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Abstract

Despite recent advances in multimodal pre-
training for visual description, state-of-the-art
models still produce captions containing errors,
such as hallucinating objects not present in a
scene. The existing prominent metric for object
hallucination, CHAIR, is limited to a fixed set of
MS COCO objects and synonyms. In this work,
we propose a modernized open-vocabulary
metric, ALOHa, which leverages large language
models (LLMs) to measure object hallucina-
tions. Specifically, we use an LLM to extract
groundable objects from a candidate caption,
measure their semantic similarity to reference
objects from captions and object detections,
and use Hungarian matching to produce a final
hallucination score. We show that ALOHa
correctly identifies 13.6% more hallucinated ob-
jects than CHAIR on HAT, a new gold-standard
subset of MS COCO Captions annotated for hal-
lucinations, and 30.8% more on nocaps, where
objects extend beyond MS COCO categories.

1 Introduction and Background

In recent years, vision-language models have
demonstrated remarkable performance. Unfortu-
nately, even state-of-the-art models for visual de-
scription still generate captions with object halluci-
nations – objects or entities that are present in the
caption yet are not explicitly supported by visual
evidence in the image (Dai et al., 2023). In order
to reduce the occurrence of object hallucinations in
vision-language models, it is helpful to understand
and quantify the problem through reliable, localiz-
able, and generalizable measures of object halluci-
nation. Reliable measures are capable of correctly
indicating if a given caption contains an object hallu-
cination. Localizable measures are capable of indi-
cating which object in a particular caption is halluci-
nated. Generalizable measures are capable of eval-
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Figure 1: (Top) The SOTA prior object hallucination metric,
CHAIR, is limited to MS COCO objects, and fails to detect
the hallucinations in this image caption while ALOHa
(ours, bottom) correctly assigns low similarity scores to the
hallucinations “baseball player” and “bat”. ALOHa does not
penalize the caption for “catcher”, “umpire”, and “bass drum”,
as the caption indicates uncertainty of their presence.

uating captions from a wide range of input datasets,
across a wide range of object and entity categories.

Recent works that measure object hallucinations
in generated text generally fall into two categories:
measures that find hallucinations by explicitly
matching from a set of objects, and measures that
compute distances between latent image and/or
text embeddings, indicating a hallucination if the
embeddings are too distant. In the first category,
CHAIR (Rohrbach et al., 2018) is a measure that
explicitly extracts objects from candidate sentences
using simple string matching against MS COCO
classes and a small set of synonyms. It compares
these extracted objects against the ground truth
detections and objects extracted from the ground
truth reference captions. CHAIR is both reliable,
as string matching on a fixed set of objects is
accurate, consistent, and localizable, as individual
non-matching strings are identified. However, as
seen in Figure 1, CHAIR is not generalizable, as it
can only handle a fixed set of predetermined objects.
Other uni-modal measures in this category include
those for abstractive summarization (Durmus et al.,
2020; Kryscinski et al., 2020; Maynez et al., 2020;
Son et al., 2022; Sridhar and Visser, 2022; Yuan
et al., 2021), dialogue (Huang et al., 2022; Shuster
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et al., 2021), and structured knowledge (Dhingra
et al., 2019). These often generalize poorly to
vision-language tasks as they require grounding the
generated text into inputs of the same modality.

In the second category, CLIPScore (Hessel
et al., 2021) employs CLIP (Radford et al., 2021)
embeddings to assess image-text matches. While
it is generalizable and reliable, it lacks localization
as it does not pinpoint incorrect spans of text.
CLIPBERTS (Wan and Bansal, 2022) and Ref-
CLIPScore (an extension of CLIPScore accounting
for reference captions) face similar limitations.

POPE (Li et al., 2023) evaluates vision-language
models’ likelihood to hallucinate objects with
machine-generated queries consisting of samples
extracted from both reference object detections
and nonexistent objects, but addresses a different
problem from that which we investigate here – it
measures how often models hallucinate rather than
localizes and detects issues within a single caption.

Inspired by recent successes using LLMs for
evaluation in language-only tasks (Zhang et al.,
2020; Yuan et al., 2021; Bubeck et al., 2023; Chiang
et al., 2023; Zheng et al., 2023), we introduce
Assessment with Language models for Object
Hallucination (ALOHa), a modernized measure
for object hallucination detection that is reliable,
localizable, and generalizable. ALOHa extends the
reliability and localization of CHAIR to new input
domains by leveraging in-context learning of LLMs
combined with semantically rich text embeddings
for object parsing and matching (Figure 1).

For a given image caption, we generate two mea-
sures: ALOHao, a numeric score for each object rat-
ing the degree to which that object is a hallucination,
and ALOHa, an aggregated score rating the degree
to which the whole caption contains a hallucination.
We demonstrate ALOHa on a new gold-standard
dataset of image hallucinations, HAT, and show that
ALOHa improves on CLIPScore while detecting
object hallucinations, and CHAIR while correctly
localizing those hallucinations. We conclude by
demonstrating that ALOHa remains reliable and lo-
calizable when generalizing to out-of-domain data.

