 0.290(×) 0.870(×) 0.638(×)

dM(−) 0.771(✓) 0.486(✓) 0.886(✓) 0.771(✓)

kNN(−)

k = 5 0.771(✓) 0.829(✓) 0.886(✓) 0.829(✓)

k = 25 0.943(✓) 0.943(✓) 0.886(✓) 0.943(✓)

k = 50 0.771(✓) 0.943(✓) 0.943(✓) 0.829(✓)

k = 75 0.771(✓) 0.943(✓) 0.371(✓) 0.829(✓)

k = 100 0.086(✓) 0.314(✓) 0.371(✓) 0.029(✓)

LOF(−)

k = 5 0.829(✓) 0.600(✓) 0.943(✓) 0.771(✓)

k = 25 0.829(✓) 0.714(✓) 0.943(✓) 0.829(✓)

k = 50 1.000(✓) 0.886(✓) 0.943(✓) 0.829(✓)

k = 75 1.000(✓) 0.886(✓) 0.943(✓) 0.829(✓)

k = 100 0.600(✓) 0.371(✓) 0.886(✓) 0.657(✓)

Table 3: Correlation coefficients (Spearman’s ρ) be-
tween COMET22 performance variation and pseudo-
references’ properties or anomaly scores. We show
the absolute value of ρ. The subscript signs (+/−)

are the expected signs of ρ (see Section 4), and the
subscript marks (✓/×) show whether the actual signs
match/mismatch the expected ones. The best/worst
scores are in bold/underlined.

representation in the space of utility by measuring
the utility of references or pseudo-references given
a set of candidates Y . A reference r in the space is
then defined as

[
u(r, y1), . . . , u(r, y|Y|)

]⊤. Same
for a pseudo-reference r′.

5.3 Results

Table 3 shows the results. As expected, the
anomaly scores are clearly more correlated than
the properties based on previous hypotheses. Ex-
cept for Cum. Prob., Cand. Sim., and Ref. Sim.,
the signs of ρ are all as expected, including the
anomaly scores. See Table 7 in Appendix for the
results used to calculate ρ.

Among the anomaly scores,5 kNN and LOF
with k = 50 stably correlate with the performance
variation better than those with k = 100 and dM .
We speculate that the significant degradation of
kNN with k = 100 is caused by outliers in pseudo-
references. While kNN with k < 100 can effec-

5We took the median of dM and LOF scores instead of the
mean because they are unstable due to the inverse covariant
matrix Σ−1 and division, respectively. For dM , we removed
duplicated y from the position vector and added an identity
matrix not to drop the rank of Σ and stabilize the computation
of Σ−1. The value of the elements of the identity matrix was
set to 1e-5, taking into account that the average value of the
diagonal components of Σ was 1e-3.
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tively avoid including these outliers in the calcula-
tion of anomaly scores, kNN with k = 100 cannot,
and its anomaly scores are likely to be distorted by
the outliers. These results suggest that even if some
pseudo-references are outliers against a reference,
the performance tends to be higher if the rest of the
pseudo-reference is close to the reference. In other
words, pseudo-references do not have to be close
to references in entirety to perform well.

6 Related Work

MBR decoding has been used in automatic speech
recognition (Goel and Byrne, 2000), statistical
machine translation (Kumar and Byrne, 2002,
2004), and NMT (Stahlberg et al., 2017; Shu and
Nakayama, 2017; Blain et al., 2017). Recently,
MBR decoding has gained prominence again in
NMT because of the following two innovations.
(1) Eikema and Aziz (2020) showed that MBR de-
coding with stochastic sampling has a potential
to outperform MAP decoding methods, including
beam search; (2) Freitag et al. (2022) and Fernan-
des et al. (2022) explored utility functions and
found that using neural reference-based metrics
as the utility function significantly enhances the
quality of output texts. Müller and Sennrich (2021)
reported domain robustness and less hallucination
in the outputs of MBR decoding. Other text gener-
ation tasks such as text summarization, image cap-
tioning, and diversity-aware text generation also
benefit from MBR decoding (Suzgun et al., 2023;
Borgeaud and Emerson, 2020; Jinnai et al., 2024).
Recent studies have focused on improving the ef-
ficiency of MBR decoding (Cheng and Vlachos,
2023; Finkelstein and Freitag, 2023; Yang et al.,
2023; Jinnai et al., 2023; Jinnai and Ariu, 2024).

