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Abstract
Minimum Bayes Risk (MBR) decoding can
significantly improve translation performance
of Multilingual Large Language Models
(MLLMs). However, MBR decoding is com-
putationally expensive. We show how the re-
cently developed Reinforcement Learning tech-
nique, Direct Preference Optimization (DPO),
can fine-tune MLLMs to get the gains of MBR
without any additional computation in infer-
ence. Our method uses only a small mono-
lingual fine-tuning set and yields significantly
improved performance on multiple NMT test
sets compared to MLLMs without DPO.

1 Introduction

MBR decoding (Kumar and Byrne, 2004; Eikema
and Aziz, 2022; Suzgun et al., 2023) is a two-
pass procedure that generates multiple transla-
tion hypotheses and selects a hypothesis based on
Bayesian risk. Recent work (Garcia et al., 2023;
Suzgun et al., 2023; Yang, 2023) has shown that
MBR decoding can significantly boost the trans-
lation performance of MLLMs (Lin et al., 2022;
Muennighoff et al., 2023; Zeng et al., 2023a),
outperforming greedy decoding and beam search.
However, MBR decoding is expensive, both in com-
putation and in latency.

Our goal is to fine-tune a base MLLM so
that it has the same single-pass decoding per-
formance as MBR decoding. We propose a
novel self-supervised fine-tuning method based on
DPO (Rafailov et al., 2023). Our method uses
MBR decoding on an MLLM to produce a pref-
erence dataset consisting of pairs of ranked trans-
lations. The DPO algorithm is used to fine-tune
the MLLM to prefer the higher-ranked transla-
tions over lower-ranked ones. MLLMs optimized
for MBR preference achieve significantly better
translation performance when decoded with beam
search, achieving translation quality on par with
MBR decoding of the original model.

2 MBR and DPO

We follow the expectation-by-sampling approach
to MBR (Eikema and Aziz, 2022). Given a set of
sampled translations H(x) = {y′ ∼ P (·|x)} and a
loss (or utility) function L(·, ·), the score (negative
Bayes risk) of each translation is found as

S(y) = − 1

|H(x)|
∑

y′∈H(x)

L(y′,y) (1)

and the MBR hypothesis is then computed as

y∗ = argmax
y∈H(x)

S(y) (2)

This is simple but expensive. Our goal is to train a
model that produces translations with scores con-
sistent with MBR, but without multi-step decoding.

2.1 DPO Fine-Tuning Objective

DPO (Rafailov et al., 2023) reformulates the usual
approach to Reinforcement Learning from Human
Feedback (RLHF) so as to avoid a distinct reward
modelling step. The typical RLHF criteria is

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x,y)] (3)

− βDKL [πθ(y|x) ∥ πref(y|x)]

where rϕ is a reward model trained from human
feedback, πθ is the model being trained, and πref is
the reference model. DPO effectively replaces the
reward model with a preference distribution based
on πθ, the model being trained; DPO also retains
the KL regularization term with weighting β.

The preference dataset D for DPO consists of
triplets (x,yw,yl) where x is the input prompt,
yw is the winnng (prefered) response, and yl is the
losing (disprefered) response. DPO uses the lan-
guage model likelihood to approximate the reward
as βlog πθ(y|x)

πref(y|x) . During training, with πθ typically
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initialized from πref, the objective is to maximize
the expected reward margin between yw and yl:

LDPO = −E(x,yw,yl)∼D[logσ(M(yw,yl,x, θ))]
(4)

where the reward margin M(yw,yl,x, θ) is

β (log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

) (5)

2.2 Related Work in Translation
Previous work has explored the effectiveness of
enhancing the translation performance of LLMs
via Reinforcement Learning (RL) algorithms or su-
pervised fine-tuning. Dong et al. (2023) proposed
RAFT that iteratively generates samples and fine-
tunes the model on the filtered samples ranked by
a reward model. Gulcehre et al. (2023) proposed
ReST that uses similar method for translation task,
where they apply several fine-tuning steps on a
sampled dataset, each time higher ranked samples.