2 ALOHa: Reliable, Localizable, and
Generalizable Hallucination Detection

ALOHa produces numeric scores rating the degree
of hallucination for each object in a candidate
caption as well as an overall caption score, given a

set of ground-truth reference captions and predicted
(or ground truth) image object detections. ALOHa
consists of three stages (Figure 2). (1) Objects
are extracted from the image, reference set, and
candidate caption using a combination of an object
detector and LLM. (2) We filter the object sets
and compute semantic representations of each
object. (3) We compute a maximum-similarity
linear assignment between candidate and reference
objects. The scores from each of the pairs in the
linear assignment, which we call ALOHao, measure
the degree of hallucination for each of the candidate
objects. The minimum similarity in this linear
assignment (the ALOHa score) measures the degree
of hallucination of the caption.

(1) Extracting objects from candidates, refer-
ences, and images: Parsing visually grounded
objects in a caption in an open-domain context is a
surprisingly difficult task. CHAIR (Rohrbach et al.,
2018) relies on a fixed set of MS COCO objects and
synonyms, requiring considerable effort to extend to
other datasets, and sometimes failing at ambiguous
parses (such as mistaking the adjective “orange” for
a noun). SPICE (Anderson et al., 2016) relies on
standard grammar-based object parsing, which can
have similar issues, as purely text-based methods
fall short at identifying which nouns are visual – for
instance, avoiding “picture” and “background” in
Figure 2. Captions may also indicate uncertainty
around object presence, such as “a bowl or plate”,
or “a dog biting something, possibly a Frisbee.” We
aim to handle such uncertain objects to avoid unfair
hallucination penalties.

With the understanding that open-domain
parsing is the primary factor in CHAIR’s lack
of generalization, we leverage the capability of
zero-shot in-context learning in large language
models. Following Brown et al. (2020), we use an
LLM (ChatGPT, OpenAI (2022)) along with the
prompt given in Appendix A to turn the parsing
task into a language completion task easily solvable
by an LLM. We encourage the LLM to extract
visual objects in the scene, consisting primarily of
noun phrases (including any attributes, such as “big
dog” and “purple shirt”), from the candidate and
reference captions. We run the LLM against the
candidate caption to produce the unfiltered object
set C, and again for the corresponding reference
captions to produce object set R. To extract objects
from the image context, similar to CHAIR, we
augment the set of reference objects with objects
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Figure 2: Overview of ALOHa. We prompt an LLM to extract visually grounded nouns from a candidate’s machine-
generated description and a set of references. We consider uncertain language (e.g., “goat or sheep”), add reference
objects with and without modifiers (e.g., both “field” and “grassy field”), and avoid non-visual nouns (e.g., “picture”
and “background”). Then, we compute a maximum-similarity linear assignment between candidate and reference
object sets, the weights of which form the ALOHao. Matched pairs with low ALOHao are likely hallucinations (e.g.,

“black cat”, ALOHao =0.2). We additionally output the minimum ALOHao as a caption-level ALOHa score.

detected directly from the image using DETR
(Carion et al., 2020) fine-tuned on MS COCO.

(2) Object filtering: We further refine candidate
(C) and reference (R) object sets to better reflect
specific challenges of object hallucination detection.
Ideally, hallucination measures should penalize
specificity when candidate attributes are not
supported by references (e.g., if “purple shirt” ∈C,
yet “white shirt” ∈ R), but should not penalize
generality (e.g., “shirt” ∈C, yet “white shirt” ∈R).
Thus, we use spaCy (Honnibal et al., 2020a) to
augment R with the root nouns from each reference
noun phrase, but leave the candidates unchanged.

Beyond specificity, captions may also express
uncertainty about the presence of objects in an
image. For conjunctions (e.g., “fork or knife”),
we aim to avoid unfair penalties if at least one
of the objects is grounded. ALOHa considers all
combinations of selecting a single object from each
conjunction, denoted as C{1...M} and R{1...N} (e.g.,
“fork” ∈R0 and “knife” ∈R1). Additionally, we
prompt the LLM to indicate uncertain grounding
by including “possibly” after the object (e.g., “there
may be a Frisbee” becomes “Frisbee (possibly)”)
and we remove uncertain objects from Ci to
avoid penalties while maintaining them in Rj for
maximum coverage of more general objects.

