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Abstract

Cross-lingual transfer can be achieved through
two main approaches: zero-shot transfer or ma-
chine translation (MT). While the former has
been the dominant approach, both have been
shown to be competitive. In this work, we com-
pare the current performance and long-term
viability of these methods. We leverage lexical
gaps to create a multilingual question answer-
ing dataset, which provides a difficult domain
for evaluation. Both approaches struggle in
this setting, though zero-shot transfer performs
better, as current MT outputs are not specific
enough for the task. Using oracle translation
offers the best performance, showing that this
approach can perform well long-term, how-
ever current MT quality is a bottleneck. We
also conduct an exploratory study to see if hu-
mans produce translations sufficient for the task
with only general instructions. We find this
to be true for the majority of translators, but
not all. This indicates that while translation
has the potential to outperform zero-shot ap-
proaches, creating MT models that generate
accurate task-specific translations may not be
straightforward.

1 Introduction

Cross-lingual transfer has helped to develop natural
language processing (NLP) systems for a broader
set of languages through two main approaches:
zero-shot transfer, where a single multilingual
model is finetuned on a source language and di-
rectly applied to a target language, and translation-
based transfer, where data is translated via a ma-
chine translation (MT) system before being passed
to a downstream model. While zero-shot transfer
is more widely used, this has been called into ques-
tion both for high-resource (Artetxe et al., 2023;
Isbister et al., 2021) and low-resource (Ebing and
Glavaš, 2023; Ebrahimi et al., 2022) languages.

In this work, we ask the overall question: Which
approach has the greater potential in creating NLP

systems which perform at a high level for all lan-
guages? To do so, we create a focused question
answering (QA) dataset leveraging a phenomena
we expect to be challenging for both approaches:
lexical gaps, or concepts which are explicitly de-
noted in one language that can only be expressed as
a combination of words in another (Bentivogli and
Pianta, 2000). Lexical gaps exist in a variety of do-
mains, such as colors or foods (Khishigsuren et al.,
2022), however due to its prevalence across many
languages, in this work we focus specifically on
kinship terminology: Farsi, e.g., marks the differ-
ence between amoo (English: paternal uncle), and
daei (English: maternal uncle), while, in English,
both relatives are generally just referred to as uncle.
Examples in the dataset, created using templates,
are simply structured and easy to solve for a human,
though accurate translation or recognition of the
relevant lexical gaps are required to identify the
correct answer. While focusing solely on lexical
gaps through this approach reduces example diver-
sity, there is a trade-off as we gain more control
in our experiments and the ability for finer-grained
analysis.

Evaluating on a diverse set of 5 languages – Cata-
lan, German, Farsi, Hindi, and Vietnamese – we
first investigate existing models and find that both
translation-based and zero-shot approaches strug-
gle in this setting. However, the zero-shot approach
is stronger, and we find that current MT systems do
not preserve the required amount of detail for the
task, instead falling back to the general translation
(e.g., amoo being translated to uncle). Replacing
MT outputs with an oracle translation, however, of-
fers the best performance across all methods, show-
ing that with sufficiently accurate translation, this
approach can overcome the challenge of lexical
gaps.

To see if collecting additional data is a feasi-
ble approach for closing the gap between current
MT outputs and oracle translations, we conduct
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LGI Answerable T Context Pair (Translated) Question Answer Choices Predicted Answer Correct Answer

0

Y ✓
My paternal uncle’s name is Sena.
My maternal aunt’s favorite food is ghormeh sabzi.

What is my paternal uncle’s name?
[A] Sena
[B] ghormeh sabzi
[C] Not Answerable

A A

Y ✗
My uncle’s name is Sena.
My aunt’s favorite food is ghormeh sabzi.

What is my uncle’s name? A A

0

N ✓
My paternal uncle’s name is Sena.
My maternal aunt’s favorite food is ghormeh sabzi.

What is my maternal uncle’s name?
[A] Sena
[B] ghormeh sabzi
[C] Not Answerable

C C

N ✗
My uncle’s name is Sena.
My aunt’s favorite food is ghormeh sabzi.

What is my aunt’s name? C C

1

Y ✓
My paternal uncle’s name is Sena.
My maternal uncle’s name is Ali.

What is my paternal uncle’s name?
[A] Sena
[B] Ali
[C] Not Answerable

A A

Y ✗
My uncle’s name is Sena.
My uncle’s name is Ali.

What is my uncle’s name? C A

2

N ✓
My paternal uncle’s name is Sena.
My maternal uncle’s favorite food is ghormeh sabzi.

What is my maternal uncle’s name?
[A] Sena
[B] ghormeh sabzi
[C] Not Answerable

C C

N ✗
My uncle’s name is Sena.
My uncle’s favorite food is ghormeh sabzi.

What is my uncle’s name? A C

Table 1: A full example from the dataset, showing how two context templates, a corresponding question template,
and different values can be used to create different examples. Italics represent the slots which were filled by kinship
terms or value surface forms (e.g., "Sena", "Ali", "ghormeh sabzi"). The answerable column denotes if the original
example is answerable or unanswerable. The T column marks if the translation is specific (✓) or general (✗), and
how using the general translation affects the perceived correct answer. LGI denotes the Lexical Gap ID, which
depends on the relation between the two kinship entities found in the contexts, and whether they can conflict or not
when translated to English.

a case study with Farsi to see if humans produce
translations appropriate for the task without any
task-specific instructions. Our results are mixed:
most, but not all, human translators produce transla-
tions close to the oracle which preserve the lexical
gap information. Thus, while translation may be a
viable long-term approach for cross-lingual trans-
fer, building an appropriate MT system represents
a bottleneck, as relying purely on any generally
collected parallel data may not be sufficient for a
specific downstream task.