Similar to our pairwise preference learning,
Zeng et al. (2023b) introduced a framework TIM
to enhance the translation performance of LLMs
by learning to compare good translations and bad
translations via a preference learning loss.

Contemporaneous with this work, Finkelstein
et al. (2023) proposed MBR fine-tuning, which fine-
tunes an NMT model on the MBR decoding outputs
generated either by the model itself or by an LLM.
However, their MBR fine-tuning utilizes only the
final translations of MBR decoding whereas our
fine-tuning method uses sets of sampled transla-
tions ranked by MBR, thus enabling the model to
learn the same ranking preferences as MBR.

3 Methodology

Our method combines MBR decoding and DPO
fine-tuning (Yang, 2023). We use the MBR proce-
dure to calculate a score (Equation 1) for each of a
set of translation hypothesis generated by the base
model. We then fine-tune the base model using the
DPO objective (Equations 4,5) where the winning
and losing hypotheses provided to DPO are chosen
based on their relative MBR scores. If success-
ful, the fine-tuned model will have learned to rank
translations consistently with MBR decoding under
the base model.

3.1 Creation of the DPO Preference Sets
Following Eikema and Aziz (2022), we use sam-
pling to generate the translation hypotheses that

will be used in DPO. For a source sentence x we
use simple ancestral sampling with a temperature
of 0.7 to create a set of translations H(x) = {y ∼
πbase(y|x)} of size |H(x)|. We use this collection
as both the MBR evidence and hypothesis spaces
(Goel and Byrne, 2000).

The hypotheses in H(x) are ordered by their
MBR scores as y1,y2, ...,y|H| with the BLEURT
metric (Sellam et al., 2020) as the utility function.
The ordering reflects the MBR preference, i.e. y1

would be the most preferred MBR hypothesis.

Preference Selection Strategies DPO requires a
set of preference triplets D = {(x,yw,yl)} where
yw has better MBR score than yl and both of the
hypotheses are selected from the hypothesis set
H(x). There are numerous strategies for selecting
the preference pairs (yw,yl) from the hypothesis
set. We experimented with four selection schemes:

1. BW is a simple strategy that selects the
best and worst translation hypotheses from
the ranked sets. For each source sen-
tence x, we only have one preference triplet
(x,y1,y|H(x)|).

2. BMW adds the middle hypothesis ym from
the ranked lists with index m = ⌈|H(x)|/2⌉.
This gives two triplets per source sentence:
(x,y1,ym) and (x,ym,y|H(x)|).

3. CP selects consecutive pairs from the ranked
list, yielding |H(x)| − 1 triplets per source
sentence, as (x,y1,y2), (x,y2,y3), . . .

4. CPS introduces a stride into the CP selection
strategy so as to avoid requiring DPO to learn
distinctions between translations that are sim-
ilarly ranked. For example, with a stride of 2
we select triplets (x,y1,y3), (x,y3,y5), . . .

3.2 DPO Fine-Tuning

With a set of preference triplets D selected by one
of the schemes above, DPO fine-tuning proceeds
as described in Section 2.1 and by Rafailov et al.
(2023). The base model serves as the reference
model in Equation 4. The base model is also used
to initialise πθ, which is the model being fine-tuned.
The only DPO hyper-parameter we tune is β, which
regulates how the fine-tuned model departs from
the reference model Rafailov et al. (2023).
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Figure 1: Reward margins for DPO MBR fine-tuning
of BLOOMZ and BLOOMZ-mt with BMW and CPS
(stride of 2) selection strategies. Margins are calculated
on the Zh-En fine-tuning set (WMT20 test set) as fine-
tuning proceeds over one epoch. Results are plotted as
moving averages with a window size of 20. CPS yields
more preference pairs than BMW.