(3) Object Matching: Once we have extracted and
parsed the candidate and reference object sets, we
aim to measure the degree of hallucination for each
candidate object. While we could match objects
based on string alone (resulting in a binary decision),
as does CHAIR, often it is useful to understand
a continuous scale of hallucination – e.g., for a
reference object “dog”, hallucinating “wolf” should
be penalized less than “potato.” To capture this scale
of semantic similarity, for each object text o, we

generate oemb =ϕ(o)∈RK , where ϕ is a semantic
text embedding model. In our work, we use
S-BERT (Reimers and Gurevych, 2019). We then
compute a similarity score for each pair of objects
(usually the cosine similarity, see Appendix B.2).
For each (Ci,Rj) pair, we store these scores in
a similarity matrix Si,j ∈ [0,1]|Ci|×|Rj |. We then
use the Hungarian method (Kuhn, 1955) to find
an optimal maximum-similarity assignment Mi,j

between candidate and reference sets of objects.

To determine the ALOHao score for each object,
we take the maximum score across all possible
parsings, giving the candidate caption the benefit
of the doubt, for an object c∈Ci

ALOHao(c)=max
i,j

wci,j∈Mi,j (1)

While 0 ≤ ALOHao ≤ 1 indicates the degree of
hallucination for each object, we also want to
indicate if an entire caption contains a hallucination.
We thus define:

ALOHa=min
c∈C

ALOHao(c) (2)

We choose the minimum as the presence of any
hallucinated object indicates that the full caption is
a hallucination, and even several correct detections
should not compensate for a hallucination.

3 Evaluation & Discussion

HAT: To promote the development of high-quality
methods for hallucination detection, we collect
and release HAT (HAllucination Test), a dataset of
labeled hallucinations in captions. HAT consists of
490 samples (90 validation and 400 test) labeled by
in-domain experts for hallucination on both a word
level and caption level (See Appendix C). Measures
are evaluated on two metrics: Average Precision
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Method LA AP

Baseline (Majority Vote) - 33.75
CHAIRs 6.70 36.85
CLIPScore - 40.10
RefCLIPScore - 48.40

ALOHa (No Soft Object Matching) 18.66 47.27
ALOHa (No Detections) 19.55 48.40
ALOHa (Oracle Detections) 19.55 47.86
ALOHa (DETR Detections)* 20.30 48.62
ALOHa (Oracle+DETR Detections) 21.05 48.78

Table 1: Test set performance for binary hallucination
detection on HAT. LA: Localization Accuracy. AP: Av-
erage Precision. * indicates the version of ALOHa used
throughout this paper, unless noted otherwise. Oracle
detection are human-generated reference detections.

(AP) and Localization Accuracy (LA). The AP
of the method measures reliability and is defined
as how well the measure identifies captions with
hallucinations. For CHAIR, decisions are binary,
so AP=accuracy. For ALOHa, AP is the weighted
mean of precisions across all thresholds. The LA,
measured on samples containing hallucinations
in HAT, measures localization and is defined as
the accuracy of correctly indicating which of the
specific objects were hallucinated. For CHAIR, a
hallucination is correctly localized when at least
one detected string mismatch is a hallucination,
and for ALOHa when the minimum ALOHao score
corresponds to a hallucinated object.

ALOHa’s performance on HAT is shown in
Table 1. On AP, ALOHa with DETR detections
outperforms both CHAIR and CLIPScore by 11.8%
and 8.5% respectively. RefCLIPScore attains a
similar AP; however, is not localizable. ALOHa
achieves more than twice the LA on HAT CHAIR,
a particularly challenging task as HAT includes
non-object hallucinations, such as incorrect verbs
or relations (see Figure A6). Table 1 further ablates
the choice of image detections and indicates that
ALOHa is robust to missing detections.

FOIL object hallucinations: To indicate gen-
eralizability we evaluate our method on two
machine-generated object hallucination datasets.
FOIL (Shekhar et al., 2017) contains MS COCO
images, where objects are randomly replaced
with similar ones (e.g., “bus“ and “car”), and
nocaps-FOIL, a similar dataset that we construct
on the nocaps dataset (Agrawal et al., 2019)
for novel object captioning beyond MS COCO
(see Appendix C.1). Table 2 breaks down the
results of ALOHa on the FOIL and nocaps-FOIL

Figure 3: Qualitative Flickr30k examples. (Left)
ALOHa correctly assigns low scores to the hallucinated
“nun” and “bread”, whereas CHAIR does not detect
any hallucinations. (Right) Although ALOHa assigns
high similarity between the hallucinated “electric guitar”
and reference “(acoustic) guitar”, it assigns low scores
to the other 3 hallucinations. CHAIR detects only the
hallucination “chair”, missing the others.

dataset. The results illustrate a subtle result. While
ALOHa under-performs CHAIRs in both AP and
LA on the original FOIL dataset, this is because
FOIL constructs new samples by replacing string-
matched COCO objects with a set of hand-selected
“foil” objects (near semantic neighbors). This is a
best-case scenario for CHAIR, as CHAIR relies on
fixed object-set string matching alone, and thus, is
easily able to both detect and localize the replaced
samples. When we move to nocaps-FOIL with non-
MS COCO data, however, ALOHa significantly
outperforms CHAIR, as now the object set that was
a strength for in-domain FOIL becomes a liability,
and CHAIR is unable to detect any hallucinations
at all, due to the restricted string matching. Ref-
CLIPScore, while competitive in the hallucination
detection task, cannot perform localization.