2 Background

2.1 Lexical Gaps

Linguistic diversity has been studied extensively
by typologists (Comrie, 1989), and for a detailed
survey on it’s relation to NLP, we refer the reader
to Ponti et al. (2019). Lexical gaps, which we can
consider a feature of this diversity across languages,
and the concept of untranslatability have also been
studied (Bella et al., 2022; Bentivogli and Pianta,
2000; Wierzbicka, 2008; Bentivogli et al., 2000;
Santos, 1990). Specific to kinship terminology
are the works of Khishigsuren et al. (2022) who
create a multilingual database of terms and use it
to evaluate MT outputs, and Khalilia et al. (2023)
who introduce dialect-specific additions.

2.2 Cross-Lingual Transfer

Zero-shot cross-lingual transfer can be achieved
using embedding models (Ruder et al., 2019), pre-
trained encoder models (Devlin et al., 2019; Lam-
ple and Conneau, 2019; Conneau et al., 2020), or,
most recently, through the use of multilingual large
language models (LLM; BigScience et al., 2023),1

which we use in this work. MT-based approaches
have also been shown to be competitive with zero-
shot transfer (Ansell et al., 2023; Artetxe et al.,
2023; Ebing and Glavaš, 2023; Isbister et al., 2021).
In this work, we focus on translate-test, where the
target-language evaluation data is first translated to
English, then used as input to a task-specific model.
For clean comparison, we use the LLMs above as
our task-specific model.

3 Dataset Construction

We construct a QA dataset around lexical gaps,
which consists of simple, factual sentences made
via templates. This approach has several benefits: it
allows for a fine-grained analysis of lexical gaps, is
easily extensible to multiple languages, has a small
chance of overlap with the pretraining data, and
creates a challenging evaluation for LLMs while
remaining trivial for humans. A complete example

1https://chat.openai.com/
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Lang.
Model GPT-3.5 Llama-7b Llama-13b BLOOM-Z

0-A 0-U 1 2 0-A 0-U 1 2 0-A 0-U 1 2 0 0-U 1 2

CA

CA 91.52 96.08 98.70 84.93 43.60 14.40 38.82 09.80 86.99 19.93 72.55 05.80 98.64 39.89 96.21 16.87
EN 96.80 97.87 99.50 95.30 78.81 33.04 67.86 31.13 93.67 35.48 86.93 32.20 99.73 47.60 98.70 27.83

CA-N 71.59 97.84 24.95 14.97 49.42 18.13 35.23 08.33 65.02 40.22 36.03 13.73 87.04 33.19 47.31 07.03
CA-G 82.34 98.21 23.35 07.70 64.89 24.50 38.52 07.03 87.37 26.26 44.61 04.00 89.96 53.19 45.61 07.53

DE

DE 92.01 98.25 98.59 97.83 57.20 24.73 48.29 16.97 91.82 26.59 80.42 12.00 89.26 30.61 61.85 09.10
EN 96.21 97.61 99.90 94.70 80.02 32.89 69.28 29.13 92.63 35.74 87.45 31.73 99.81 48.22 99.30 28.63

DE-N 62.49 98.40 22.39 22.83 57.89 25.73 38.15 16.50 68.85 34.88 39.66 12.87 69.35 64.78 43.67 24.53
DE-G 80.30 98.68 26.20 08.60 63.24 41.06 34.74 17.13 82.44 39.21 42.87 08.93 90.04 54.17 48.19 08.83

FA

FA 88.77 76.91 78.77 48.27 29.67 28.16 31.17 32.40 62.77 02.68 50.10 01.23 61.79 31.85 54.87 23.23
EN 97.28 96.35 98.70 85.03 70.41 32.09 48.80 33.30 91.78 28.69 77.17 24.13 99.76 41.70 96.87 14.50

FA-N 83.57 91.58 66.60 50.67 66.33 16.32 54.60 11.90 83.29 24.22 64.80 17.67 91.25 42.53 75.50 21.77
FA-G 81.36 90.61 39.40 33.83 67.77 17.95 46.47 09.10 87.48 24.76 54.43 09.87 91.15 45.76 59.03 16.40

HI

HI 93.34 75.54 90.80 68.93 41.75 27.70 30.83 29.53 69.59 03.02 54.47 01.77 96.16 42.78 92.33 25.10
EN 98.20 97.96 99.37 91.13 63.74 31.77 49.07 34.30 93.86 23.31 80.33 22.83 99.49 43.43 98.40 28.73

HI-N 68.47 93.32 54.30 75.93 68.09 28.38 53.27 25.97 75.13 27.57 58.53 24.33 80.71 39.71 63.97 29.47
HI-G 83.88 96.41 38.03 34.67 56.82 19.88 36.23 12.90 86.52 20.12 49.63 12.13 85.00 52.96 49.97 22.97

VI

VI 80.09 75.97 83.27 45.67 31.17 15.02 29.13 14.43 78.08 11.73 55.20 07.13 96.12 49.03 87.23 25.53
EN 97.80 95.84 99.90 93.70 65.75 28.84 57.47 31.17 92.15 28.02 86.20 32.63 99.09 55.24 99.27 28.03

VI-N 45.99 92.79 19.90 43.37 48.56 27.48 38.63 20.67 59.80 27.04 40.77 17.40 53.28 75.95 36.43 40.77
VI-G 80.40 98.14 29.83 15.00 52.13 20.41 36.30 11.87 79.05 24.67 48.60 11.50 77.72 53.25 48.13 22.50

Table 2: Results for the main experiment. Cells represent accuracies averaged across 3 samples. Columns represent
the QA accuracy for each LLM, broken down by LGI, with -A and -U representing answerability. For languages,
EN represents the oracle translation, *-N represents NLLB translation, and *-G is for Google Translate. Standard
deviations can be found in Table 7.

from the dataset can be found in Table 1 and Ap-
pendix A contains a worked example. We describe
the overall pipeline below.