4 DPO MBR Fine-Tuning and MT

Datasets: We evaluate translation on the WMT21
news translation test sets (Akhbardeh et al., 2021)
and the WMT22 general translation for Chinese-
English (Kocmi et al., 2022), and the IWSLT 2017
test set for French-English (Cettolo et al., 2017).
For DPO fine-tuning we use the source language
text in the WMT20 test sets for Chinese-English
(Barrault et al., 2020) and IWSLT 2017 validation
sets for French-English. We do not use the cor-
responding reference translations, as DPO MBR
fine-tuning is unsupervised. The fine-tuning and
test sets are distinct and do not overlap.
Models: We use the BLOOMZ and BLOOMZ-mt
models (Muennighoff et al., 2023) with 7.1 bil-
lion parameters as our base model. BLOOMZ-mt
was pre-trained on 366 billion tokens from mono-
lingual texts and was fine-tuned for translation
task on Flores-200 (NLLB Team et al., 2022) and
Tatoeba (Tiedemann, 2020) datasets. To prompt the
model for translation, we include two randomly se-
lected translation examples from the fine-tuning set
into the input prompt as demonstration examples;
these prompts are kept fixed throughout. In addi-
tion, we also fine-tuned the BLOOMZ-mt model
in a supervised fashion for each language pair and
denote this third base model as BLOOMZ-mt-sft.
We use previous WMT news translation test sets
from 2017 to 2020 as supervised fine-tuning sets
for Chinese-English, and the first 20000 translation
pairs from the IWSLT 2017 training set for French-
English. Training details can be found in Appendix
B.
Evaluation Metrics: We use three evaluation met-
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Figure 2: Reward margin distributions over all pref-
erence pairs extracted via the BMW scheme from a
held-out dataset (WMT18 Zh-En test). Distributions
are gathered over the entire held-out set at model check-
points at the beginning, a quarter, middle, three quarters,
and end of one epoch of DPO fine-tuning. |H| = 8
and β = 0.7. DPO fine-tuning generalises beyond its
fine-tuning set and yields improved reward margins on
held-out data.

rics: BLEU (Papineni et al., 2002), BLEURT (Sel-
lam et al., 2020), and COMET-22 (Rei et al., 2020,
2022). BLEU serves only as a safety check: Ideally
DPO fine-tuning should not decrease BLEU.

Baselines and Targets: We take the base model
and evaluate it on all the test sets with both beam
search and MBR decoding. Our fine-tuned models,
when decoded with beam search, should achieve
similar performance as MBR decoding under the
base model and show improvement over the base
model. We investigate two questions:

(1) Can DPO teach MLLMs to learn their MBR
translation preferences?

(2) Does preference learning with DPO lead to
improved translation?

4.1 DPO Fine-Tuning Teaches a MLLM to
Learn Its MBR Preferences

Figure 1 shows that the reward margins remain
positive and, with some fluctuations, increase as
fine-tuning proceeds, for all three models. This
suggests that DPO MBR fine-tuned models learn to
put more probability mass on the winning hypothe-
ses. The larger the margins, the more the models
prefer the winning over the losing hypotheses.

To further investigate DPO MBR fine-tuning, we
plot the distribution of reward margins on a held-
out set, shown in Figure 2. The median of the dis-
tributions increase consistently as fine-tuning pro-
ceeds, indicating that the MBR preferences learned
in fine-tuning also generalize to unseen data.
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# Model (Decoding) WMT21 WMT22 IWSLT17

zh-en en-zh zh-en en-zh fr-en en-fr

1 BLOOMZ (Beam) 59.6 | 76.5 59.2 | 81.1 59.9 | 74.6 55.9 | 76.7 72.7 | 83.9 69.3 | 83.1
2 BLOOMZ (MBR |H| = 8) 60.0 | 76.4 62.5 | 82.3 62.1 | 75.8 62.7 | 80.0 73.6 | 84.2 70.4 | 83.3
3 BLOOMZ (MBR |H| = 32) 62.5 | 77.2 64.7 | 83.0 64.0 | 76.4 64.9 | 80.7 74.8 | 85.0 72.6 | 84.3
4 BLOOMZ-DPO-MBR (Beam) 62.3 | 77.9 62.5 | 82.7 64.0 | 77.2 64.2 | 82.0 76.5 | 86.9 72.2 | 84.8