Qualitative Examples - Flickr30k: In Figure 3
and Figure A4, we visualize the behavior of CHAIR
and ALOHa on several Flickr30k samples (Young
et al., 2014), using captions generated by a recent
captioning model (Chan et al., 2023) that often
produces complex captions with phrases expressing
uncertainty.

Ablation - Choice of LLM: The language model
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FOIL nocaps-FOIL

Overall In-Domain Near-Domain Out-Domain Overall

Method LA AP LA AP LA AP LA AP LA AP

Baseline (Majority Vote) - 50.00 - 50.00 - 50.00 - 50.00 - 50.00
CHAIRs 79.00 92.50 13.47 57.82 17.55 59.14 12.24 58.06 14.42 58.33
CLIPScore - 76.44 - 71.81 - 70.17 - 78.73 - 73.48
RefCLIPScore - 80.64 - 79.63 - 78.70 - 85.89 - 81.31

ALOHa 40.00 61.35 47.35 71.80 47.30 66.67 48.84 70.91 45.17 69.52

Table 2: Breakdown of results by domain on FOIL and nocaps FOIL. AP: Average Precision. LA: Localization
Accuracy. Bold and underlined values represent the best and second-best methods respectively.

is critical to the overall performance of ALOHa-
language models with insufficient zero-shot
parsing capability will suffer reduced downstream
performance. We investigate the performance of
the language model in Table 3 on HAT. In addition
to LA and AP, we also measure “Parsing error
rate" (PER), which is the rate of errors made when
parsing objects from reference captions on HAT,
and “Parsing recall rate (PRR), which is the recall
rate of objects in the captions (See Appendix B.1).

Ablation - Object Extraction and Semantic Em-
bedding Methods: In the this work, we leverage
LLMs (OpenAI, 2023) for object extraction, and a
BERT-based model (Reimers and Gurevych, 2019)
for semantic word embedding. In Figure 4, we
explore the difference in overall performance on
HAT’s validation set when using different combi-
nations of object extraction and semantic embed-
ding. Namely, we compare LLM-based extraction
to the parse-tree-based noun extraction in SpaCy
(Honnibal et al., 2020b), and compare Sentence-
Transformer (BERT-Based model, (Reimers and
Gurevych, 2019)) to Word2Vec (Mikolov et al.,
2018), GPT-3 (Ada) embedding, and CHAIR-style
string matching (following CHAIR, strings are case-
normalized and lemmatized). Combining LLMs
with the SentenceTransformer (BERT-Based)
model outperformed other methods, and fuzzy em-
bedding methods outperformed exact string match-
ing. This is generally expected: humans have a wide
vocabulary that is poorly captured by exact string
matching. Word2Vec outperforms GPT-3 embed-
dings. We believe that this is because the GPT-3
embeddings are optimized for sentence-level struc-
tures, and may fail to semantically embed single
words in a meaningful way. Interestingly, S-BERT
is not a word similarity measure and was instead de-
signed to measure distances between sentences (and
could lead to inaccurate single-word judgments) –
While we did find S-BERT most effective among our

0 10 20 30 40 50
Average Precision (%)

S-BERT
Word2Vec

GPT3
StringMatch

S-BERT
Word2Vec

GPT3
StringMatch

45.7
28.0

26.1
16.4

20.2
28.1

24.3
20.7

Parser = POS Tagger Parser = LLM (Ours)

Figure 4: Performance on HAT validation set filtered
for hallucinated objects, when comparing embedding
methods and object extraction approaches.

Lanugage Model LA ↑ AP ↑ PER ↓ PRR ↑
GPT-3.5 20.30 48.62 2.97 98.63
Claude (Instant) 20.74 41.48 3.31 -
Koala 22.22 38.70 5.07 -

Table 3: Exploration of LLM choice for parsing
within ALOHa, on HAT. AP: Average Precision, LA:
Localization Accuracy, PER: Parsing Error Rate (%),
PRR: Parsing Recall Rate.

approaches, we believe that leveraging a large-scale
model trained specifically for semantic similarity
between words would be an exciting and powerful
extension to the ALOHa framework.

4 Conclusion

This paper introduces ALOHa, a scalable LLM-
augmented metric for open-vocabulary object
hallucination. ALOHa correctly identifies 13.6%
more hallucinated objects on HAT and 31% on
nocaps-FOIL than CHAIR. ALOHa represents an
important modernization of caption hallucination
metrics, and detecting complex hallucinations in
actions, quantities, and abstract concepts remains an
exciting and challenging task for future exploration.
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Limitations / Ethical Considerations

While ALOHa represents a strong step towards
open-domain localized hallucination detection, it
comes with several limitations which we discuss
in this section.