The most related studies explored sampling
methods for MBR decoding and raised hypothe-
ses to explain the difference in performance by
sampling methods (Eikema and Aziz, 2020, 2022;
Fernandes et al., 2022; Freitag et al., 2023). We
also explored sampling methods but differed in
that we did it more closely by focusing on pseudo-
references. Furthermore, we introduced anomaly
scores that correlate with the performance variation
better than previous hypotheses.

7 Conclusion

This study investigated the relation between the
performance of MBR decoding and the core as-
sumption about samples: samples follow the true

distribution of references. We introduced anomaly
scores used in anomaly detection to evaluate the
approximation of the true distribution. Experimen-
tal results demonstrated that the anomaly scores
correlate with the performance significantly bet-
ter than the properties hypothesized to explain the
performance variation in prior literature. The pre-
vious hypotheses assumed that unbiased sampling
(Avg. Prob.), diverse and probable samples (Cum.
Prob.), or high expected utility (Cand. and Ref.
Sim.) are the key properties of samples to achieve
high performance. However, these properties do
not have an obvious relationship to approximating
the true distribution of references, in contrast to the
anomaly scores we employed.

These results show the insufficiency of exist-
ing hypotheses about the properties that samples
should possess. The results are also the first to
empirically support the link between the actual
performance and the key assumption of MBR de-
coding. We believe this serves as an essential step
to understanding the connection between the actual
performance and the theory of MBR decoding.

8 Limitations and Risks

The limitation of the study is that it is solely a thor-
ough analysis of MBR decoding, not accompanied
by an algorithm to improve the performance of
MBR decoding. However, our analysis empirically
shows that previous hypotheses about the proper-
ties of samples are insufficient and that following
the assumption of the MBR decoding is the key
to improving performance. We believe this is an
important contribution that modifies the direction
of future development of MBR decoding.

Our investigation is limited to Transformer mod-
els provided by Ng et al. (2019) and the task is
limited to machine translation. Future work will
extend the analysis to a wider range of models and
text generation tasks. However, it is worth noting
that some studies support the general applicabil-
ity of MBR decoding findings obtained in NMT
to other text generation tasks and models. Some
hyperparameters (Suzgun et al., 2023), efficiency-
boosting techniques (Jinnai et al., 2023; Jinnai and
Ariu, 2024), or diversity-aware extensions (Jinnai
et al., 2024) for MBR decoding consistently per-
form well across machine translation, summariza-
tion, image captioning, and data-to-text generation
with different models. Bertsch et al. (2023) shows
that MBR decoding works well even in open-ended
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text generation tasks.
We do not foresee any ethical concerns in our

analysis.
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Candidate de-en en-de ru-en en-ru

Ancestral 62.31 61.38 49.83 64.40
Beam 73.27 71.82 58.08 78.19
Epsilon (ϵ = 0.02) 73.65 72.17 59.46 80.86
Nucleus (p = 0.6) 71.11 70.93 56.56 80.12
Nucleus (p = 0.9) 71.87 70.84 58.01 78.33

Table 4: Oracle scores in COMET20 to determine the
sampling method for candidates. The results are the av-
erage of three runs with different seeds except for beam
search. The best/worst scores are in bold/underlined.

E
ps

ilo
n

(ϵ
=

0.
02

) Pseudo-Reference de-en en-de ru-en en-ru

Ancestral 58.77 64.21 47.92 71.19
Beam 57.24 63.49 46.56 68.26
Epsilon (ϵ = 0.02) 59.07 65.32 46.56 71.85
Epsilon (ϵ = 0.02)∗ 59.19 65.25 46.59 71.79
Nucleus (p = 0.6) 57.82 64.31 45.42 71.08
Nucleus (p = 0.9) 59.65 65.44 47.77 72.33

Table 5: COMET20 scores of MBR decoding with
different pseudo-references. Candidates are sampled
with epsilon sampling (ϵ = 0.02). Epsilon (ϵ = 0.02)∗

shows the results of sampling candidates and pseudo-
references with the same epsilon sampling but with
different seeds. The results are the average of three
runs with different seeds except for beam search. The
best/worst scores are in bold/underlined.