For a given language, we start with a set of kin-
ship terms, and consider both their general transla-
tion to English, i.e., the translation which is likely
to be most common but could create a conflict with
respect to the lexical gap, and their specific transla-
tion, which preserves full meaning in English. For
the templates, we begin with a set of descriptive
single-sentence English context templates which
each contain two slots, an entity slot, filled with
kinship terms (c.f. Table 3), and a value slot, filled
from a pool of surface forms linked to the template.
Each context template has a corresponding ques-
tion template, which asks a question which can be
answered using only the context.

The question and context templates are then
translated to the target language. To prevent an
English bias, annotators are asked to create slot
values which are natural to the language, and are
allowed to modify the English templates to create
the most natural target language translation. This
creates a parallel set of templates, one in the target
language and one in English. While we start with
English in the dataset creation, for our experiments

we refer to the English as the oracle translation
from the target language, as the entity slot is filled
with the specific translation and the meaning is com-
pletely preserved. By starting from the same set of
English templates for each languages, the dataset
remains roughly semantically parallel across the
different target languages. Additional details on the
translation process can be found in Appendix A.1.

QA examples are created by pairing two con-
text templates together and selecting one of the
corresponding question templates. Depending on
how the slots are filled, examples can be either an-
swerable, i.e., the answer is found in one of the
contexts, or unanswerable, created by switching
the entity in the question template. Questions can
be unanswerable due to either missing or conflict-
ing information. We categorize examples into three
categories, denoted by the lexical gap ID (LGI),
which depends on the relationship between the two
entities found in the context template pair. LGI 0
denotes examples where the entities do not conflict
with respect to a lexical gap, i.e., the general form
of the two slots is different. Examples with LGI 1
and 2 are those where the general value is the same,
which causes conflict after poor translation. LGI
1 denotes examples which are answerable in the
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target language which can become unanswerable
after translation, while LGI 2 denotes examples
which are unanswerable in the target language and
become erroneously answerable if the translation
does not use the specific forms. Therefore, while
LGI 0 example can be either answerable or unan-
swerable, they will remain so regardless of the qual-
ity of translation; for LGI 1 and 2, poor translation
will corrupt the context, and the answerability of
the example can change.

The task is framed as a 3-way classification prob-
lem, with each value representing an answer choice,
along with one option for ‘not answerable’ (Robin-
son and Wingate, 2022). Context and answer
choice order are shuffled for each example. We
collect translations for Farsi, Hindi, Vietnamese,
Catalan, and German, with the first three represent-
ing languages with different kinship terminologies
than English, and the latter two having a terminol-
ogy which is practically one-to-one with English.

4 Zero-Shot Transfer vs. MT

4.1 Experimental Setup
In this experiment, we use GPT-3.5 and BLOOM-
Z 7b1 for the zero-shot approach. We also con-
sider the 7 and 13-billion parameter versions of
Llama 2 (Touvron et al., 2023), which is officially
English-only. BLOOM-Z was trained using X-P3
(Muennighoff et al., 2023), which contains text
from all languages in our experiments except for
Farsi. For more information on the performance of
these models on other languages and tasks, we refer
the reader to Ahuja et al. (2023). For translation,
we use Google Translate (Bapna et al., 2022) and
No Language Left Behind (NLLB) (NLLB et al.,
2022). Additional details for each model and the in-
ference procedure can be found in Appendix B. As
the total number of generated examples is large, for
each language we take three independent samples
of 3000 examples for evaluation, balanced across
LGI, to reduce the number of examples to a feasible
size.

4.2 Results
We present results in Table 2, and discuss our find-
ings below.

Lexical gaps are difficult for zero-shot transfer.
For multilingual LLMs, we see a decrease in perfor-
mance for target language examples which involve
lexical gap entities. For BLOOM, comparing LGI
0-A with LGI 1 shows a decrease in performance

of 6.55% on average across all languages with gaps.
For GPT-3.5, the overall stronger model, this effect
is less pronounced, with an average difference of
3.12%, and an improvement for Vietnamese. This
highlights the inherent difficulty models have with
lexical gaps, as even though entities are explicitly
referred to differently, models cannot correctly an-
swer the questions.

Oracle translation outperforms zero-shot trans-
fer. For all languages and models, the average
performance of the oracle English translation is
greater than zero-shot performance. This difference
is more drastic as the similarity of languages de-
creases from English; oracle translation only shows
.35% improvement for German when using GPT-
3.5, but 23.36%, 14.27%, and 26.26% for Farsi,
Hindi, and Vietnamese respectively. Intuitively, us-
ing translation is effectively a requirement for the
Llama models, particularly for the non-Latin script
languages. This further supports prior findings re-
garding the viability of translation for cross-lingual
transfer (Artetxe et al., 2023).