Non-determinism A primary concern with using
large language models for an evaluation measure
is the natural nondeterminism that comes with
them. While in theory language models sampled
at a temperature of zero (as we do in this work)
are deterministic, it is well documented that small
random fluctuations can still occur (OpenAI, 2023).
Beyond random fluctuations, the availability of
language models long-term can impact the repro-
ducibility of the measure. In this work, we primarily
rely on closed-source language models, which can
change or become unavailable without notice. In
Table 3, we demonstrate that ALOHa still functions
with open source models such as Koala (Geng et al.,
2023), however, the performance is significantly
degraded due to the parsing capabilities of the
model. With time, and more powerful open-source
LLMs, this will become less of an issue, however re-
lying on a nondeterministic metric for comparative
evaluation can easily become a liability.

Availability of Reference Captions (Reference-
Free vs. Reference-Based Measures) One of
the primary limitations of the ALOHa evaluation
method is the requirement that reference captions
are available for the evaluation dataset (an issue
shared by CHAIR). Not only must reference
captions be available, but they also must sufficiently
cover the salient details in the reference image.
When the references are impoverished (as can
easily happen with a single reference sentence
(Chan et al., 2023)) or when there are no references,
and ALOHa must rely entirely on detections, the
method under-performs more general methods such
as CLIPScore which are reference-free, and rely
on a large pre-training dataset to encode vision and
language correspondences. We strongly believe that
the area of reference-free localized hallucination
detection is an important area of future research;
how can we leverage the tools from large vision
and language pre-training in a localized way to
understand and interpret where hallucinations lie
in the hallucinated text? That being said, there
is also a place for reference-based measures, as
reference-based measures focus on what humans

believe to be salient details in the image, whereas
reference-free measures always rely on downstream
models which approximate what humans believe
to be important. This means that reference-based
measures can often transfer better to new domains
than reference-free measures, which often must be
trained/fine-tuned in-domain with human-labeled
data to achieve strong performance.

General costs associated with LLMs The use of
large language models for any task incurs significant
compute, monetary, environmental, and human
costs. ALOHa is a significantly slower evaluation
measure than methods like CHAIR (however not
that much less efficient than CLIPScore), leading to
increased power consumption, and cost during eval-
uation. In addition, the models that we rely on are
generally closed source and represent a non-trivial
monetary expenditure (Experiments in this paper, in-
cluding ablations, testing, and prototyping required
approximately USD $120 in API fees). Such factors
can be limiting to researchers who wish to evaluate
large datasets, however we hope that with the
advent of larger open-source models, and continued
investment in hardware and systems research, the
cost will decrease significantly. Beyond compute
and financial costs, there are environmental and
human costs associated with using large language
models for evaluation, see Bender et al. (2021) for
a detailed discussion of these factors.

Limited Control of Bias In this work, we do
not evaluate the performance of ALOHa on Non-
English data, nor do we explicitly control for or mea-
sure bias in the creation of HAT (Which is a labeled
subset, randomly selected of the MS COCO dataset),
or the Nocaps-FOIL dataset (which operates on
the same samples as the Nocaps validation dataset).
While HAT is a subset of the common MS COCO
dataset, we recognize that the creation of such po-
tentially biased datasets has the potential to lead
researchers to engineer features and methods which
are unintentionally biased against underrepresented
groups. We aim to address these shortcomings in the
next iteration of HAT, which will not only contain
out-of-domain data for MS COCO-trained models
but also aims to better control for bias in the under-
lying image and caption data. Note that our work,
including HAT, is intended for research purposes.
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Appendix

Appendix A describes the prompt of the language
model, including the exact language used, the
design choices, and the in-context examples.

Appendix B contains additional experimental
details for experiments in the paper.

Appendix C describes the datasets that we col-
lected and constructed, including HAT and
nocaps-FOIL.

A Prompt

The choice of prompt for a large language model
using in-context learning is critical to the perfor-
mance of the model. Each component of the prompt
has some ability to shape the downstream language
distribution. In this work, we use the prompt shown
in Figure A1. This prompt has several rules, which
we discuss here.

You are an assistant that parses
visually present objects from
an image caption. Given an image
caption, you list ALL the objects
visually present in the image or
photo described by the captions.
Strictly abide by the following
rules:
- Include all attributes and
adjectives that describe the object,
if present
- Do not repeat objects
- Do not include objects that
are mentioned but have no visual
presence in the image, such as light,
sound, or emotions
- If the caption is uncertain
about an object, YOU MUST include
’(possibly)’ after the object
- If the caption thinks an object can
be one of several things, include
’or’ and all the possible objects
- Always give the singular form of
the object, even if the caption uses
the plural form

Figure A1: The prompt that we use for parsing objects
from both captions and sets of reference captions.