A Results with COMET20

To support the analysis of this study with a differ-
ent utility function, we conducted the same experi-
ments as in Tables 1, 2, and 3 using COMET20 (Rei
et al., 2020). Tables 4, and 5, 6 show the same ten-
dency: the performance varies by sampling meth-
ods almost consistently, and the anomaly scores
achieve the best correlations with the performance
variation. These results confirm the validity of our
analysis even with other utility functions.

B Detailed Results

Tables 7 and 8 show the results used to calculate
the Spearman’s ρ in Tables 3 and 6, respectively.

de-en en-de ru-en en-ru

Avg. Prob.(−) 0.580(✓) 0.290(✓) 0.928(✓) 0.638(✓)

Cum. Prob.(+) 0.058(×) 0.116(×) 0.406(×) 0.058(×)

Cand. Sim.(+) 0.600(×) 0.257(×) 0.943(×) 0.600(×)

Ref. Sim.(+) 0.580(×) 0.290(×) 0.928(×) 0.638(×)

dM(−) 0.714(✓) 0.543(✓) 0.886(✓) 0.829(✓)

kNN(−)

k = 5 0.829(✓) 0.714(✓) 1.000(✓) 0.771(✓)

k = 25 1.000(✓) 0.886(✓) 1.000(✓) 0.886(✓)

k = 50 0.829(✓) 0.886(✓) 0.943(✓) 0.771(✓)

k = 75 0.829(✓) 0.886(✓) 0.143(✓) 0.771(✓)

k = 100 0.143(✓) 0.257(✓) 0.086(✓) 0.086(✓)

LOF(−)

k = 5 0.771(✓) 0.829(✓) 0.886(✓) 0.829(✓)

k = 25 0.771(✓) 0.829(✓) 0.943(✓) 0.829(✓)

k = 50 0.771(✓) 0.829(✓) 0.943(✓) 0.829(✓)

k = 75 0.829(✓) 0.829(✓) 0.943(✓) 0.829(✓)

k = 100 0.657(✓) 0.486(✓) 1.000(✓) 0.486(✓)

Table 6: Correlation coefficients (Spearman’s ρ) be-
tween COMET20 performance variation and pseudo-
references’ properties or anomaly scores. We show
the absolute value of ρ. The subscript signs (+/−)

are the expected signs of ρ (see Section 4), and the
subscript marks (✓/×) show whether the actual signs
match/mismatch the expected ones. The best/worst
scores are in bold/underlined.
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Prob. Sim. kNN↓ LOF↓
Pseudo-Reference COMET22↑ Avg.↓ Cum.↑ Cand.↑ Ref.↑ dM↓ 5 25 50 75 100 5 25 50 75 100

de-en

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 85.82 -3.59 0.87 71.20 60.45 8.02 0.22 0.39 0.62 0.88 1.30 1.05 1.07 1.10 1.03 1.00
Beam 85.62 -0.76 1.02 85.44 83.01 15.10 0.33 0.41 0.46 0.50 0.54 1.75 1.55 1.47 1.25 1.00
Epsilon (ϵ = 0.02) 85.89 -0.89 0.97 84.81 82.18 6.94 0.26 0.35 0.41 0.46 0.53 1.08 1.09 1.08 1.01 1.00
Epsilon (ϵ = 0.02)* 85.87 -0.89 0.97 84.70 82.18 8.61 0.23 0.33 0.39 0.45 0.51 1.10 1.10 1.09 1.02 1.00
Nucleus (p = 0.6) 85.69 -0.70 0.83 85.63 83.24 16.47 0.32 0.39 0.45 0.49 0.53 1.62 1.43 1.37 1.16 1.00
Nucleus (p = 0.9) 86.04 -1.50 0.95 81.66 78.02 7.38 0.18 0.27 0.35 0.42 0.57 1.04 1.02 1.01 0.99 1.00

en-de

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 87.51 -3.60 0.65 68.41 51.56 8.16 0.22 0.44 0.74 1.09 1.71 1.08 1.11 1.11 1.03 1.00
Beam 87.40 -0.65 0.74 87.02 85.06 15.86 0.30 0.37 0.41 0.44 0.47 2.05 1.80 1.64 1.36 1.00
Epsilon (ϵ = 0.02) 87.74 -0.80 0.71 86.33 83.96 6.52 0.23 0.31 0.36 0.40 0.45 1.09 1.11 1.09 1.01 1.00
Epsilon (ϵ = 0.02)* 87.74 -0.80 0.71 86.24 83.96 8.22 0.21 0.29 0.35 0.39 0.44 1.11 1.13 1.11 1.02 1.00
Nucleus (p = 0.6) 87.57 -0.61 0.62 87.12 85.10 14.95 0.29 0.35 0.39 0.43 0.46 1.68 1.49 1.42 1.21 1.00
Nucleus (p = 0.9) 87.82 -1.30 0.70 83.84 79.38 7.08 0.16 0.24 0.31 0.37 0.49 1.04 1.04 1.02 1.00 1.00