Performance with MT lags behind oracle trans-
lation, but not always. MT models are not able
to reliably translate lexical gaps, as for LGI 1 and
2, performance on the MT data is generally far less
than oracle translation. For example, GPT-3.5 per-
formance on oracle Farsi data (LGI 1) is 98.70%
while the same performance is 66.60% when NLLB
is used for translation. Performance drops to ran-
dom with Google Translate. This pattern is rela-
tively consistent across languages and categories.
However, there are some noticeable cases which
differ, e.g., when using NLLB and BLOOM for
LGI 2 Farsi. In these cases, poorer or incorrect
translations may actually help the downstream QA
model perform better for unanswerable questions:
the noise added through translation makes detect-
ing unanswerability easier by pushing apart the
contexts being compared. A similar effect is ob-
served when comparing NLLB and Google Trans-
late – even among the same language, depending
on the type of example and downstream model, nei-
ther MT model consistently outperforms the other.
This pattern is explicitly prevalent when comparing
Llama-7 to 13. Therefore, for successful cross-
lingual transfer through translation, the choice of
translation model should be conditioned on the lan-
guage and task-specific downstream model.
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LLMs can still struggle with unanswerable ex-
amples. Focusing specifically on performance
with the oracle English translations, we see a large
spread across LLMs. On the higher end, GPT-
3.5 gets an average performance of 96.5% accu-
racy, while Llama-7 and 13 get 48.4% and 58.9%
correct, respectively. BLOOM lies in the middle,
with 67.7% correct. Low performance is due to
extremely poor performance on the subset of unan-
swerable questions. For example, Llama-13 gets
92.8% of LGI 0-Answerable questions correct, but
only 30.2% of unanswerable ones correct.

5 Human Translations of Lexical Gaps

In the previous section, we find that current MT
models do not translate lexical gaps with the accu-
racy necessary to solve the QA task. A common
approach to improve model performance is contin-
ued pretraining (Gururangan et al., 2020), and we
can consider a situation where additional transla-
tions are collected for this adaptation. With this
study, we are interested in learning how humans
translate contexts containing lexical gaps, particu-
larly if there are two entities which, when found
independently, are typically translated to the same
word. Specifically, we aim to find if (1) for our
examples, will humans produce translations close
to our oracle translation if they have no knowledge
of the downstream task? and (2) If not, how do hu-
mans translate sentences which contain conflicting
lexical gaps? Namely, do humans follow the ‘One
Sense Per Discourse’ hypothesis (Gale et al., 1992)
in our setting, and disambiguate conflicting lexical
gaps which arise in the same context pair?

5.1 Experimental Setup

We focus on Farsi in this experiment, and use a
sample of 15 instances from the dataset. This sam-
ple includes single context examples, where the
general translation is appropriate, and double con-
text examples with conflicts that require the spe-
cific translations to preserve meaning. We control
for the order in which participants see the exam-
ples. Participants are randomly assigned to two
groups; in Group 1, participants see single con-
text examples before double context examples, and
vice-versa for Group 2. We provide additional de-
tails in Appendix C.

Participants Participants are fluent bilingual
speakers of both English and Farsi, many of whom
have previous experience with professional transla-

tion. Translators are not given specific instructions;
the only guideline is to "preserve the meaning of
the passage." In total, 11 people participate, and 5
are assigned to Group 1 and 6 to Group 2.

5.2 Results

Of Group 1 participants, 2 of the 5 use the specific
English translation, while the others continued us-
ing the general translation, even for conflicting sen-
tences. For the two who used specific translations,
one used them only for the latter half of examples.
In Group 2, 5 of the 6 participants used a specific
translation. This indicates that, while the majority
of translators naturally lean towards the specific
translation for conflicting sentences, i.e., confirm-
ing the One Sense per Discourse hypothesis, this is
more likely if they are not shown sentences which
only need the general translation first.

This variability in human translation represents
a hurdle for translation-based cross-lingual transfer,
in that the best translation for a given task may not
always correlate with how a human naturally trans-
lates a given sentence, particularly if that human
does not have knowledge of the task. This further
confirms the finding that the best translations for
cross-lingual transfer are task specific. When re-
searchers are collecting data to train an MT model
specifically for cross-lingual transfer, care must be
taken that the translations are sufficient for the task.

6 Conclusion

In this work, we compare zero-shot and translation-
based approaches to cross-lingual transfer with a
dataset created around lexical gaps. Using cur-
rent models, zero-shot transfer offers better perfor-
mance, and MT models are not capable of suffi-
ciently accurate translations. Using oracle trans-
lation reveals the long-term viability of the latter
approach, however we find that generally collected
translations are not always suitable for the task.
As such, collecting task-specific data, or using ap-
proaches such as neuro-symbolic models, which
can incorporate rules, may be necessary for strong
translation-based transfer.

7 Ethics Statement

We do not believe that our main research has any
ethical concerns. The languages covered by our
dataset have a large number of speakers and are not
endangered. By using templates which are based
around simple, factual statements guarantees that
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there are no harmful sentences present in the eval-
uation. Furthermore, when generating the dataset,
we consider all possible slot-surface form combina-
tions, and as such do not bias any particular kinship
entity in any way.

For our human study, we received IRB approval
before beginning the experiment. All participants
were given, and signed, an approved Informed Con-
sent form before they were allowed to begin trans-
lating. This form highlighted that we were not able
to give the translators the full background informa-
tion on the study until after the experiment, when
they were given an approved debriefing form. The
participants were informed that their translations
would not be revealed in any way that could be
linked back to them, and we ask all participants if
they would like their translations to be considered
for public release at any point. Participants were
not paid due to the short duration of the experi-
ment, and were given the choice of opting-in to
being included in the acknowledgments section.