Attributes: We ask that the language model
include all attributes attached to the object if
they are present. By doing so, we can catch
hallucinations such as those shown in Figure 3,
where “electric guitar" appears in the candidate, but
an acoustic guitar is shown in the image. Attributes
are handled differently between reference captions
and candidate captions. For reference captions, we
add both the object with attributes, and the object
without attributes to the set, so the candidate is not
penalized for being more general. For the candidate,
however, we add only the object with attributes,
so if the candidate produces attributes, they must
match with something in the reference set.

Repeated Objects: In this work, our primary
goal is to determine if a particular object is
hallucinated, and not focus on the quantity of
hallucinations. Thus, we de-duplicate the object
set in both the candidate and reference captions,
as well as detections coming from the image. By
doing this, we focus on whether the objects can
exist in the image, rather than focus on getting the
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exact count, which may be incorrect if a candidate
caption mentions the same object more than once
(and that object is parsed twice).

Intangible Object: In many cases, objects
mentioned in the candidate or reference set may be
intangible, such as color, light, sound, or emotion.
To improve the accuracy of the model, we explicitly
suggest that such objects should not be included.

Or/Possibly: Modern captioning methods such
as Chat-Captioner (Zhu et al., 2023) and IC3 (Chan
et al., 2023) are capable of encoding uncertainty
into their approach through the use of words like
“possibly" or “maybe". Additionally, they may make
judgments that are uncertain such as “an apple or an
orange." Existing captioning and hallucination de-
tection measures fail to account for this uncertainty,
and match both objects, even though the semantics
of the caption suggests that the object is uncertain,
or may be one of many objects. To account for this,
we encourage the LLM to indicate uncertainty in
a fixed way, as well as list multiple alternatives on a
single line. We then account for this in our matching
method, by giving the candidate the benefit of
the doubt, scoring only the best match from an
alternative set, and ignoring any uncertainty.

Singularization: While it is possible to singular-
ize objects using rule-based methods, rule-based
methods struggle with challenging nouns, and
we found that in general, the LLM was better
at performing the singularization set of the
post-processing before object matching.

A.1 In-Context Examples

In addition to the core prompt text, we provide
several contextual samples, which help with
in-context learning (Brown et al., 2020). The
contextual samples help to align the label space
of the model correctly with the target output
distribution (Min et al., 2022). An example of such
contexts is given in Figure A2 and Figure A3.

B Experimental
Details & Additional Experimentation

B.1 Metrics

We employ several measures in the paper, which
we describe in detail here.

Caption: This image shows two pink
roses in a tulip-shaped vase on a
wooden kitchen counter, next to a
microwave and a toaster oven.
Objects:
- pink rose
- tulip-shaped vase
- wooden kitchen counter
- microwave
- toaster oven

Figure A2: An example of a single-caption parsing result.

Captions:
- Several people riding on a
motorcycle with an umbrella open.
- Couples riding motorcycles carrying
umbrellas and people sitting at
tables.
- A group of people riding scooters
while holding umbrellas.
- Some tables and umbrellas sitting
next to a building.
- Pedestrians and motorcyclists near
an open outdoor market.
Objects:
- person
- couple
- motorcycle
- umbrella
- table
- scooter
- building
- pedestrian
- motorcyclist
- open outdoor market

Figure A3: An example of a multi-caption parsing result.

Average Precision We measure the Average
Precision (AP) of each hallucination metric to
detect sentence-level hallucinations. Specifically,
we label each sample with 1 if it contains a
hallucination and 0 otherwise. We then measure AP
between those labels and per-sample hallucination
measures. For ALOHa, this is:

AP=
1

N

N∑

i=1

I[label]·(1−ALOHa)(i) (3)
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For CHAIR, this is:

AP=
1

N

N∑

i=1

I[label]·I[CHAIR Prediction] (4)

It is worth noting that when computing average
precision, we define the positive label (1) to be
“hallucination” to measure the ability of ALOHa or
CHAIR to correctly identify hallucinations. Indeed,
a lower ALOHa indicates that a caption is more
likely to have a hallucination – therefore, we negate
the ALOHa score when computing AP. We follow
the standard method of computing AP with binary
labels and continuous confidence values, where pre-
cision and recall are iteratively computed with each
confidence value (-ALOHa) as the threshold. The
AP is an average of those precisions, each weighted
by the increase in recall from the previous threshold.

Localization Accuracy Localization accuracy
(LA) measures the fraction of samples where
a metric can correctly identify a hallucinated
object, among samples that are known to contain
hallucinated objects.

LA=
|{ ≥1 correctly identified halluc.}|

|{≥1 halluc.}| (5)

A sample receives LA of 1 if at least one of the
predicted hallucinated objects was correct (for
CHAIR), or if the object with the minimum match-
ing score was a true hallucination (for ALOHa). We
do not measure LA for CLIPScores, as they cannot
provide hallucination scores per object.