ru-en

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 88.41 -3.75 0.60 70.67 59.20 8.13 0.20 0.35 0.56 0.83 1.25 1.04 1.03 1.03 1.00 1.00
Beam 87.78 -0.74 0.74 85.71 79.69 24.41 0.60 0.68 0.73 0.77 0.81 3.02 2.65 2.40 1.99 1.28
Epsilon (ϵ = 0.02) 88.46 -0.89 0.69 85.18 79.03 11.26 0.48 0.60 0.67 0.72 0.77 1.30 1.40 1.44 1.34 1.00
Epsilon (ϵ = 0.02)* 88.46 -0.89 0.69 85.09 79.03 11.19 0.46 0.58 0.65 0.71 0.76 1.33 1.46 1.51 1.39 1.00
Nucleus (p = 0.6) 88.26 -0.69 0.60 85.96 79.91 25.16 0.59 0.67 0.73 0.77 0.81 2.89 2.40 2.18 1.83 1.15
Nucleus (p = 0.9) 88.61 -1.52 0.67 82.07 75.17 7.85 0.24 0.41 0.52 0.61 0.75 1.05 1.09 1.14 1.02 1.00

en-ru

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 82.02 -3.85 0.37 71.25 55.20 8.91 0.23 0.42 0.67 0.97 1.40 1.07 1.13 1.13 1.05 1.00
Beam 81.64 -0.72 0.44 87.47 84.73 20.91 0.38 0.44 0.48 0.51 0.54 2.42 2.04 1.85 1.51 1.02
Epsilon (ϵ = 0.02) 82.01 -0.94 0.42 86.68 83.57 7.27 0.28 0.37 0.42 0.46 0.51 1.10 1.12 1.11 1.03 1.00
Epsilon (ϵ = 0.02)* 81.98 -0.94 0.42 86.58 83.57 9.04 0.26 0.35 0.40 0.45 0.50 1.11 1.14 114 1.05 1.00
Nucleus (p = 0.6) 81.76 -0.80 0.37 87.06 84.26 13.17 0.30 0.38 0.43 0.47 0.51 1.35 1.36 1.35 1.17 1.00
Nucleus (p = 0.9) 82.18 -1.69 0.40 83.10 77.69 7.76 0.18 0.26 0.33 0.40 0.55 1.03 1.02 1.01 0.99 1.00

Table 7: Results used to calculate the Spearman’s ρ in Table 3. Candidates are sampled with epsilon sampling (ϵ =
0.02). Epsilon (ϵ = 0.02)∗ shows the results of sampling candidates and pseudo-references with the same epsilon
sampling but with different seeds. Avg. Prob. is the log probability. ↑ and ↓ denote that the values are considered to
be better when they are higher and lower, respectively. The best/worst scores are in bold/underlined.
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Prob. Sim. kNN↓ LOF↓
Pseudo-Reference COMET20↑ Avg.↑ Cum.↑ Cand.↑ Ref.↑ dM↓ 5 25 50 75 100 5 25 50 75 100

de-en

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 58.77 -3.59 0.87 -0.11 -0.51 17.65 1.13 1.98 3.05 4.41 6.56 1.05 1.05 1.07 1.01 1.00
Beam 57.24 -0.76 1.02 0.59 0.46 46.37 1.67 2.08 2.34 2.55 2.81 1.82 1.62 1.51 1.28 1.00
Epsilon (ϵ = 0.02) 59.07 -0.89 0.97 0.56 0.43 21.33 1.27 1.76 2.10 2.37 2.69 1.12 1.13 1.11 1.01 1.00
Epsilon (ϵ = 0.02)* 59.19 -0.89 0.97 0.56 0.43 23.26 1.19 1.69 2.03 2.31 2.64 1.13 1.14 1.11 1.02 1.00
Nucleus (p = 0.6) 57.82 -0.70 0.83 0.60 0.48 55.60 1.59 1.98 2.26 2.48 2.71 1.71 1.52 1.44 1.18 1.00
Nucleus (p = 0.9) 59.65 -1.50 0.95 0.41 0.26 17.29 0.93 1.39 1.79 2.19 2.95 1.05 1.03 1.01 0.99 1.00