8 Limitations

There are several limitations in our work. First,
we focus on only 5 languages, 3 of which contain
considerable lexical gaps with English. Due to the
inherent diversity found across languages, there
may be differences, even in our limited domain, of
model performance across languages. To account
for this, we aim to collect data from a diverse set
of languages with different kinship terminologies.
We also focus solely on kinship terminology as it is
commonly found across languages and is common
knowledge among speakers. Performance on other
types of lexical gaps may be different, and further
experiments using different gaps may be a help-
ful evaluation. Second, while the use of templates
has a number of benefits as highlighted in the pa-
per, it means that the examples used for evaluation
are quite simple. While some models do struggle
with these examples, the repetition in the dataset
and simplicity of the templates means that with
finetuning, model performance would likely reach
near perfect accuracy. As such, we focus solely
on zero-shot evaluation, and believe that this is the
best evaluation setup for our data. This approach
provides valuable information in how a model is
able to generalize to concepts it may not have en-
countered very often, but are still understood by
most humans with just basic knowledge of a given
language. In other words, due to the simple nature

of the questions, we would expect a model with
strong understanding of a language to perform well
on our dataset, and while strong performance may
not be generally informative towards the overall
strength of the model, we believe that weak perfor-
mance, which we observe, becomes an important
signal. Overall, we believe the trade-off between
diversity in examples and stronger control in exper-
iments is valuable due to the finer-grained insights
we can gain.

Another limitation arises when comparing the
long-term viability of translation vs zero-shot trans-
fer based approaches. For translation, since trans-
lation quality typically represents the bottleneck,
expected long-term or future performance can be
measured by simply replacing the MT outputs with
oracle translations. In contrast, it is more difficult
to measure the expected performance of zero-shot
transfer. Therefore, while we can claim that im-
provements in translation quality can help over-
come the challenge of lexical gaps (although we
also find that collecting data for these improve-
ments is not trivial), we cannot claim the same
for zero-shot transfer given the experiments in this
work. However, this does not mean that zero-shot
transfer will never be able to solve lexical gaps.
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Appendix

A Dataset Construction

We illustrate the dataset construction through a
specific example for Farsi. Let the specific kinship
term for Context 1 (refer to this as Entity 1) be
"my father’s brother", with a specific translation of
paternal uncle and a general translation of uncle.
The kinship term for Context 2 (Entity 2) will be
"my mother’s brother", with specific translation
maternal uncle and general translation uncle. Since
the two general translations are equal, pairing these
two entities together will yield an example in either
LGI 1 or 2.

Let the Context 1 template be: "My [person]’s
favorite food is [food]." and let the Context 2 tem-
plate be: "My [person]’s name is [name].". Here,
[person] represents the entity slot while [food]
and [name] represent value slots. Context 1 has
a corresponding question template (refer to this
as Question 1): "What is my [person]’s favorite
food?" and Context 2 has the question (Question
2): "What is my [person]’s name?". We can create
the following LGI 2 examples, i.e., one which is
unanswerable and becomes answerable, by filling
Question 1 with Entity 2, e.g.,:

My paternal uncle’s favorite food is
[food].
My maternal uncle’s name is [name].
What is my maternal uncle’s favorite
food?

with answer choices being the objects used to fill
the value slots, i.e. the [food], [name] slots, as well
as a ‘Not answerable. ’ option. Using the specific
translation, we easily see that the question is unan-
swerable, as "my maternal uncle’s favorite food"
is never discussed. However, if we poorly trans-
late both "paternal uncle" and "maternal uncle" to
"uncle", we become able to erroneously answer the
question.

To create an LGI 1 example, i.e. one which is
answerable but becomes unanswerable, we need
to use the same Contexts for both people, as if the
contexts were different, the question would remain
solvable (by only replying with the relevant value).

My paternal uncle’s name is [name1].
My maternal uncle’s name is [name2].
What is my maternal uncle’s name?

Here, the answer is clearly name1, however

this becomes ambiguous with poor translation and
therefore unanswerable.

A.1 Annotation Process
While using templates for creating examples is rel-
atively simple in some languages such as Farsi
and English, it becomes more complicated when
moving to languages which require morphologi-
cal changes within the templates, depending on
the values used to fill empty slots (e.g., German
or Vietnamese). We address these issues in two
ways: first, by simply creating a different template
for each combination of required morphological
changes, or second, by defining a post-processing
map which modifies the sentences after slots have
been filled to correct any erroneous terms within
the templates. For the first approach, we add meta-
data to the slot values (e.g., gender information
for names and kinship terms) as well as the tem-
plates and use this information to constrain which
templates can be used with which values. For the
second approach, the slot meta-data is used to trig-
ger specific transforms which correct the grammar.

Since each language is different, we required
multiple rounds of translation and verification with
each annotator for each language, which restricted
the total number of languages we were able to in-
clude. As such, we aimed to select languages which
maximized diversity across kinship terminology,
language family, and script.

B Experimental Setup

B.1 LLMs
We focus on three LLMs: GPT-3.5,2 Llama 2 (Tou-
vron et al., 2023), and BLOOM-Z (BigScience
et al., 2023). All main results are zero-shot eval-
uations of the models, and we do no additional
finetuning.

GPT-3.5 For GPT-3.5, we rely on the OpenAI
API. We use the gpt-3.5-turbo-0301 model for
all of our results.