B.2 Semantic Similarity Measure

In ALOHa, we compute the similarity between ob-
jects using the cosine distance between embedding
vectors generated using the all-MiniLM-L6-v2
S-BERT implementation in the Sentence-
Transformers1 library (Reimers and Gurevych,
2019). While in theory cosine distances should lie in
the interval [−1,1], in this library, for optimization
stability, models are trained with positive samples
having similarity 1, and negative samples having
similarity 0. This (unintentionally) induces a model
which (by optimization) only produces positive
cosine similarity scores. ALOHa can still be
adapted to negative similarity: our algorithms for

1https://www.sbert.net/

maximal assignment and equations 1 and 2 both
support negative values (even though they don’t
appear in this instantiation of the algorithm).

Parsing Error Rate (PER) and Parsing Recall
Rate (PRR) We calculate PER (Parsing Error
Rate) with manual annotation by taking the fraction
of objects output by the LLM that did not exist in
the caption (in other words, measuring 1-precision
of parsed objects). We additionally annotate and
compute the Parsing Recall Rate (PRR) - the frac-
tion of objects in the caption that are included in the
objects parsed by the LLM. This gives a recall for
GPT-3.5 of 98.63%. In these experiments, we find
that while Koala (Geng et al., 2023) has strong LA
performance on HAT, however ChatGPT (GPT-3.5)
(OpenAI, 2023) has both the best average precision,
and makes the fewest errors, thus we leverage GPT-
3.5 for our primary experiments in the main paper.

C Datasets

In this section, we discuss further the data that we
use and go into detail on the dataset collection pro-
cess for HAT (Appendix C.2) and the nocaps-FOIL
dataset (Appendix C.1)

C.1 nocaps-FOIL

The FOIL dataset (Shekhar et al., 2017) is a
synthetic hallucination dataset based on samples
from the MS-COCO (Xu et al., 2016) dataset. In
this dataset, for each candidate-image pair, a “foil"
caption is created which swaps one of the objects
(in the MS-COCO detection set) in the caption with
a different, and closely related neighbor (chosen
by hand to closely match, but be visually distinct).
While the FOIL dataset provides a useful bench-
mark for many hallucination detection methods,
it is overly biased towards methods optimized for
the MS-COCO dataset. To help evaluate more
general methods, we introduce a new dataset
“nocaps-FOIL" based on the nocaps (Agrawal
et al., 2019) dataset. The nocaps dataset consists
of images from the OpenImages (Kuznetsova et al.,
2020) dataset annotated with image captions in a
similar style to MS-COCO. nocaps is split into three
sets: an in-domain set, where objects in the images
are in the MS-COCO object set, near-domain,
where the objects in the image are related to those
of MS-COCO, and out-of-domain, where objects
in the image are not contained in MS-COCO.
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To build the nocaps-FOIL dataset, for each image,
we generate the baseline caption by removing a
single caption from the reference set. We then
generate the foil caption as follows. First, we find
any words in the baseline caption that are contained
in either the openimages class list (there are 600)
or a near neighbor in Wordnet. We then randomly
select one of these classes to replace. Because there
are 600 classes, we do not hand-pick the foil classes,
and rather, select a near neighbor class based on
sentence embeddings from (Reimers and Gurevych,
2019). We find that in practice, the nearest neighbor
is often a synonym, thus, to avoid selecting
synonyms, we take the 10th furthest sample, which
is often a near neighbor, but is visually distinct. We
replace this word in the caption, matching case, and
then perform a filter for grammatical correctness
using the Ginger2 API. Any captions which are not
grammatically correct are filtered. This leaves us
with 2500 image/caption/foil pairs, which we use
for evaluation in Table 2.

The OpenImages dataset annotations are under
a CC BY 4.0 license, and the images are under a CC
BY 2.0 license.

C.2 HAT

HAT is based on MS-COCO and aims to be a gold-
standard benchmark for the evaluation of hallucina-
tion in image captioning methods. While it is rela-
tively small, it is densely annotated by in-domain ex-
perts for several types of hallucination including ob-
ject hallucination, action hallucination, and numeric
hallucination among others. HAT consists of 90 val-
idation samples, and 400 test samples, each contain-
ing a machine candidate caption generated by one
of BLIP (Li et al., 2022), OFA (Wang et al., 2022),
IC3 (Chan et al., 2023) or Chat-Captioner (Zhu
et al., 2023), and annotations which mark which
word in the captions are hallucinated (See Figure A7
for exact instructions given to annotators). An
image/caption pair is considered a hallucination if at
least one of the words in the caption is hallucinated.

Screenshots of the interface for data collection
are given in Figure A7. While initial versions of
the dataset were collected using AMT workers,
we found that the quality of annotations was not
sufficiently high, and thus, trained experts explicitly
in hallucination detection, and leveraged expert
ratings for the samples in the test dataset.

2https://www.gingersoftware.com/

MS-COCO is under a Creative Commons
Attribution 4.0 License.