en-de

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 64.21 -3.60 0.65 -0.14 -0.80 14.50 0.87 1.62 2.65 4.15 7.24 1.06 1.07 1.05 1.00 1.00
Beam 63.49 -0.65 0.75 0.62 0.56 40.90 1.15 1.38 1.54 1.66 1.82 2.06 1.75 1.57 1.29 1.00
Epsilon (ϵ = 0.02) 65.32 -0.80 0.71 0.60 0.52 16.66 0.90 1.19 1.40 1.57 1.78 1.10 1.10 1.07 1.01 1.00
Epsilon (ϵ = 0.02)* 65.25 -0.80 0.71 0.60 0.52 18.18 0.84 1.14 1.36 1.52 1.73 1.13 1.13 1.09 1.01 1.00
Nucleus (p = 0.6) 64.31 -0.61 0.62 0.63 0.56 42.62 1.11 1.34 1.51 1.65 1.79 1.84 1.47 1.34 1.14 1.00
Nucleus (p = 0.9) 65.44 -1.30 0.70 0.51 0.35 14.21 0.67 0.99 1.24 1.48 1.97 1.05 1.05 1.02 1.00 1.00

ru-en

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 47.92 -3.75 0.60 -0.05 -0.45 17.37 0.96 1.63 2.49 3.65 5.68 1.04 1.03 1.02 1.00 1.00
Beam 44.90 -0.74 0.74 0.62 0.36 68.23 2.56 2.94 3.18 3.36 3.55 3.01 1.54 2.40 1.98 1.15
Epsilon (ϵ = 0.02) 46.56 -0.89 0.69 0.59 0.34 29.48 1.99 2.54 2.88 3.13 3.38 1.31 1.44 1.45 1.28 1.00
Epsilon (ϵ = 0.02)* 46.59 -0.89 0.69 0.59 0.34 30.97 1.89 2.47 2.82 3.07 3.33 1.33 1.47 1.49 1.31 1.00
Nucleus (p = 0.6) 45.42 -0.69 0.60 0.63 0.37 87.59 2.49 2.88 3.15 3.35 3.53 3.12 2.40 2.18 1.76 1.08
Nucleus (p = 0.9) 47.77 -1.52 0.67 0.45 0.18 19.08 1.10 1.79 2.27 2.67 3.33 1.06 1.11 1.13 1.01 1.00

en-ru

E
ps

ilo
n

(ϵ
=

0.
02

) Ancestral 71.19 -3.85 0.37 0.02 -0.57 16.23 1.03 1.71 2.60 3.81 5.85 1.06 1.08 1.08 1.02 1.00
Beam 68.26 -0.72 0.44 0.69 0.57 58.19 1.64 1.96 2.16 2.32 2.50 2.33 1.91 1.73 1.41 1.00
Epsilon (ϵ = 0.02) 71.85 -0.94 0.42 0.65 0.52 16.62 1.21 1.61 1.88 2.10 2.36 1.09 1.12 1.10 1.02 1.00
Epsilon (ϵ = 0.02)* 71.79 -0.94 0.42 0.65 0.52 20.76 1.12 1.53 1.80 2.03 2.28 1.11 1.13 1.12 1.03 1.00
Nucleus (p = 0.6) 71.08 -0.80 0.37 0.67 0.56 36.80 1.30 1.67 1.92 2.12 2.34 1.37 1.32 1.32 1.14 1.00
Nucleus (p = 0.9) 72.33 -1.69 0.41 0.49 0.30 15.40 0.83 1.21 1.52 1.84 2.52 1.03 1.02 1.01 0.99 1.00

Table 8: Results used to calculate the Spearman’s ρ in Table 6. Candidates are sampled with epsilon sampling (ϵ =
0.02). Epsilon (ϵ = 0.02)∗ shows the results of sampling candidates and pseudo-references with the same epsilon
sampling but with different seeds. Avg. Prob. is the log probability. ↑ and ↓ denote that the values are considered to
be better when they are higher and lower, respectively. The best/worst scores are in bold/underlined.
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