Llama We use the 7-billion and 13-billion pa-
rameter versions of Llama, finetuned for chat-
completion, in our work. In our preliminary results,
we also experiment with using the text-completion
Llama models however chose not to continue with
them due to extremely poor performance. We use
the official Llama implementation3 for inference.

2https://chat.openai.com/
3https://github.com/facebookresearch/llama
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BLOOM For BLOOM, we use the 7-billion pa-
rameter version through the Huggingface (Wolf
et al., 2020) implementation.

B.2 Machine Translation

Google Translate We use the Google Translate
(Bapna et al., 2022) API to collect translations. We
specify both the source and target language.

NLLB For NLLB (NLLB et al., 2022), we use
the Huggingface implementation. For the transla-
tions which we use in the main results, we use the
nllb-200-distilled-1.3B version with default
settings.

B.3 Extracting Question Answering
Responses

Prompt and Hyperparameter Tuning We tune
the input prompts, answer formats, system prompt
(when applicable), and temperature setting for each
LLM separately. We include the final prompts we
use in Table 4. All models performed best with
a temperature of 0.3, except for GPT-3.5 where
0.6 was better. For tuning, we create an indepen-
dent English-only version of our dataset which uses
English-only entities and a new set of templates to
ensure that the test set evaluations are truly held
out.

Model Inputs As input to the model, we include
the prompt, context, question, and the three possi-
ble answer choices. We then pick the most likely
answer choice decoded by the model as the pre-
dicted answer. We rely on a single 40GB Nvidia
V100 GPU for all of our experiments.

C Human Evaluation

C.1 Experimental Setup

We specifically consider 5 types of samples, each
with varying levels of conflict. The specific exam-
ples (translated to what we are calling the oracle
translation) used in the study are shown in Table 5.
Type 1 contains single context sentences with an
entity that never conflicts, Type 2 contains single
context sentences with entities that could conflict,
Type 3 contains double context sentences whose
entities do not conflict, Type 4 contains double con-
text sentences whose entities do conflict, and Type
5 is the same as Type 4, but includes a question
about one of the entities. The specific orderings of
example types which participants were shown was

1,2,3,4,5 (i.e., single context sentences before dou-
ble context sentences) for Group 1, and 1,5,4,3,2
(i.e. conflicting double context sentences with a
specific question before non-conflicting sentences)
for Group 2.

C.2 Participants

Participants were bilingual speakers of Farsi and
English close to the authors of the paper. They were
not paid for their translations, as it only required a
short period of participation (10-15 minutes).

D Additional Experiments with
Translation

D.1 Finetuning MT Models

Here we are interested in learning if MT models
can learn to correctly translate lexical gaps through
finetuning. We partition the data by selecting a
subset of kinship terms and context templates for
Farsi, Hindi, and Vietnamese, and hold out exam-
ples which contain them as an evaluation set. Fo-
cusing only on the context pairs, we use the remain-
ing examples in the target language and English
version to create parallel data for finetuning. We
also consider single context sentences, which in-
stead of a context pair (which is a double context),
contains only one sentence. In these cases, we use
the general translation since there are no entities
we need to disambiguate. To measure performance,
we count the number of examples which contain
correctly translated entities.

For finetuning NLLB, we use a batch size of
32, warmup ratio of 0.1, and a learning rate of 2e-
6, which we tune by hand as rates used by prior
works were too large for our data. We train inde-
pendent models for 25, 50, 100, 250, 500, 1000,
2500, 5000, and 10000 steps, and measure perfor-
mance by counting the number of examples which
contain correctly translated entities. We present
results in Figure 1 and Table 6.

We see that NLLB is able to translate the seen
lexical gaps easily, however, performance for un-
seen entities only shows improvements in the single
context case. Double context performance either
never improves, or degrades quickly. This indicates
that the model does not learn, in general, to use the
specific translation in the double context setting.

D.2 Using LLMs for Translation

As LLMs also have the ability to produce transla-
tions, and due to their strong performance in other
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tasks, they may offer a stronger alternative to stan-
dalone MT models for our task. To experiment wit
this, we consider a 1-shot setting where model is
asked to translate a double context sentence, and
provide a different double context translation as the
example.

For example, if we want to get translations for
the Farsi input "My paternal uncle’s name is Ali.
My maternal uncle’s name is Sena", we may use
"My maternal aunt’s name is Mojghan. My pater-
nal aunt’s name is Sheyda." as the example in the
prompt, in order to show the model that it should
use the specific form of each lexical gap in the
translation.

We find that GPT-3.5 is unable to handle the
lexical gaps correctly, only translating both entities
to their specific form correctly 12% of the time.
However, the results are promising; it correctly
translates at least one gap correctly 40% of the
time, and gets the general form correct in 79%
of examples. Notably, in a manual review, the
model does attempt to make translations specific,
however these are generally incorrect and directly
copied from the reference example in the prompt.
The model also uses relative terms to differentiate
between conflicting entities.
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E Tables and Figures

English Catalan German Farsi (transl.) Hindi (transl.) Vietnamese

Uncle oncle Onkel amoo (paternal uncle) taoo (older paternal uncle)
chacha (younger paternal uncle) Chú

daei (maternal uncle) mama Câ.u

Aunt tia Tante khaleh (maternal aunt) mowsee Dì
ameh (paternal aunt) phuphu Cô

Grandmother àvia Großmutter madar bozorg nani (maternal grandmother) Bà ngoa. i
dadi (paternal grandmother) Bà nô. i

Grandfather avi Großvater pedar bozorg nana (maternal grandfather) Ông ngoa. i
dada (paternal grandfather) Ông nô. i