D Qualitative Examples

We provide additional qualitative examples from
the following scenarios:

D.1 Flickr30k Examples

Figure A4 shows several examples on the Flickr-30k
dataset Young et al. (2014) with captions generated
by IC3 (Chan et al., 2023), a modern image
captioning model that often generates longer, more
complex captions including uncertain language
such as “possibly.” We highlight objects with
ALOHao ≤ 0.5 as likely hallucinations. For
samples going from left to right:

1. The caption hallucinates the word “mother”,
as there is no visual evidence that the woman
is specifically a mother. CHAIR does not
capture this, as “mother” is mapped to a
synonym for “person”, which it counts as a
grounded (non-hallucinated) object. ALOHa
matches “mother” to the reference “person”,
assigning a borderline ALOHao of 0.5.

2. The image does not contain a hallucination.
CHAIR flags “table” as hallucinated, yet
the caption expressed uncertainty with
a conjunction: “chair or table.” ALOHa
successfully parses this conjuction and
selects “cloth” with ALOHao = 1.0 to the
exact reference match.

3. CHAIR does not detect the hallucinated
“bridge”, which is successfully assigned a
low ALOHao =0.35.

4. The caption hallucinates the word “father”.
In most cases, the specific relationship of
“father” is unlikely to be grounded (similar
to “mother” in sample 1); yet, in this image,
it is even more clear as there are only children
present. CHAIR maps “father” as another
synonym for “person” and does not consider
it a hallucination, whereas “father” has a low
ALOHao =0.34.

D.2 HAT Examples

We present 4 random samples from HAT each
for cases without hallucinations (Figure A5) and
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with hallucinations (Figure A6). Because these
examples contain more nuance than we discuss
below, we do not indicate binary hallucination
decisions as in Appendix D.1.

Starting with Figure A5), samples with captions
that were labeled as correct, from left to right:

1. Both CHAIR and ALOHa successfully do
not find any hallucinations.

2. CHAIR does not flag any hallucinations.
ALOHa assigns a low ALOHao = 0.36 for
“sun“, an incorrect parse from the phrase
“sunny day”. However, the other objects are
successfully matched. Interestingly, ALOHa
adds “snowboard” as an object, inferring that
the physical item would need to be present
given the verb “snowboarding”.

3. CHAIR again does not flag any hallucina-
tions. ALOHao for “tall building” is the
mid-range 0.59, matched with the reference
“building”, indicating a somewhat uncertain
attribute. This may be reasonable given the
point of view in the image.

4. CHAIR finds no hallucinations. “Cloudy sky”
receives a somewhat low ALOHao = 0.45.
Although this phrase is accurate given the
image, this is a failure case in which the
references are incomplete.

Next, we discuss Figure A6, showing samples
that were labeled to contain a hallucination. Recall
that labels capture all types of caption errors, includ-
ing those other than object hallucinations, to serve
as a valuable source for research around general
caption correctness. As a result, there exist non-
object hallucinations in HAT that are impossible for
CHAIR or ALOHa to localize. From left to right:

1. The attribute “tall” is labeled as a hallucination,
as the building next to the bus is only one story.
Similar to sample 3 in Figure A5, ALOHao for
“tall building” is somewhat uncertain at 0.59.
Other objects are correctly grounded.

2. The object “table” is a hallucinated, misclas-
sified object; e.g., one reference opts for the
more general “wooden surface.” However, the
reference mentions a “table” that it is placed
on, leading CHAIR to avoid considering it
as a hallucination. For ALOHa, this example

shows one of the 2.97% of cases (Table 3)
where ALOHa hallucinates a reference object,
“dining table”. The candidate “round wooden
table” is matched to it, with an erroneously
high ALOHao of 0.74.

3. This sample contains a complex error, in which
the arrow is not, in fact, “pointing in different
directions.” This non-object hallucination
is impossible for the object-specific CHAIR
and ALOHa to localize correctly. However,
it demonstrates ALOHa’s capability to extract
more complex attributes such as “red street
sign” and “orange detour sign.”

4. The cat’s location “on top of a small chair”
is labeled as an error. CHAIR does not flag
any hallucinations. ALOHao for “small chair”
is 0.59, yet both metrics cannot capture the
specific relation.
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Figure A4: Qualitative samples of ALOHa evaluated on the Flickr-30k dataset, with candidate captions generated by
IC3 (Chan et al., 2023). Hallucinated objects in the caption text are red and bolded. See Appendix D.1 for discussion.

Figure A5: Randomly selected qualitative examples of ALOHa evaluated on the HAT dataset when there is no
hallucination in the ground truth. See Appendix D.2 for discussion.
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Figure A6: Randomly selected qualitative examples of ALOHa evaluated on the HAT dataset when there is a halluci-
nation in the ground truth. These hallucinations are generally challenging to detect. See Appendix D.2 for discussion.

356



Figure A7: The hallucination dataset collection interface.
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