5 BLOOMZ-mt (Beam) 60.3 | 77.0 59.2 | 80.9 60.9 | 75.5 59.0 | 79.1 74.8 | 85.4 70.3 | 83.5
6 BLOOMZ-mt (MBR |H| = 8) 61.6 | 77.6 62.6 | 82.3 63.0 | 76.5 64.7 | 81.4 75.4 | 85.5 71.0 | 83.3
7 BLOOMZ-mt (MBR |H| = 32) 63.4 | 78.3 64.9 | 82.9 64.8 | 77.2 66.8 | 82.1 76.3 | 86.0 73.2 | 84.3
8 BLOOMZ-mt-DPO-MBR (Beam) 63.9 | 78.7 64.0 | 83.6 65.1 | 77.9 67.6 | 83.7 76.5 | 86.8 71.9 | 84.6

9 BLOOMZ-mt-sft (Beam) 64.3 | 79.4 62.6 | 83.0 62.6 | 76.5 65.6 | 83.1 76.9 | 86.6 71.2 | 83.8
10 BLOOMZ-mt-sft (MBR |H| = 8) 65.3 | 79.8 64.8 | 83.9 65.4 | 78.2 69.1 | 84.2 77.3 | 86.7 72.6 | 83.6
11 BLOOMZ-mt-sft (MBR |H| = 32) 66.8 | 80.4 66.7 | 84.4 67.1 | 78.9 71.0 | 85.1 78.2 | 86.9 74.9 | 83.3
12 BLOOMZ-mt-sft-DPO-MBR (Beam) 66.0 | 80.8 64.2 | 83.9 66.5 | 79.6 69.5 | 85.6 76.4 | 83.4 72.4 | 83.8

Table 1: Translation performance in BLEURT and COMET (BLEURT | COMET) for models with beam search
(beam width of 4) and MBR decoding on two language pairs from WMT21 news translation test sets, WMT22
general translation test sets, and IWSLT 2017 test sets. DPO-MBR indicates our translation performance with our
fine-tuning method. All the DPO MBR models were fine-tuned using the BMW strategy and β = 0.7 except for
BLOOMZ-mt-sft on IWSLT 2017, which used the BW strategy. We set |H| = 32 to fine-tune BLOOMZ-mt-DPO-
MBR on English-Chinese direction, |H| = 16 on the French-English direction for BLOOMZ and BLOOMZ-mt,
and set |H| = 8 to fine-tune other DPO MBR models. DPO-MBR improves both BLEURT and COMET whenever
MBR itself improves substantially over the baseline.

4.2 DPO MBR Translation

Table 1 gives our main translation results. Com-
paring Rows 3 & 4, 7 & 8, and 11 & 12, we can
see that DPO MBR fine-tuned models, when de-
coded with beam search, achieve similar perfor-
mance in BLEURT and COMET as the base model
decoded with MBR. The first two configurations
(BLOOMZ-DPO-MBR and BLOOMZ-mt-DPO-
MBR) outperform the base model’s beam search
results by ≈ 4 BLEURT and ≈ 2 COMET scores,
and the third configuration outperforms the base
mode by ≈ 3 BLEURT and ≈ 2 COMET on four
out of six test sets. DPO MBR improves the trans-
lation ability of BLOOMZ, BLOOMZ-mt across
a range of test sets. BLOOMZ-mt shows a no-
table improvement after DPO MBR fine-tuning,
achieving the best performance in BLEURT on
four out of six test sets and the best performance
in COMET on all six test sets. We note that MBR
decoding does not yield consistent improvement on
the BLOOMZ-mt-sft model for IWSLT2017, and
therefore does not provide a strong signal for DPO
fine-tuning. We provide translation performance in
BLEU in Appendix A for reference.