Mother mare Mutter madar maa Me.
Father pare Vater pedar pita Bő

Sister germana Schwester khahar choti bahan (younger sister) Em gái
badi bahan (older sister) Chi. gái

Brother germà Bruder baradar chota bhai (younger brother) Em trai
bada bhai (older brother) Anh trai

Son fill Sohn pesar beta Con trai
Daughter filla Tochter dokthar beti Con gái

Cousin cosí (female cousin) Cousin dokhtar khaleh (maternal aunt’s daughter) mowseri bahan
dokhtar ameh (paternal aunt’s daughter) phupheri bahan
dokhtar daei (maternal uncle’s daughter) mameri bahan
dokhtar amoo (paternal uncle’s daughter) chacheri bahan

cosina (male cousin) Cousine pesar khaleh (maternal aunt’s son) mowsera bhai
pesar ameh (paternal aunt’s son) phuphera bhai
pesar daei (maternal uncle’s son) mamera bhai
pesar amoo (paternal uncle’s son) chachera bhai

Table 3: The kinship terms we use, aligned horizontally for each language. Here, the gaps between languages can
be seen as empty lines in a given row. Farsi and Hindi terms are transliterated to Latin script.
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Model Prompt Type Prompt

GPT-3.5

System Prompt Answer the question using the given context. Respond with
the letter corresponding to the correct answer choice.

Input Prompt If the answer is unclear, reply wih the option for ‘not
answerable’. Here is the example:\n

Answer Prompt Answer:

Llama 7

System Prompt Answer the question using the given context. Respond with
the letter corresponding to the correct answer choice.

Input Prompt I’m trying to answer a question in {language} using only
the information found in the context below. If the answer
is unclear, reply with the option for ’not answerable’.
Here is the information and question:\n

Answer Prompt Answer:

Llama-13

System Prompt Respond with the letter corresponding to the correct
answer choice.

Input Prompt Answer the question written in {language} below using the
information in the context. If the answer is unclear,
reply with the option for ’not answerable’. Here is the
information and question:\n

Answer Prompt Answer:

BLOOM-Z

System Prompt N/A
Input Prompt If the answer is unclear, reply wih the option for ‘not

answerable’. Here is the example:\n
Answer Prompt Answer:

Table 4: Prompts selected for each LLM using the independent English development set.

Type Examples

Type 1
My brother’s favorite food is ash-e reshteh.
My grandmother’s shirt is blue.
My sister likes watching soccer.

Type 2
My paternal uncle’s shirt is blue.
My maternal aunt has a pet cat.
My paternal aunt’s daughter was born in 2004.

Type 3
My maternal aunt’s shirt is white. My sister was born in 1998.
My paternal uncle’s son is out for a run. My maternal aunt is cooking khoresht tonight.
My grandmother is sleeping in the living room. My mom is out for a run.

Type 4
My paternal uncle’s shirt is blue. My maternal uncle’s shirt is red.
My paternal aunt’s son is playing soccer. My paternal uncle’s daughter is watching TV.
My maternal aunt’s favorite color is purple. My paternal aunt was born in 1983.

Type 5
My paternal uncle’s shirt is blue. My maternal uncle’s shirt is red. What color is my paternal uncle’s shirt?
My paternal aunt was born in 1983. My maternal aunt’s favorite color is purple. What is my paternal aunt’s favorite color?
My maternal aunt’s daughter is out for a run. My paternal uncle’s son is cooking zereshk polo and morgh. Where is my maternal aunt’s daughter?

Table 5: English translations of the Farsi examples shown to human annotators for the case study.
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Figure 1: Main result figure for finetuning NLLB. The x-axis marks the total number of steps the model is finetuned
for, on a log scale. The y-axis marks the accuracy of translations, calculated by totaling the number of pairs which
contain correctly translated entities.

Type
Max Steps 0 25 50 100 250 500 1000 2500 5000 10000

Lang Seen

FA

Unseen U-All-1 51.59% 51.59% 51.59% 58.73% 56.35% 58.73% 96.83% 81.75% 73.02% 71.43%
U-All-2 8.18% 10.60% 12.48% 15.16% 1.70% 0.00% 0.00% 0.00% 0.00% 0.00%
U-Entity-1 48.00% 51.00% 52.00% 53.00% 50.00% 53.50% 91.00% 74.00% 70.00% 70.00%
U-Entity-2 7.37% 11.26% 14.09% 18.79% 7.98% 0.81% 0.00% 0.00% 0.00% 0.00%
U-Template-1 79.88% 79.88% 81.11% 81.11% 88.54% 100.00% 100.00% 100.00% 100.00% 100.00%
U-Template-2 55.09% 57.37% 58.52% 59.50% 74.08% 80.78% 77.68% 80.47% 84.22% 93.11%

Seen Single Context 76.54% 80.77% 80.77% 80.77% 93.27% 94.23% 100.00% 100.00% 100.00% 100.00%
Double Context 56.41% 59.14% 59.73% 59.77% 90.15% 97.63% 99.87% 100.00% 100.00% 100.00%