4.2.1 KL-Divergence Regularization
We investigated the role of β, the KL-divergence
regularization factor, in DPO. Table 2 shows
that fine-tuning with small β values yields high
BLEURT score (exceeding 64), but also a degrada-

# β BLEU BLEURT COMET

1 (Baseline) 16.4 60.3 77.0

2 0.1 9.9 64.5 71.3
3 0.3 11.8 64.8 73.5
4 0.5 14.3 64.0 76.1
5 0.7 16.4 63.3 77.7
6 0.9 17.6 61.8 77.9

Table 2: Effect of regularization parameter β for DPO
MBR fine-tuning of BLOOMZ-mt using CPS with
|H| = 8. Models are fine-tuned on WMT20 zh-en
and evaluated on WMT21 zh-en.

tion in BLEU and COMET. Anecdotally, we find
that small values of β lead to repetitive outputs that
are penalised heavily under BLEU and COMET.
Gains in BLEU, BLEURT, and COMET are readily
found, but we conclude that DPO MBR fine-tuning
requires some care in regularization.

4.2.2 Effects of Pair Selection Strategy
Table 3 shows that models trained on preference
datasets constructed with the BW, BMW, and CPS
pair selection strategies achieve similar perfor-
mance on WMT21 Zh-En, with BLEURT scores in
the range 62.9-63.9. DPO MBR appears robust to
the selection of preference pairs. In terms of train-
ing efficiency, the BW and BMW strategies require
fewer preference pairs (1 and 2 per source sentence,
resp.) compared to the CPS strategy. However,
these results show that some selection strategy is
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Selection Strategy |H|=8 |H|=16 |H|=32

BW 63.3 63.9 63.9
BMW 63.9 64.2 63.6
CP 62.5 62.4 60.4
CPS (strides of 2, 4, and 8) 62.3 63.5 62.9

Table 3: WMT21 Zh-En BLEURT scores for BLOOMZ
with DPO MBR fine-tuning with different preference
pair selection strategies and hypothesis set sizes. The
CP strategy results in lower performance in BLEURT
compared to other strategies.

necessary since simply including all the pairs as in
the CP strategy leads to degradation.

4.2.3 Effects of Size of Hypothesis Set
Table 3 shows that the number of hypotheses
needed in the training preference dataset is less
than that needed for MBR decoding (Rows 3 & 7
in Table 1). The best performance (BLEURT of
63.9) can be achieved with 16 hypotheses for the
BW strategy and 8 hypotheses for the BMW strat-
egy, an improvement over MBR decoding of the
base model with |H| = 8 (Row 2 & 6 in Table 1).

5 Conclusion

We introduce DPO MBR fine-tuning, an unsuper-
vised preference optimization algorithm that lever-
ages the ranked lists from MBR decoding to teach
MLLMs the preference of MBR decoding. Our
method enables MLLMs to achieve significant per-
formance improvement when decoded with beam
search in one pass, on par with the performance
gained from two-pass MBR decoding1.
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7 Limitations

Our method was evaluated on WMT 2021 and
WMT 2022 and IWSLT 2017 test sets, with high-
resource languages only (English, Chinese, and
French). While our fine-tuned models performed
well on these diverse test sets, behaviour may be
different on medium-resource or low-resource lan-
guages or on other domains.

Our experiments focus on BLOOMZ and
BLOOMZ-mt due to the ease of working with them
and because BLOOMZ-mt is fine-tuned for transla-
tion. Other (M)LLMs may yield different results.

We report MBR results using simple ancestral
sampling. Other work (Freitag et al., 2023) has
found that there may be advantages in using other
sampling schemes, such as epsilon sampling, for
MBR. Those other sampling methods potentially
offer further gains beyond what we have already
shown.

We do not report human assessments of transla-
tion quality to verify improvements, but we note
that Freitag et al. (2022) have reported extensive re-
sults showing that MBR decoding under BLEURT
leads to improvements in translation quality as as-
sessed by human judges. We therefore take im-
provement in BLEURT as our main measurement
of improved translation quality.