HI

Unseen U-All-1 61.29% 61.29% 62.90% 61.29% 77.42% 75.00% 51.61% 48.39% 48.39% 48.39%
U-All-2 14.65% 14.37% 14.22% 14.27% 17.72% 5.91% 1.47% 7.23% 17.25% 18.62%
U-Entity-1 60.00% 60.00% 60.00% 60.00% 62.00% 44.00% 50.00% 50.00% 50.00% 50.00%
U-Entity-2 13.33% 13.33% 13.33% 13.33% 11.33% 0.52% 3.70% 17.33% 20.00% 20.00%
U-Template-1 63.41% 64.30% 68.29% 78.49% 84.26% 95.12% 98.67% 100.00% 100.00% 100.00%
U-Template-2 37.46% 40.29% 43.49% 52.56% 56.67% 79.95% 86.33% 93.54% 96.39% 98.19%

Seen Single Context 62.96% 62.96% 65.93% 74.32% 87.16% 98.27% 100.00% 100.00% 100.00% 100.00%
Double Context 37.68% 40.45% 44.37% 53.87% 63.24% 96.21% 99.56% 100.00% 100.00% 100.00%

VI

Unseen U-All-1 91.88% 96.25% 97.50% 100.00% 100.00% 98.75% 88.12% 54.37% 53.75% 53.75%
U-All-2 47.87% 64.40% 75.35% 79.08% 70.20% 45.55% 25.70% 8.84% 9.20% 9.20%
U-Entity-1 82.27% 85.00% 88.64% 95.45% 100.00% 99.09% 100.00% 47.27% 45.45% 45.45%
U-Entity-2 51.56% 63.78% 68.59% 73.04% 74.15% 56.32% 33.90% 5.77% 5.65% 5.65%
U-Template-1 81.94% 87.50% 90.97% 97.22% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
U-Template-2 49.84% 65.88% 75.20% 79.94% 92.97% 95.18% 95.75% 99.06% 98.96% 98.75%

Seen Single Context 83.29% 91.90% 95.19% 98.73% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Double Context 61.17% 75.74% 79.52% 81.27% 93.36% 96.39% 99.54% 100.00% 100.00% 100.00%

Table 6: Main results for the finetuning results of NLLB.
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Lang.
Model GPT-3.5 Llama-7 Llama-13 BLOOM-Z

0-A 0-U 1 2 0-A 0-U 1 2 0-A 0-U 1 2 0 0-U 1 2

CA

CA 1.16 0.54 1.25 0.95 1.79 1.15 2.51 0.61 2.56 1.84 1.97 1.58 0.17 1.78 0.17 1.63
EN 0.22 0.08 0.17 0.35 0.76 0.72 1.95 0.91 0.49 0.63 0.46 1.68 0.09 1.15 0.35 1.38

CA-N 1.20 0.14 2.10 1.19 1.21 1.69 2.42 1.46 0.97 0.61 2.27 1.52 0.47 1.60 0.30 1.46
CA-G 0.71 0.41 0.79 0.44 1.61 0.71 3.14 0.61 1.29 0.17 0.30 0.36 1.15 0.73 1.54 0.72

DE

DE 0.89 0.29 0.17 0.51 0.66 1.29 2.18 0.06 1.12 0.81 0.52 0.36 0.75 2.06 2.05 0.56
EN 0.35 0.50 0.17 0.30 0.72 0.32 1.88 0.76 1.11 0.81 1.14 0.06 0.10 0.62 0.35 0.59

DE-N 0.83 0.27 3.09 1.21 0.97 0.28 4.01 0.61 1.00 1.57 0.46 0.15 0.78 1.94 0.52 0.12
DE-G 0.79 0.22 1.09 0.66 1.39 0.74 1.55 1.18 0.96 1.06 2.01 0.64 0.51 1.25 2.97 0.21

FA

FA 1.19 4.22 0.55 2.79 2.52 1.20 0.25 0.20 1.29 0.25 0.61 0.06 2.51 1.96 1.42 1.72
EN 0.39 0.31 0.52 1.06 2.69 0.42 0.53 1.70 1.73 2.21 1.33 1.15 0.27 1.74 0.32 0.36

FA-N 1.36 1.67 1.15 1.62 0.97 1.77 0.60 0.26 1.55 2.61 1.23 0.71 0.67 0.91 1.59 0.35
FA-G 7.07 2.77 1.61 1.59 9.28 0.89 1.38 2.23 3.78 4.52 0.81 0.81 5.75 4.91 1.79 0.95

HI

HI 1.21 1.62 0.44 0.64 3.09 1.50 0.93 1.45 2.09 0.38 1.85 0.12 0.38 1.41 1.15 0.95
EN 0.42 0.84 0.23 0.57 3.38 2.13 0.64 1.30 1.11 2.49 0.32 0.68 0.17 1.53 0.50 1.33

HI-N 2.53 0.64 0.53 1.58 2.85 2.59 0.67 0.21 1.58 3.26 0.72 2.14 0.58 4.83 0.93 2.14
HI-G 2.61 0.57 1.33 1.37 4.29 2.55 1.51 0.62 1.82 2.25 2.04 1.55 1.11 3.23 1.10 1.10

VI

VI 20.81 4.15 0.15 0.70 1.05 2.18 0.91 2.17 0.90 1.80 2.96 0.23 0.48 0.93 0.75 2.18
EN 0.54 1.00 0.17 0.92 2.09 1.17 0.47 0.85 1.19 2.19 0.30 0.68 0.47 2.65 0.21 2.20

VI-N 2.33 1.57 1.25 3.30 1.74 1.41 2.00 1.08 1.18 2.01 0.80 2.10 0.27 2.70 1.63 0.90
VI-G 0.45 0.38 0.71 1.80 0.84 1.86 2.00 0.60 1.17 2.76 1.59 0.75 0.75 0.40 0.76 0.89

Table 7: Standard deviations for the main results.
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