8 Risks

Our unsupervised fine-tuning technique could po-
tentially amplify undesirable biases or language
already present in the baseline systems. This could
possibly happen if the MBR utility function, in our
case BLEURT, somehow encourages consensus
amongst similar translations that are also undesir-
able. Mitigation should be straightforward, in that
any monitoring of the baseline models could also
be applied after DPO MBR fine-tuning to reject
fine-tuned models that exhibit any increase in bad
behaviour. Although it is not a focus of this work,
DPO MBR could possibly be used as a strategy for
risk mitigation by penalizing undesirable behaviour
through introduction of specific penalties into the
MBR utility function.
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# Model (Decoding) WMT21 WMT22 IWSLT17

zh-en en-zh zh-en en-zh fr-en en-fr

1 BLOOMZ (Beam) 15.8 22.3 14.0 22.2 38.1 37.6
2 BLOOMZ (MBR |H| = 8) 11.3 19.7 11.6 20.3 34.2 32.6
3 BLOOMZ (MBR |H| = 32) 12.6 20.2 12.4 21.2 36.3 34.1
4 BLOOMZ-DPO-MBR (Beam) 17.2 23.7 15.6 26.5 40.6 38.9

5 BLOOMZ-mt (Beam) 16.4 22.5 14.7 26.2 38.7 37.8
6 BLOOMZ-mt (MBR |H| = 8) 13.5 20.2 12.2 23.3 35.2 31.8
7 BLOOMZ-mt (MBR |H| = 32) 14.3 20.8 13.0 24.0 36.9 33.8
8 BLOOMZ-mt-DPO-MBR (Beam) 18.0 22.7 15.9 26.9 40.4 38.3

9 BLOOMZ-mt-sft (Beam) 23.5 27.5 19.7 34.9 44.2 40.7
10 BLOOMZ-mt-sft (MBR |H| = 8) 20.2 24.0 17.7 30.1 40.7 34.2
11 BLOOMZ-mt-sft (MBR |H| = 32) 21.1 25.0 18.4 31.2 41.3 32.1
12 BLOOMZ-mt-sft-DPO-MBR (Beam) 23.8 26.3 22.1 35.4 27.3 38.5

Table 4: Translation performance in BLEU for models with beam search and MBR decoding on two language pairs
from WMT21 news translation test sets, WMT22 general translation test sets, and IWSLT 2017 test sets. DPO-MBR
indicates our translation performance with our fine-tuning method. All the DPO MBR models were fine-tuned using
the BMW strategy and β = 0.7 except for BLOOMZ-mt-sft on IWSLT 2017, which used the BW strategy. We set
|H| = 32 to fine-tune BLOOMZ-mt-DPO-MBR on English-Chinese direction, |H| = 16 on the French-English
direction for BLOOMZ and BLOOMZ-mt, and set |H| = 8 to fine-tune other DPO MBR models.

A Translation Performance in BLEU

In Table 4, we provide the translation perfor-
mance measured in BLEU score. The BLOOMZ-
DPO-MBR and BLOOMZ-mt-DPO-MBR models
achieve the best BLEU scores on all six test sets.
The BLOOMZ-mt-sft model achieves lower BLEU
score after DPO MBR fine-tuning on WMT21
English-to-Chinese, IWSLT17 French-to-English
and English-to-French due to over-generation.

B Training Details

B.1 DPO MBR Fine-tuning Details
For DPO MBR fine-tuning, we trained each model
for one epoch using the RMSProp optimizer. The
learning rate is set to 5e−7 with 150 warmup steps.
All fine-tuning experiments were done on two
Nvidia A100-80G GPUs. We set the effective batch
size to 4. We used FP32 and FP16 for the trained
policy and the reference model in DPO fine-tuning,
respectively.

B.2 Supervised Fine-tuning
We supervised fine-tuned the BLOOMZ-mt model
on Chinese-to-English and English-to-Chinese di-
rections for two epochs using previous WMT test
sets. For French-to-English and English-to-French,
we used the 20K translation pairs and trained for
one epoch. Other hyper-parameters for SFT train-
ing are the same as DPO MBR fine-tuning.
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